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This paper presents analytical Green’s function solutions for an isotropic elastic half-space subject to anti-
plane shear deformation. The boundary of the half-space is modeled as a material surface, for which the
Gurtin–Murdoch theory for surface elasticity is employed. By using Fourier cosine transform, analytical
solutions for a point force applied both in the interior or on the boundary of the half-space are derived
in terms of two particular integrals. Through simple numerical examples, it is shown that the surface
elasticity has an important influence on the elastic field in the half-space. The present Green’s functions
can be used in boundary element method analysis of more complicated problems.
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1. Introduction

The recent growing research interests in solid mechanics with
the consideration of surface/interface effects have been inspired
by the practical importance of particular micro- and nano-scaled
phenomena in modern MEMS/NEMS technology. However, the sur-
face/interface effects have already been noticed and studied for
more than one hundred years (see Gibbs, 1961). The reader is re-
ferred to a review article by Cammarata (1994), which presented
an in-depth discussion on some fundamental aspects and impor-
tant issues of the surface/interface effects in thin films. In general,
material scientists and physicists have paid much attention to
these effects from the general thermodynamics considerations.
Gurtin and Murdoch (1975), on the other hand, developed a rigor-
ous mathematical framework for the continuum theory of a
deformable material surface. It is shown that the conventional
boundary conditions in classical elasticity are replaced by a set of
two-dimensional differential equations governing the surface
deformation. Based on their theory (hereafter, referred as the GM
theory), Gurtin and Murdoch (1978) subsequently showed that
the surface stress plays an important role in both the static and
dynamical problems of elastic bodies with appropriate surfaces.
It is interesting to point out that, through a particular procedure
for developing plate theories, Mindlin (1963) was able to derive
the approximate boundary conditions, which have exactly the
same form as those in the GM theory except the coefficients when
ll rights reserved.

: +49 271 7404074.
).
the residual surface tension is absent, on the plane boundary of a
plate covered with a very thin layer. Based on the GM theory, a
wide range of mechanics problems has been investigated in recent
years, see He et al. (2004), Lim and He (2004), Lim et al. (2006), He
and Li (2006), Li et al. (2006), Lü et al. (2009a,b), Ou et al. (2009)
and Kim et al. (2010), to name a few.

As is well-known, Green’s functions are very important in solv-
ing boundary-value problems in elasticity. Recently, there have ap-
peared some studies on Green’s functions for elastic bodies with
surface effects. Based on the GM theory, but with a simplification
that the surface material has the same elastic property as the bulk
material, He and Lim (2006) presented the surface Green’s function
of a half-space using the double Fourier transforms; the interaction
of a molecule with a half-space was studied using the derived sur-
face Green’s function. In their derivation, the incompressibility of
the bulk material is also assumed. Wang and Feng (2007) reported
analytical solutions of a half-plane with a material boundary sub-
ject to uniform as well as concentrated loads acting on the bound-
ary. Fourier transform technique was used, and only the effect of
residual surface tension was considered in their analysis. Their
work was somewhat improved recently by Zhao and Rajapakse
(2009), who considered the problem of a surface-loaded isotropic
elastic layer with surface effects. Koguchi (2008) derived the sur-
face Green’s function for an anisotropic half-space with material
surface using Stroh’s formulism. However, his results are given in
a very complicated integral form. No results of Green’s functions
for point loads applied in the bulk material have been reported,
although they are more important and have wider applications in
the boundary element analysis of more complicated problems.

http://dx.doi.org/10.1016/j.ijsolstr.2010.03.007
mailto:c.zhang@uni-siegen.de
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr
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In this paper, we confine ourselves to the simple anti-plane
deformation of an isotropic elastic half-space subject to point shear
force applied either in the bulk or on the surface. The plane bound-
ary is modeled as a material surface which possesses both residual
surface tension and elasticity, for which the GM theory is em-
ployed. Because of the symmetry of the problem, Fourier cosine
transform is employed to derive the analytical expressions of the
Green’s functions. The properties of two specific integrals that
seem to be closely associated with surface elasticity are summa-
rized in an appendix of the paper. Numerical calculations are also
performed to show the influence of surface elasticity on the stress
field in the half-space.
2. Basic equations

The three-dimensional basic equations for the bulk material are
conventional, and read as

rij;j þ fi ¼ 0 ð1Þ
rij ¼ kekkdij þ 2leij ð2Þ

eij ¼
1
2
ðui;j þ uj;iÞ ð3Þ

where rij and eij are stress and strain tensors, respectively, ui is the
displacement vector, fi is the body force vector, k and l are Lamé’s
constants, and dij is the Kronecker delta. The convention of summa-
tion over repeated indices (with Latin indices running from 1 to 3,
and Greek ones ranging over 1 and 2 only) is employed throughout
this paper, and a comma followed by a subscript, say j, indicates dif-
ferentiation with respect to the coordinate xj in a Cartesian coordi-
nate system.

For an infinite half-space x3 P 0 as shown in Fig. 1, the equa-
tions governing the material surface x3 ¼ 0 are given by Gurtin
and Murdoch (1978) as follows:

rs
ia;a þ ri3 ¼ 0 ð4Þ

rs
ab ¼ ssdab þ 2ðls � ssÞeab þ ðks þ ssÞeccdab þ ssua;b ð5Þ

rs
3b ¼ ssu3;b ð6Þ

where the superscript s designates those quantities associated with
the surface, ss is the residual surface tension, and ks and ls are the
surface Lamé’s moduli. In writing Eqs. (4)–(6), the displacement
compatibility between the surface and bulk at x3 ¼ 0 has been
implied.

In this paper, we confine ourselves to the simple case of anti-
plane deformation of the half-space under an appropriate shear
load, which is applied along and invariant with the x2-direction
(out of the figure). In this case, we have

u1 ¼ u3 ¼ 0; u2 ¼ vðx1; x3Þ ð7Þ

Thus, for the bulk, we have only the following nonzero strain
components:
x1

bulk: λ, μ

surface: τs,λs, μs

x3

Fig. 1. A half-space x3 P 0 with a material surface at x3 ¼ 0.
e12 ¼
1
2
@v
@x1

; e23 ¼
1
2
@v
@x3

ð8Þ

The nonzero stress components are obtained from the Hooke’s law,
Eq. (2), as

r12 ¼ l @v
@x1

; r23 ¼ l @v
@x3

ð9Þ

The stress tensor in the bulk is symmetric, i.e. we have r12 ¼ r21

and r23 ¼ r32. The equilibrium equation (1) reduces to

@r12

@x1
þ @r23

@x3
þ f2 ¼ 0 ð10Þ

or in view of Eq. (9),

@2v
@x2

1

þ @
2v
@x2

3

þ f2

l
¼ r2v þ f2

l
¼ 0 ð11Þ

where r2 ¼ @2=@x2
1 þ @

2=@x2
3 is the two-dimensional Laplacian.

Accordingly, we have the following equations for the material
surface x3 ¼ 0:

@rs
21

@x1
þ r23 ¼ 0 ð12Þ

rs
21 ¼ ls @v

@x1
; rs

12 ¼ ðls � ssÞ @v
@x1

ð13Þ

Eq. (12) can also be obtained directly by invoking the equilibrium of
an ultrathin film element (in the x2-direction) as shown in Fig. 2,
where r23 is the ‘external force’ exerted by the underlying bulk
material on the film. Eq. (4), which is for the general deformation
cases, can be obtained with a similar consideration.

Note that for the complete theory developed by Gurtin and
Murdoch (1975, 1978), the surface stress tensor rs

ab is not symmet-
ric, i.e. rs

ab–rs
ba when surface stress tension ss is present, as indi-

cated clearly in Eq. (5).
For the current problem, the residual surface tension ss will

contribute to the surface stress component rs
12 only, and has en-

tirely no effect on the elastic field in the interior of the half-space.
This becomes obvious if we write the boundary conditions at
x3 ¼ 0 as r23 ¼ �ls@2v=@x2

1, which is a straightforward result of
Eqs. (12) and (13)1.

For an external shear load pðx1; x3Þ applied on the surface in the
positive direction of x2, Eq. (12) should be replaced by

@rs
21

@x1
þ r23 þ p ¼ 0 ð14Þ

which may also be obtained from the equilibrium consideration of
the film element in Fig. 2.

3. Green’s function solutions

3.1. Bulk Green’s function

We first consider the case when a point shear force
f3ðx1; x3Þ ¼ p0dðx1Þdðx3 � hÞ is applied in the interior of the
x1

x3

x2

21 21ds sσ σ+21
sσ

1d x

23σ

12 12ds sσ σ+

12
sσ

Fig. 2. The equilibrium of an ultrathin film element (the homogeneous residual
stress state of rs

11 ¼ rs
22 ¼ ss is not shown).
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half-space, here h > 0 is the distance between the surface and
the point at which the force is applied, see Fig. 3. Then, Eq. (11)
reads

@2v
@x2

1

þ @
2v
@x2

3

þ p0

l dðx1Þdðx3 � hÞ ¼ 0 ð15Þ

The nontrivial homogeneous boundary conditions due to the pres-
ence of the material surface at x3 ¼ 0 are obtained, in view of Eq.
(9), from Eqs. (12) and (13)1 as

ls @
2v
@x2

1

þ l @v
@x3
¼ 0 at x3 ¼ 0 ð16Þ

There are many ways to obtain the solution of Eq. (15) with the con-
dition (16). We proceed to use the following Fourier cosine
transform:

Vðk; x3Þ ¼
ffiffiffiffi
2
p

r Z 1

0
vðx1; x3Þ cosðkx1Þdx1 ð17aÞ

vðx1; x3Þ ¼
ffiffiffiffi
2
p

r Z 1

0
Vðk; x3Þ cosðkx1Þdk ð17bÞ

And, instead of solving Eq. (15) directly, we divide the half-space
into two regions, region 1 ð0 6 x3 6 hÞ and region 2 (x3 P hÞ, as
shown in Fig. 3. By doing so, the governing equation in each region
becomes homogeneous as

@2v ðjÞ

@x2
1

þ @
2v ðjÞ

@x2
3

¼ 0 ðj ¼ 1;2Þ ð18Þ

while at x3 ¼ h, we have the following continuity/equilibrium
conditions:

v ð1Þ ¼ v ð2Þ; l @v
ð2Þ

@x3
þ p0dðx1Þ ¼ l @v

ð1Þ

@x3
ð19Þ

where the superscript j denotes the respective region. The condi-
tion at x3 ¼ 0 is still given by Eq. (16), but with v replaced by v ð1Þ.

Now, by applying the cosine Fourier transform defined by Eq.
(17a) to Eq. (18) and conditions (16) and (19), we get

d2V ðjÞ

dx2
3

� k2V ðjÞ ¼ 0 ðj ¼ 1;2Þ ð20Þ

dV ð1Þ

dx3
� rlk2V ð1Þ ¼ 0 at x3 ¼ 0 ð21Þ

V ð1Þ ¼ V ð2Þ;
dV ð2Þ

dx3
þ p0

l
1ffiffiffiffiffiffiffi
2p
p ¼ dV ð1Þ

dx3
ð22Þ

where rl ¼ ls=l is the shear modulus ratio between the surface and
bulk, and it has the dimension of length, which can be regarded as
an intrinsic length parameter of the half-space with a material
boundary.

Taking into account the regularity condition at x3 !1, we can
write down the solutions to Eq. (20) in the two regions as

V ð1Þ ¼ Að1Þekx3 þ Bð1Þe�kx3 ; V ð2Þ ¼ Bð2Þe�kx3 ð23Þ
x1

x3

h
p01

2

Fig. 3. A point shear force p0 acting in the bulk at point (0,h).
Substituting into Eqs. (21) and (22) yields

Að1Þk� Bð1Þk� rlk2ðAð1Þ þ Bð1ÞÞ ¼ 0

Að1Þekh þ Bð1Þe�kh � Bð2Þe�kh ¼ 0 ð24Þ

Að1Þkekh � Bð1Þke�kh þ Bð2Þke�kh ¼ p0

l
1ffiffiffiffiffiffiffi
2p
p

Thus, we can obtain

Að1Þ ¼ e�kh

k
1

2
ffiffiffiffiffiffiffi
2p
p p0

l

Bð1Þ ¼ ð1� rlkÞe�kh

kð1þ rlkÞ
1

2
ffiffiffiffiffiffiffi
2p
p p0

l
ð25Þ

Bð2Þ ¼ 1
k

ekh þ ð1� rlkÞ
ð1þ rlkÞ e

�kh

� �
1

2
ffiffiffiffiffiffiffi
2p
p p0

l

Substituting into Eq. (23) and then performing the inverse trans-
form, we get

v ð1Þ ¼ 1
2p

p0

l

Z 1

0

1
k

e�kðh�x3Þ þ ð1� rlkÞ
kð1þ rlkÞe

�kðhþx3Þ
� �

cosðkx1Þdk ð26aÞ

¼ 1
4p

p0

l ln
x2

1þðhþx3Þ2

x2
1þðh�x3Þ2

" #
þ 1

p
p0

l ½Icðx1;hþx3Þ� Jcðx1;hþx3;rlÞ� ð26bÞ

v ð2Þ ¼ 1
2p

p0

l

Z 1

0

1
k

e�kðx3�hÞ þð1� rlkÞ
ð1þ rlkÞe

�kðx3þhÞ
� �

cosðkx1Þdk ð26cÞ

¼ 1
4p

p0

l ln
x2

1þðx3þhÞ2

x2
1þðx3�hÞ2

" #
þ 1

p
p0

l ½Icðx1;x3þhÞ� Jcðx1;x3þh;rlÞ� ð26dÞ

where

Icðx; yÞ ¼
Z 1

0

e�ky

k
cosðkxÞdk ¼ �c� 1

2
lnðx2 þ y2Þ;

Jcðx; y; aÞ ¼
Z 1

0

ae�ky

1þ ak
cosðkxÞdk

with c ¼ 0:57721 . . . being the Euler constant. It is noted that the
second integral can be expressed in terms of the well-known expo-
nential integral, see Appendix A.

It is noted that the Euler constant, which corresponds to a rigid-
body translation, can be eliminated since it does not affect the
stress and strain fields in the half-space. Moreover, we note that
the two expressions for v, as given in Eqs. (26b) and (26d) respec-
tively, are identical, and hence the displacement in the half-space
can be simply written as

v ¼ � 1
4p

p0

l
ln ½x2

1 þ ðx3 � hÞ2�½x2
1 þ ðx3 þ hÞ2�

n o

� 1
p

p0

l
Jcðx1; x3 þ h; rlÞ ð27Þ

where the constant term corresponding to the rigid-body transla-
tion has been omitted.

The shear stresses in the half-space then can be obtained from
Eqs. (9) and (27) as

r12¼�
p0

p
2x1x3h

½x2
1þðx3�hÞ2�½x2

1þðx3þhÞ2�
þ 1

rl
Jsðx1;x3þh;rlÞ

( )
ð28Þ

r23¼�
p0

p
ðx2

3�x2
1�h2Þh

½x2
1þðx3�hÞ2�½x2

1þðx3þhÞ2�
þ 1

rl
Jcðx1;x3þh;rlÞ

( )
ð29Þ

where

Jsðx; y; aÞ ¼
Z 1

0

ae�ky

1þ ak
sinðkxÞdk

and the equalities in Eq. (A6) in Appendix A have been employed in
deriving Eqs. (28) and (29).
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The surface stress components can also be calculated from Eqs.
(13) and (27) as

rs
21 ¼ �

p0

p
Jsðx1; h; rlÞ; rs

12 ¼ �
ðls � ssÞ

ls

p0

p
Jsðx1;h; rlÞ ð30Þ

If the surface elasticity is absent, then the classical results of the
half-space subject to a point shear load are obtained as follows:

v ¼ � 1
4p

p0

l
lnf½x2

1 þ ðx3 � hÞ2�½x2
1 þ ðx3 þ hÞ2�g ð31Þ

r12 ¼ �
p0

p
x1ðx2

1 þ x2
3 þ h2Þ

½x2
1 þ ðx3 � hÞ2�½x2

1 þ ðx3 þ hÞ2�
ð32Þ

r23 ¼ �
p0

p
x3ðx2

1 þ x2
3 � h2Þ

½x2
1 þ ðx3 � hÞ2�½x2

1 þ ðx3 þ hÞ2�
ð33Þ

It is readily seen that the expression in Eq. (31) agrees with the re-
sult of the two-dimensional anti-plane (potential) problem of a
half-space (Gaul et al., 2003), as it should be.

For a unit point load applied at an arbitrary interior point
ðx01; x03Þ, Eq. (15) becomes

@2v�

@x2
1

þ @
2v�

@x2
3

þ 1
l

dðx1 � x01Þdðx3 � x03Þ ¼ 0 ð34Þ

where the superscript * indicates the point-source Green’s function
solution. Then the expression for displacement can be given in a
standard form of Green’s functions as

v�ðx; x0Þ ¼ � 1
2pl

ðln r þ ln RÞ � 1
pl

Jcðx1 � x01; x3 þ x03; rlÞ ð35Þ

where x and x0 denote the position vectors of the field point ðx1; x3Þ
and the source point ðx01; x03Þ, respectively, r ¼ jx� x0j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ

2 þ ðx3 � x03Þ
2

q
is the distance between x and x0, and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ

2 þ ðx3 þ x03Þ
2

q
is the distance between x and the imag-

ine of x0. The first term in v� contains a logarithmic singularity (weak
singularity) as that for the potential problem of an infinite plane sub-
ject to a point source, the second term is due to the presence of the
plane boundary x3 ¼ 0 and has no singularity since x03 > 0 (i.e. the
load is applied in the interior of the half-plane), and the third is
caused by the surface elasticity, which is also nonsingular as can
be seen from the discussions presented in Appendix A.

Because of the symmetry property of the integral Jc as indicated
in Eq. (A3), we know that v�ðx;x0Þ ¼ v�ðx0;xÞ, which indicates that
the reciprocity theorem still works for a body with material surface
as considered here.

In accordance with Eq. (35), the stress Green’s functions can be
written as

r�12ðx;x0Þ ¼�
1

2p
x1�x01

r2 �x1�x01
R2

� �
� 1

p
1
rl

Jsðx1�x01;x3þx03;rlÞ ð36aÞ

r�23ðx;x0Þ ¼�
1

2p
x3�x03

r2 �x3þx03
R2

� �
� 1

p
1
rl

Jcðx1�x01;x3þx03;rlÞ ð36bÞ

It is seen that both stress components have the same strong singu-
larity ðxi � x0iÞ=r2 as in the conventional potential problems (Brebbia
and Walker, 1979; Gaul et al., 2003). The above-mentioned singu-
larity characteristics of the displacement and stress Green’s func-
tions have an important implication in constructing the
corresponding boundary integral equation, and will be briefly dis-
cussed in Appendix B.

3.2. Surface Green’s function

In the case that the point shear force pðx1; x3Þ ¼ p0dðx1Þdðx3Þ is
applied on the surface, we need not divide the bulk into two re-
gions, and the governing equations and boundary conditions are,
respectively

@2v
@x2

1

þ @
2v
@x2

3

¼ 0 ðx3 > 0Þ ð37Þ

ls @
2v
@x2

1

þ l @v
@x3
¼ �p0dðx1Þ at x3 ¼ 0 ð38Þ

The corresponding Fourier transforms are

d2V

dx2
3

� k2V ¼ 0 ðx3 > 0Þ ð39Þ

dV
dx3
� rlk2V ¼ � p0

l
1ffiffiffiffiffiffiffi
2p
p at x3 ¼ 0 ð40Þ

The solution of Eq. (37), which satisfies the regularity condition at
x3 !1 is

V ¼ Be�kx3 ð41Þ
Then from Eq. (40), we get

B ¼ 1
kð1þ rlkÞ

p0

l
1ffiffiffiffiffiffiffi
2p
p ð42Þ

And the displacement can be obtained as

v ¼ 1
p

p0

l

Z 1

0

1
kð1þ rlkÞ e

�kx3 cosðkx1Þdk

¼ 1
p

p0

l
½Icðx1; x3Þ � Jcðx1; x3; rlÞ� ð43Þ

By eliminating the constant term, we obtain

v ¼ � 1
2p

p0

l
lnðx2

1 þ x2
3Þ �

1
p

p0

l
Jcðx1; x3; rlÞ ð44Þ

which can be directly derived from Eq. (27) by making the substitu-
tion h ¼ 0. The shear stress components in the bulk are calculated as

r12 ¼ �
p0

rlp
Jsðx1; x3; rlÞ; r23 ¼ �

p0

rlp
Jcðx1; x3; rlÞ ð45Þ

and those of the material surface are

rs
21 ¼ �

p0

p Jsðx1; 0; rlÞ; rs
12 ¼ �

ðls � ssÞ
ls

p0

p Jsðx1; 0; rlÞ ð46Þ

If the surface elasticity is absent, we then have the following
classical results:

v ¼ � 1
2p

p0

l
lnðx2

1 þ x2
3Þ ð47Þ

r12 ¼ �
p0

p
x1

x2
1 þ x2

3

; r23 ¼ �
p0

p
x3

x2
1 þ x2

3

ð48Þ

As noticed above, the surface Green’s function of an elastic half-
space with a material surface can be obtained from the bulk
Green’s function by simply letting h ¼ 0, just as in the classical
elasticity. In other words, the presence of surface elasticity does
not alter the nature of such a limiting procedure. Thus, in most
applications it seems not necessary to distinguish these two cases
particularly. One exception is the singular behavior of the surface
stress Green’s function, which is different from that for the bulk
stress Green’s function, as clearly shown by Eq. (45). This point will
be further discussed in the next section along with the numerical
demonstration. The change of the singular behavior of the surface
stress Green’s function will not affect the associated BEM formula-
tion except one coefficient, as discussed in Appendix B.

4. Numerical results

For numerical calculations and comparison, we introduce the
following dimensionless quantities:
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r̂12 ¼
r12prl

p0
; r̂23 ¼

r23prl

p0
; x ¼ x1

rl
; y ¼ x3

rl
; ĥ ¼ h

rl
ð49Þ

Figs. 4 and 5 depict the distributions of dimensionless bulk
stress components r̂12 and r̂23, respectively, for various values of
the dimensionless depth y along the horizontal axis . The location
of the load is specified as ĥ ¼ 0:1. It is noted that, by using the
dimensionless quantities defined in Eq. (49), it is not necessary
to assign any particular value to the parameter rl since, as an
intrinsic length, it has been used to eliminate the length dimen-
sion. Actually, it can be easily found from the dimensionless form
of Eqs. (28) and (29) that, the dimensionless stresses r̂12 and r̂23

no longer depend apparently on rl. Thus, the difference in rl will
have completely no influence on Figs. 4 and 5. For comparison,
the predictions corresponding to the classical solution without
any surface effect are also given in the figures, which are indicated
by CS, while those with surface effect are indicated by SE. As we
can see, the surface elasticity has a more significant effect on the
stresses near the surface of the half-space than those far from
the surface. Furthermore, the presence of the surface elasticity
seems to lower the shear stress r̂12, especially at the locations near
the material surface. For the shear stress r̂23, while the classical
solution correctly gives the traction-free boundary conditions
ðr23 ¼ 0Þ at x3 ¼ 0, the solution with surface effect is not trivial,
and its maximum positive value appears at x1 ¼ 0. Furthermore,
we can see that surface elasticity may alter the nature of the shear
stress r̂23, i.e. a negative r̂23 at a certain point in the classical elas-
ticity may be changed to a positive one due to the surface effect.
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Fig. 5. Distributions of dimensionless shear stress component r̂23 ¼ r23prl=p0 at various
solution including the surface effect, and CS corresponds to the classical elasticity.
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Fig. 4. Distributions of dimensionless shear stress component r̂12 ¼ r12prl=p0 at various
solution including the surface effect, and CS corresponds to the classical elasticity.
Miller and Shenoy (2000) have computed from empirical atomic
potentials the bulk and surface elastic properties of FCC Al and dia-
mond Si, both having cubic symmetry. According to their results,
for similar isotropic materials, the values of ss=l and ls=l can be
estimated as 0.1 Å and 1.0 Å, respectively (He and Li, 2006). Thus,
the intrinsic length of the problem can be taken as rl ¼ 1:0 Å. If
this is the case, then the value of ĥ ¼ 0:1 means that h ¼ 0:1 Å. This
value is very small, but the results given in Figs. 4 and 5 still serve
an illustrative purpose since, as mentioned earlier, the intrinsic
length parameter rl has no influence on the results. To make it
clearer, let’s take a different value of h, say 10 Å. Then to keep ĥ un-
changed (i.e. ĥ ¼ 0:1Þ, we can artificially assume rl ¼ 100 Å. The
dimensionless results will be still given by Figs. 4 and 5, but the
real stress field in the half-space changes. The magnitude of stres-
ses (r12 and r23Þ will become one hundred times as small as those
for h ¼ 0:1 Å at a point with both coordinates amplified by one
hundred times. Thus, quite similar observations can be obtained
for larger values of h, except the difference in magnitudes of the
real stress field. The intrinsic parameter rl, acting a role of zooming
in/out or simply scaling, is hence very important in interpreting the
stress and displacement distributions in the half-space with a
material surface.

When the load is applied on the surface, the distributions of r̂12

and r̂23 are shown in Figs. 6 and 7, respectively. By comparing
Fig. 6 with Fig. 4, a notable difference is found that the shear stress
r12 is no longer singular at the load application point when the sur-
face effect is taken into consideration, as can be seen clearly from
Eq. (45). Obviously, it is due to the mutual cancellation of the two
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Fig. 6. Distributions of dimensionless shear stress component r̂12 ¼ r12prl=p0 at various depths x3 ¼ yrl along the horizontal axis x1 ¼ xrl for ĥ ¼ h=rl ¼ 0:0; SE denotes the
solution including the surface effect, and CS corresponds to the classical elasticity.

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1

y=0.0, SE

y=0.0, CS

y=0.1, SE

y=0.1, CS

y=0.5, SE

y=0.5, CS

x

23σ̂

Fig. 7. Distributions of dimensionless shear stress component r̂23 ¼ r23prl=p0 at various depths x3 ¼ yrl along the horizontal axis x1 ¼ xrl for ĥ ¼ h=rl ¼ 0:0; SE denotes the
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singular terms, one corresponding to the classical elasticity and an-
other induced by the surface elasticity. Although this is a very
interesting phenomenon, it is not a universal conclusion that can
be applied to all stress components. In fact, the shear stress compo-
nent r23 is still singular (of logarithmic type) at the load point, as
can be seen from Eqs. (45) and (A11). In the classical elasticity the-
ory, r23 vanishes identically when x3 ¼ 0 except at the load point
(0,0); while in the present theory with a surface elasticity, it has
a finite value and varies with x1, except at the load point (0,0)
where it is also infinite.

To characterize the range of the influence of surface elasticity
on the stress field, we show in Fig. 8 the spatial distribution of the
stress ratio - ¼ rSE

23=rCS
23, where the superscripts SE and CS denote

the solution involving surface effect and the classical solution,
respectively. The load is assumed to be on the surface, i.e.
h ¼ 0. As can be seen from the figure, when y ¼ 25, i.e. at the
depth of 25 times the intrinsic length, the relative difference be-
tween the two solutions becomes smaller than 5%. This is also the
case for the shear stress component r12 (although not shown
here), and hence the surface elasticity can be regarded to have
an influence on the stress field in the range within the depth of
25 times the intrinsic length. As expected, if the intrinsic length
reduces, then the influence range also shrinks. If the load is not
applied on the surface, the spatial distribution of - ¼ rSE

23=rCS
23 is

very similar, see Fig. 9 for ĥ ¼ 0:1 (for other load positions, the
scaling argument mentioned earlier may be used to obtain the
influence range).
From its expression in Eq. (28), it is known that the stress r12 is
antisymmetric with respect to the vertical axis x1 ¼ 0, and hence
vanishes there except at the load point. On the other hand, as seen
from Eq. (29), the stress r23 is symmetric with respect to the ver-
tical axis, and does not vanish at x1 ¼ 0. Fig. 10 displays the distri-
butions of r̂23 along the vertical axis for various positions of the
load. The singularity at the load point is clearly shown. It is also
seen that the bulk stress on the boundary increases when the load
approaches to the surface.

To show the effect of the surface elasticity on the displacement,
we define the dimensionless displacement difference v̂d as

v̂d ¼
pl
p0
ðvCS � vSEÞ ¼ Jcðx1; x3 þ h; rlÞ ð50Þ

The characteristics of the integral Jc are discussed in Appendix A and
its drawings are given in Fig. A1. If the load is applied on the surface,
then Fig. A1 gives v̂d at various depths y ¼ 0;1;2 and 4. It is seen
that the displacement difference at x3 ¼ 0 is not always larger than
those underneath the boundary. Only near the load application
point, where it is singular, it is the largest, while with the increase
of distance away from the load, it becomes smaller and smaller.
Actually, beyond approximately x ¼ 2, it becomes the lowest one
among the four curves. If the load is applied at (0, rlÞ, then the curve
y ¼ 1 in Fig. A1 corresponds to v̂d at the boundary, and y ¼ 2 gives
the results for x3 ¼ rl. As can be seen clearly, there is no singularity
at the load point. The displacement difference also decreases with
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the distance away from the load point. A typical two-dimensional
distribution of v̂d is given in Fig. 11 for ĥ ¼ 0:1.

5. Conclusions

Analytical Green’s functions have been obtained for an isotropic
elastic half-space subject to a point force loading under the
assumption of anti-plane shear deformation. The Gurtin–Murdoch
continuum theory has been adopted to describe the deformation of
the plane boundary surface, which may have different elastic prop-
erty from the bulk material. Fourier cosine transform technique is
used to derive the analytical expressions of the Green’s functions,
in which two particular integrals are involved and studied. Numer-
ical examples show that the surface effect has an important influ-
ence on the elastic field in the half-space.

The present Green’s functions are useful in order to obtain
numerical solutions for more complicated problems for which
the boundary element method (BEM) may be employed (Telles



Fig. 11. The two-dimensional distribution of v̂d , which is defined in Eq. (50), for ĥ ¼ h=rl ¼ 0:1.
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and Brebbia, 1981). The corresponding boundary integral equation
formulation is presented in Appendix B. An in-depth discussion on
BEM is however beyond the scope of this paper and will be given
elsewhere.
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Appendix A. Some properties of the integrals Jcðx; y; aÞ and
Jsðx; y; aÞ

The following two integral functions are defined in the text:

Jcðx; y; aÞ ¼
Z 1

0

ae�ky

1þ ak
cosðkxÞdk

Jsðx; y; aÞ ¼
Z 1

0

ae�ky

1þ ak
sinðkxÞdk ðA1Þ

where, according to the physical problem, we confine ourselves to
the case x, y, a are all real and P 0. It seems that these two integrals
will be present in the solutions of some problems involving the sur-
face effect, see Zhao and Rajapakse (2009) for example, although
their definition is slightly different from ours. Hence the properties
of the two integrals deserve a little deeper investigation. In the fol-
lowing, we only list some primary properties.

An immediate result of Eq. (A1) is as follows:

Jcðx; y; aÞ ¼ Jcðx=a; y=a; 1Þ; Jsðx; y; aÞ ¼ Jsðx=a; y=a; 1Þ ðA2Þ

which indicates the inherent scaling function of the parameter a in
the two integrals. This scaling property exactly accords with the
physical nature arising in the current problem. Note that if a ¼ 0,
both integrals vanish.

The following symmetry property is also obvious:

Jcðx; y; aÞ ¼ Jcð�x; y; aÞ; Jsðx; y; aÞ ¼ �Jsð�x; y; aÞ ðA3Þ

which reveals the symmetry of the Green’s function with respect to
the source point and the field point, as already noticed in the text.

Since

Jcðx; y; aÞ � iJsðx; y; aÞ ¼
Z 1

0

ae�kðyþixÞ

1þ ak
dk ¼

Z 1

0

e�nz

1þ n
dn ðA4Þ
where z ¼ ðyþ ixÞ=a, we then, through simple variable substitution,
obtain the following relations:

Jcðx; y; aÞ ¼ Re½ezE1ðzÞ� ¼
1
2
½ezE1ðzÞ þ e�zE1ð�zÞ�

Jsðx; y; aÞ ¼ �Im½ezE1ðzÞ� ¼
i
2
½ezE1ðzÞ � e�zE1ð�zÞ� ðA5Þ

and

E1ðzÞ ¼
Z 1

z
ðe�t=tÞdt ðjArgðzÞj < pÞ

being the exponential integral (Abramovitz and Stegun, 1964).
Further, it can be shown that

@Jcðx; y; aÞ
@x

¼ � x
x2 þ y2 þ

1
a

Jsðx; y; aÞ

@Jcðx; y; aÞ
@y

¼ � y
x2 þ y2 þ

1
a

Jcðx; y; aÞ
ðA6Þ

@Jsðx; y; aÞ
@x

¼ y
x2 þ y2 �

1
a

Jcðx; y; aÞ

@Jsðx; y; aÞ
@y

¼ � x
x2 þ y2 þ

1
a

Jsðx; y; aÞ
ðA7Þ

This differential property is particular useful in obtaining the stress
fields for related problems, as shown in the text as well as in Zhao
and Rajapakse (2009). We also notice from Eqs. (A6) and (A7) that

@Jcðx; y; aÞ
@x

¼ @Jsðx; y; aÞ
@y

;
@Jcðx; y; aÞ

@y
¼ � @Jsðx; y; aÞ

@x
ðA8Þ

It is also interesting to study some particular cases when x or y
is known. First, let us assume x ¼ 0, for which Eq. (A1) becomes

Jcð0; y; aÞ ¼
Z 1

0

ae�ky

1þ ak
dk ¼ ey=aE1ðy=aÞ ¼ ey=aCð0; y=aÞ ðA9Þ

Jsð0; y; aÞ ¼ 0 ðy–0Þ; Jsð0; 0; aÞ ¼ p=2 ðA10Þ

where Cðm; zÞ ¼
R1

z tm�1e�tdt is the incomplete Gamma function. It
is then easy to see that

lim
y!0

Jcð0; y; aÞ ¼ � lim
y!0

lnðy=aÞ ¼ 1 ða–0Þ ðA11Þ

Thus the term due to the surface elasticity in Eq. (27) exhibits a log-
arithmic singularity at the load application point only when it is on
the surface since in the solution we have y ¼ x3 þ h. Such a singular-
ity is expected since the material surface can be regarded as a very
thin layer of elastic material. Nevertheless, when the load is applied
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on the surface, the displacement still exhibits a logarithmic singu-
larity at the load application point. However, the singular behavior
of the stress field will change, as discussed in the numerical exam-
ple in Section 4.

On the other hand, by taking y ¼ 0, we obtain

Jcðx;0; aÞ ¼
Z 1

0

a cosðkxÞ
1þ ak

dk ¼ gðx=aÞ

Jsðx;0; aÞ ¼
Z 1

0

a sinðkxÞ
1þ ak

dk ¼ f ðx=aÞ
ðA12Þ

where f ðzÞ ¼
R1

0 ½sinðtÞ=ðt þ zÞ�dt and gðzÞ ¼
R1

0 ½cosðtÞ=ðt þ zÞ�dt are
auxiliary functions defined in Abramovitz and Stegun (1964). They
are related to the well-known sine and cosine integrals by

f ðzÞ ¼ CiðzÞ sinðzÞ � siðzÞ cosðzÞ
gðzÞ ¼ �CiðzÞ cosðzÞ � siðzÞ sinðzÞ

ðA13Þ

with siðzÞ ¼ SiðzÞ � p=2 and

SiðzÞ ¼
Z z

0

sinðtÞ
t

dt

CiðzÞ ¼ �
Z 1

z

cosðtÞ
t

dt ðjArgðzÞj < pÞ
ðA14Þ

being the sine and cosine integrals. The fact that f ð0Þ ¼ p=2 results
in Jsð0;0; aÞ ¼ p=2 as already given in Eq. (A10).

To gain a direct knowledge of their behavior, we show in
Figs. A1 and A2 the drawings of the two integral functions, respec-
tively. They are depicted at a ¼ 1, while those for a–1 can be easily
imaged based on the scaling property mentioned above.
Appendix B. Boundary integral equation formulation for an
isotropic elastic half-space with a material surface

If in the interior of the half-space there contains additional
internal boundaries caused by cracks, holes or inclusions, then
the displacement and stress fields may be very difficult to obtain
analytically. In such cases, an approximate solution may be sought
for by the boundary element method (BEM), which is based on the
boundary integral equation (Brebbia and Walker, 1979). The
Green’s functions obtained in the text then play a central role in
constructing such a formulation, as shown below.

We start from the following two-dimensional Green’s second
identityZ

A
ðvr2v� � v�r2vÞdA ¼

Z
L

v @v
�

@n
� v� @v

@n

� �
dL ðB1Þ

where v is the displacement field for a particular problem, v� is the
displacement Green’s function given in Eq. (35), A is the area occu-
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Fig. A1. Integral Jcðx; y; aÞ for a ¼ 1.
pied by the elastic body with the boundary L, and n is the outward
pointing unit normal.

Eq. (B1) can be rewritten as

vðx0Þ ¼
Z

A
v�ðx; x0Þf2ðxÞdAþ

Z
L
½v�ðx;x0ÞqðxÞ � vðxÞq�ðx; x0Þ�dL

ðB2Þ

where @=@n ¼ ni@=@xi on an arbitrary boundary has been noticed,
with ni being the directional cosine of the outward normal, and
we have denoted q ¼ r2ini ¼ lð@v=@xiÞni.

Eq. (B2) is valid when the source point x0 is in the interior of the
domain. Following the standard procedure of BEM, we need to
move the source point to the boundary. Denote the plane boundary
x3 ¼ 0 as L0 and the remainder, which may be associated with
internal cracks, holes or inclusions, as L1. The total boundary of
the problem is L ¼ L0 [ L1 with L0 \ L1 ¼ ;. On L1;v�ðx;x0Þ and
q�ðx;x0Þ exhibit the same singularities as those for the conventional
elasticity problems as already pointed out in the text. On L0, while
v�ðx;x0Þ still exhibits a weak logarithmic singularity, the stress
component r21 ¼ r12 is no longer singular, and the stress compo-
nent r23 also exhibits a weak logarithmic singularity. Thus, we
obtain

Cvðx0Þ ¼
Z

A
v�ðx;x0Þf2ðxÞdAþ

Z
L

v�ðx; x0ÞqðxÞdL

�
Z

L0

vðxÞq�ðx;x0ÞdL� P
Z

L1

vðxÞq�ðx; x0ÞdL ðB3Þ

where C is the free term coefficient, which equals 1/2 on a smooth
boundary except L0 and is unit on L0, and the symbol P denotes the
Cauchy principle value (Brebbia and Walker, 1979; Gaul et al.,
2003). Eq. (B3) is the so-called boundary integral equation, based
on which approximate solutions can be obtained by the boundary
element method. It is noted that, if the interior sources are absent
(i.e. f2 ¼ 0Þ, then the domain integral on the right-hand side of Eq.
(B3) vanishes, and only the boundary of the domain is involved in
the solution. When f2–0, some special techniques can also be em-
ployed to transform the domain integral to the boundary integral
(Gaul et al., 2003) to reduce the computational effort.

The boundary integral equation (B3) can be simplified further,
by making use of the property of the half-space Green’s functions
derived in this paper. First, we rewrite Eq. (B3) as

Cvðx0Þ ¼ IA þ
Z

L1

v�ðx;x0ÞqðxÞdL� P
Z

L1

vðxÞq�ðx;x0ÞdL

þ
Z

L0

½v�ðx;x0ÞqðxÞ � vðxÞq�ðx; x0Þ�dL ðB4Þ

where IA ¼
R

A v�ðx;x0Þf2ðxÞdA. On L0, we have
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q ¼ r23 ¼ �p� ls @
2v
@x2

1

; q� ¼ r�23 ¼ �ls @
2v�

@x2
1

ðB5Þ

where pðx1Þ is the external shear force applied on the material sur-
face x3 ¼ 0, and the boundary equilibrium equations (12) through
(14) have been utilized. Thus on L0, besides the contribution from
the external load, the two terms in the integral also do not vanish
identically as in the conventional elasticity (Telles and Brebbia,
1981). But, by integration by parts, we findZ

L0

½v�ðx;x0ÞqðxÞ � vðxÞq�ðx; x0Þ�dL

¼ �
Z

L0

v�ðx;x0ÞpðxÞdL� ls
Z

L0

v� @
2v
@x2

1

� v @
2v�

@x2
1

 !
dL

¼ �
Z

L0

v�ðx;x0ÞpðxÞdL� ls v� @v
@x1
� v @v

�

@x1

� �1
�1

¼ �
Z

L0

v�ðx;x0ÞpðxÞdL ðB6Þ

The integration on the right-hand side of Eq. (B6) does not contain
any unknown field variables and can be performed by using any
appropriate numerical quadrature scheme. Thus, it is also no longer
necessary to discretize the plane boundary in the BEM, and hence
reduces the effort to a certain degree in the numerical calculation.
By substituting Eq. (B6) into Eq. (B4), we obtain

Cvðx0Þ ¼ IB þ
Z

L1

v�ðx;x0ÞqðxÞdL� P
Z

L1

vðxÞq�ðx;x0ÞdL ðB7Þ

where IB ¼ IA �
R

L0
v�ðx;x0ÞpðxÞdL. It is seen that, if there is no any

interior boundary, then the last two integrals in Eq. (B7) vanish,
and the formulation becomes exactly the one by directly integrating
the Green’s function solution over the area (or boundary) on which
the load is applied. The form of Eq. (B7) is almost identical to that in
conventional elasticity (Telles and Brebbia, 1981), except the coeffi-
cient C, which equals 1 on L0.

If there is no surface effect on the remaining boundary L1, then
the proceeding analysis is almost the same as that for the classical
elasticity. Otherwise, the equilibrium/constitutive equations for a
material boundary (Gurtin and Murdoch, 1975; Gaul et al., 2003)
should be employed. Such equations, while not given here, provide
linear relations between the stresses, displacements and their
derivatives, as similar to those in Eq. (B5). These can be readily
incorporated into the BEM formulations.

Once again, it is emphasized that since the singularities of the
Green’s functions encountered in the BEM for elastic bodies with
surface effect are almost identical (except the stress surface
Green’s function) to those for elastic bodies without surface effect,
the most available effective and efficient treatments in the BEM
developed for classical elasticity can be directly employed to ana-
lyze problems involving surface effects.
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