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Seven invariants, with immediate physical interpretation, are proposed for the strain energy function of
nonlinear orthotropic elastic solids. Three of the seven invariants are the principal stretch ratios and the
other four are squares of the dot product between the two preferred directions and two principal direc-
tions of the right stretch tensor. A strain energy function, expressed in terms of these invariants, has a
symmetrical property almost similar to that of an isotropic elastic solid written in terms of principal
stretches. Ground state and stress–strain relations are given. Using principal axes techniques, the formu-
lation is applied, with mathematical simplicity, to several types of deformations. In simple shear, a nec-
essary and sufficient condition is given for Poynting relation and two novel deformation-dependent
universal relations are formulated. Using series expansions and the symmetrical property, the proposed
general strain energy function is refined to a particular general form. A type of strain energy function,
where the ground state constants are written explicitly, is proposed. Some advantages of this type of
function are indicated. An experimental advantage is demonstrated by showing a simple triaxial test
can vary a single invariant while keeping the remaining invariants fixed.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The set of invariants (Spencer, 1984)

I1 ¼ trC; I2 ¼
ðtrCÞ2 � trC2

2
; I3 ¼ detðCÞ; I4 ¼ a � Ca;

I5 ¼ a � C2a; I6 ¼ b � Cb; I7 ¼ b � C2b;
ð1:1Þ

where C is the right Cauchy–Green deformation tensor, tr denotes
the trace of a second order tensor, is commonly used to describe
the strain energy function of orthotropic materials with orthogonal
preferred directions a and b. The variables

ffiffiffiffi
I3
p

,
ffiffiffiffi
I4
p

and
ffiffiffiffi
I6
p

repre-
sent the volume change and the stretches of reference-configura-
tion line elements which were in the directions a and b,
respectively. However, the remaining invariants do not have
immediate physical interpretation. Mechanical responses of a strain
energy function, where all of its invariants have immediate physical
interpretation are generally easier to analyse than those of strain
energy functions with invariants that have some or no immediate
physical interpretations. In addition to this, a strain energy function
with non-immediate-physical-interpretation is, in general, not
experimentally friendly. For example, an isochoric uniaxial stretch
in one of the preferred direction will perturbed the invariants I1,
I2, I4, I5, I6 and I7, which is not ideal in obtaining a specific form of
strain energy function if the specific form is determined by doing
tests that vary one invariant and hold the rest of the invariants
ll rights reserved.
constant. Note that, the six independent components of C have
physical interpretation, but formulating a strain energy function,
where the preferred directions (which may depend on position)
are not parallel to the coordinate axes, is cumbersome. An example
where a strain energy function is formulated using a specific coor-
dinate system, can be found in Criscione (2004), where he devel-
oped six independent variables (not invariants) using appropriate
bases and decomposing the deformation gradient into three parts.
The variables are particularly useful for problems involving tubes.
Since they are only related (one-to-one) to C and are independent
of the preferred directions, they can be used for isotropic and aniso-
tropic materials. The variables decoupled dilatation and distortion,
yield mostly orthogonal response terms and allow the balance
equations for straight axisymmetric tubes to be simplified. In spite
of all the above mentioned advantages, they are not particularly
useful in dealing with non-tubular problems. Similar to the work
of Shariff and Parker (2000) and Criscione (2004), in order to sepa-
rate the dilatation and distortion, Rubin and Jabareen (2008) intro-
duced the modified deformation tensor C� ¼ CI

�1
2

3 in their strain
energy function. This type of function is particularly useful in the
development of numerical methods for nearly incompressible or
incompressible solids (Shariff and Parker, 2000). However, only
one of their invariants has an immediate physical interpretation.
The remaining invariants do not have immediate physical interpre-
tation, although they are physically based (in the sense that they
measure distortion that cause deviatoric stress). Nevertheless, their
invariants allow the modeling of the distortion in a hydrostatic state
of stress independently of the form of the strain energy function. It
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is not apparent that their model is experimentally attractive in
obtaining a specific form of strain energy function. There are other
types of invariants that can be found in the literature, however, they
are mainly not experimentally friendly or not all of the invariants
have immediate physical interpretation or they are not design to
have physical interpretation (see for example Itskov and Aksel,
2004; Ateshian and Costa, 2009).

In the light of the remarks made in the preceding paragraph,
based on the work of Shariff (2006, 2008, 2009), we formulate se-
ven simple invariants that have immediate physical interpretation.
Three of the invariants are the principal extension ratios ki

(i = 1,2,3) and the other four are 1 P fi = (a � ei)2 P 0 and 1 P
ni = (b � ei)2 P 0 (i = 1,2), where e1 and e2 are any two principal
directions of the right stretch tensor U. The physical meaning of
ki is obvious and it is clear that fi and ni are the square of the cosine
of the angle between the principal direction ei and the preferred
directions a and b, respectively. To fully characterize three-dimen-
sional mechanical properties of a material, we need an experimen-
tal test that can vary a single invariant while keeping the
remaining invariants fixed; in Section 6, we show that this can
be done via a triaxial test using the proposed invariants. In Section
2, we show that the proposed strain energy function has a symme-
try which facilitates the formulation of a general functional form
given in Section 5, and the construction of a specific form via a tri-
axial test described in Section 6. In Section 5, we also proposed a
type of strain energy function, where the ground state constants
are expressed explicitly in the function and advantages of such a
function are explored using simple shear problems.

Principal axes techniques can be useful in solving some bound-
ary value problems. This is particularly evident in relation to the
calculation of instantaneous moduli of isotropic elasticity, as
pointed out by Hill (1970). Ogden (1972) stated that ‘‘Principal
techniques obviate the need for any special choice of invariants
and, moreover, by use of such techniques, the basic elegance and
simplicity of isotropic elasticity is underlined’’. These techniques
are extended to orthotropic elasticity and their elegance and sim-
plicity are expressed in Section 4. In Section 4.3, where simple
shear is discussed, a necessary and sufficient condition is given
for Poynting relation and two novel deformation-dependent uni-
versal relations are formulated.

To the author’s present knowledge, a strain energy function
where all of its invariants have immediate physical interpretation
does not exist in the literature.
2. Physical invariants and strain energy function

We first recall some essential kinematics of finite deformation
of an orthotropic elastic solid. Consider a body occupying the re-
gion B0 in some reference configuration. Let F be the deformation
tensor and X a position vector of a point in B0. Under this deforma-
tion the point moves to a new position x(X) 2 B, where B is the cur-
rent configuration of the deformed body. The principal stretch ki

(i = 1,2,3) is given by

ki ¼ ei � Uei; ð2:1Þ

where U2 = FTF. In this communication all subscripts i and j take the
values 1, 2 and 3, unless stated otherwise.

In this paper we only consider an orthotropic material with pre-
ferred orthogonal directions a and b. Following the work of Spen-
cer (1984), the mechanical behavior of an orthotropic solid can be
characterized by a strain energy function

We ¼ cW ðU;A;BÞ; ð2:2Þ

where the tensor A = a � a (� denotes the dyadic product) and the
tensor B = b � b.
Since

U ¼ k1E1 þ k2E2 þ k3E3; ð2:3Þ

where Ei = ei � ei, we can expresscW ðU;A;BÞ ¼Wðk1; k2; k3;E1;E2;E3;A;BÞ: ð2:4Þ

W is an isotropic invariant of E1, E2, E3, A and B i.e.,

Wðk1; k2; k3;E1;E2;E3;A;BÞ ¼Wðk1; k2; k3;QE1Q T ;QE2Q T ;

QE3Q T ;QAQ T
;QBQ TÞ ð2:5Þ

for all proper orthogonal tensors Q. Taking note that trEi = trA =
trB = 1, Ei ¼ E2

i ¼ E3
i ¼ � � �, A = A2 = A3 = � � �, B = B2 = B3 = � � � and

EiEj = 0, i – j, and using the results of Spencer (1971) for five
matrices, it follows that We can be expressed as

We ¼Wf ðk1; k2; k3; f1; f2; f3; n1; n2; n3Þ; ð2:6Þ

where the invariants fi = tr(EiA) and ni = tr(EiB). We call fi and ni

‘‘invariants’’ because they are invariants of the tensors involving
Ei, A and B, although some of them do not have unique values if
two or three eigenvalues of U have the same value. However,

f3 ¼ 1� f1 � f2 and n3 ¼ 1� n1 � n2: ð2:7Þ

Hence, we can omit f3 and n3 in the arguments given in (2.6) and we
have,

We ¼ fW ðk1; k2; k3; f1; f2; n1; n2Þ
¼Wf ðk1; k2; k3; f1; f2;1� f1 � f2; n1; n2;1� n1 � n2Þ: ð2:8Þ

The invariant set {k1,k2,k3,f1,f2,n1,n2} is a minimal integrity ba-
sis with a syzygy (Spencer, 1971) (see Appendix A).

The function Wf enjoys the symmetrical property

Wf ðk1; k2; k3; f1; f2; f3; n1; n2; n3Þ
¼Wf ðk1; k3; k2; f1; f3; f2; n1; n3; n2Þ
¼Wf ðk3; k1; k2; f3; f1; f2; n3; n1; n2Þ ¼ etc: ð2:9Þ

To prove the above symmetry we consider an arbitrary proper
orthogonal tensor Q written in the form Q ¼ bQ Q 0, where Q0 is a
proper orthogonal rotation tensor (rotation of p

2 about e3) having
the properties Q0e1 = e2, Q0e2 = �e1, Q0e3 = e3 and bQ is an arbitrary
proper orthogonal tensor. The function cW have the property

cW ðU;A;BÞ ¼ cW QUQ T ;QAQ T
;QBQ T

� �
¼ cW k2

bQ E1
bQ T

�
þ k1

bQ E2
bQ T þ k3

bQ E3
bQ T ; bQ Q 0AQ T

0
bQ T ; bQ Q 0BQ T

0Q̂ T
�
: ð2:10Þ

Since the above equation is true for all proper orthogonal bQ , and in
view of

trðE1Q 0AQ T
0Þ ¼ f2; trðE2Q 0AQ T

0Þ ¼ f1; trðE3Q 0AQ T
0Þ ¼ f3;

trðE1Q 0BQ T
0Þ ¼ n2; trðE2Q 0BQ T

0Þ ¼ n1 and trðE3Q 0BQ T
0Þ ¼ n3;

we have,

We ¼Wf ðk1; k2; k3; f1; f2; f3; n1; n2; n3Þ
¼Wf ðk2; k1; k3; f2; f1; f3; n2; n1; n3Þ: ð2:11Þ

The remainder of Eq. (2.9) follows in a similar fashion.
If the two families of a and b fibres are mechanically equivalent,

then fW must be symmetric with respect to interchanges of a and
b. Hence we have the symmetryfW ðk1; k2; k3; n1; n2; f1; f2Þ ¼ fW ðk1; k2; k3; f1; f2; n1; n2Þ: ð2:12Þ

The commonly used invariants mentioned in Section 1 can be
written explicitly in terms of the physical variables, i.e.,
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I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3; I3 ¼ ðk1k2k3Þ2;

I4 ¼ k2
1f1 þ k2

2f2 þ k2
3f3; I5 ¼ k4

1f1 þ k4
2f2 þ k4

3f3;

I6 ¼ k2
1n1 þ k2

2n2 þ k2
3n3; I7 ¼ k4

1n1 þ k4
2n2 þ k4

3n3:

ð2:13Þ

Note that, for a particular value of C, where two or more of the prin-
cipal stretches have the same value, some of the tensors E1, E2 and
E3 are not unique; however, it can be easily shown via Eq. (2.13)
that the classical invariants have unique values for the correspond-
ing non-unique values of f1, f2, n1 and n2. In view of this non-unique
property, care must be taken in formulating the strain energy func-
tion (an example is given in Section 5.1). However, if a strain energy
function is written in terms of combinations of variables, such as
that given in (2.13), then automatically, it has a unique value for
a particular value of C. The inverse of Eq. (2.13) is given in the
Appendix B.

For an incompressible material, k1k2k3 = 1, the number of vari-
ables is reduce to 6 and we can express

We ¼Wðk1; k2; f1; f2; n1; n2Þ ¼ fW k1; k2;
1

k1k2
; f1; f2; n1; n2

� �
:

ð2:14Þ
2.1. Ground state conditions

In the reference state U = I, k1 = k2 = k3 = 1, any orthonormal set
of vectors can represent the principal directions of U. For simplic-
ity, we let a = e3 and b = e2. Hence, f3 = 1, f1 = f2 = 0 and n2 = 1,
n1 = n3 = 0 in this state. To be consistent with the classical linear
theory of compressible orthotropic elasticity, appropriate for infin-
itesimal deformations, we must have the non-zero second deriva-
tive relations

@2fW
@k2

1

ð1;1;1;0;0;0;1Þ ¼ k̂þ 2l;

@2fW
@k2

2

ð1;1;1;0;0;0;1Þ ¼ k̂þ 2lþ 2a2 þ 4l2 þ b2;

@2fW
@k2

3

ð1;1;1;0;0;0;1Þ ¼ k̂þ 2lþ 2a1 þ 4l1 þ b1;

@2fW
@k1@k2

ð1;1;1;0;0;0;1Þ ¼ k̂þ a2;

@2fW
@k1@k3

ð1;1;1;0;0;0;1Þ ¼ k̂þ a1;

@2fW
@k2@k3

ð1;1;1;0;0;0;1Þ ¼ k̂þ a1 þ a2 þ b3;

ð2:15Þ

where k̂, l, l1, l2, a1, a2, b1, b2 and b3 are ground state elastic
constants.

In the case of an incompressible material we must have the
relation

@2W

@k2
1

ð1;1;0;0;0;1Þ ¼ 4lþ 4l1 þ b1;

@2W

@k2
2

ð1;1;0;0;0;1Þ ¼ 4lþ 2l1 þ 4l2 þ b1 þ b2 � 2b3;

@2W
@k1@k2

ð1;1;0;0;0;1Þ ¼ 2lþ 2l1 þ b1 � b3:

ð2:16Þ
3. Stress

The Biot stress T(1) for a compressible material is given by the
relation
T ð1Þ ¼ @We

@U
: ð3:1Þ

The proposed alternative formulation requires the symmetric
components @We

@U

� �
ij of @We

@U relative to the basis {ei}. They are:

@We

@U

� �
ii

¼ @
fW
@ki

ði not summedÞ ð3:2Þ

and the shear components (Shariff, 2008)

@We

@U

� �
ij

¼ 1
ki � kj

@fW
@fi
� @

fW
@fj

 !
ei � Aej þ

@fW
@ni
� @

fW
@nj

 !
ei � Bej

 !
i – j; i; j ¼ 1;2; ð3:3Þ
@We

@U

� �
a3
¼ 1

ka � k3

@fW
@fa

ea � Ae3 þ
@fW
@na

ea � Be3

 !
; a ¼ 1;2:

ð3:4Þ

It is assumed that fW has sufficient regularity to ensure that, as ki

and ka approach kj and k3, respectively, Eqs. (3.3) and (3.4) have lim-
its. Relations (3.2) and (3.3) can be used for transversely isotropic
materials by letting B = I and for isotropic materials by letting
A = B = I. The Cauchy stress is given by the relation

Jr ¼ FT ð2ÞFT ; ð3:5Þ

where T ð2Þ ¼ 2 @eW
@C is the second Piola–Kirchhoff stress tensor. Since

T ð1Þ ¼ 1
2
ðT ð2ÞU þ UT ð2ÞÞ; ð3:6Þ

we cannot explicitly express r in terms of T(1). Hence we require the
symmetric components @We

@C

� �
ij of @We

@C relative to the basis {ei}. These
components are obtained in a similar fashion to the components of
@We
@U , i.e.,

@We

@C

� �
ii

¼ 1
2ki

@fW
@ki

ði not summedÞ ð3:7Þ

and the shear components

@We

@C

� �
ij

¼ 1
k2

i � k2
j

@fW
@fi
� @

fW
@fj

 !
ei � Aej þ

@fW
@ni
� @

fW
@nj

 !
ei � Bej

 !
i – j; i; j ¼ 1;2; ð3:8Þ
@We

@C

� �
a3
¼ 1

k2
a � k2

3

@fW
@fa

ea � Ae3 þ
@fW
@na

ea � Be3

 !
; a ¼ 1;2:

ð3:9Þ

It is explicit in Eqs. (3.3) and (3.4) that the Biot (or the second Piola–
Kirchhoff) stress is coaxial with U when the preferred directions a
and b are parallel to any two of the principal directions. This explic-
itness may not be as transparent if the strain energy function is ex-
pressed in terms of the classical invariants (2.13) (or possibly most
types of invariants found in the literature).

In the case of an incompressible material the Biot, second
Piola–Kirchhoff and Cauchy stresses are given by

T ð1Þ ¼ @We

@U
� pU�1; T ð2Þ ¼ 2

@We

@C
� pC�1;

r ¼ 2F
@We

@C
FT � pI;

ð3:10Þ

where p is the Lagrange multiplier associated with the incompress-
ible constraint k1k2k3 = 1.
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4. Applications

In this section we use the principal axes techniques to obtain re-
sults for three types of deformation and reveal the mathematical
simplicity of the proposed formulation.

4.1. Homogeneous triaxial deformation

We consider a homogeneous deformation so that the deforma-
tion tensor F is constant. Specifically, we consider the pure homo-
geneous deformation defined by

x1 ¼ k1X1; x2 ¼ k2X2; x3 ¼ k3X3; ð4:1Þ

where xi and Xi are the Cartesian components of x and X, respec-
tively. For this deformation F = U and the principal axes of the
deformation coincide with the Cartesian coordinate directions
and are fixed as the values of the stretches change. Thus,
F � diag(k1,k2,k3).

The Cartesian components of the Cauchy stress have the
expression

Jr11 ¼ k1
@fW
@k1

; Jr22 ¼ k2
@fW
@k2

; Jr33 ¼ k3
@fW
@k3

; ð4:2Þ

Jr12 ¼
2k1k2

k2
1 � k2

2

@fW
@f1
� @

fW
@f2

 !
e1 � Ae2 þ

@fW
@n1
� @

fW
@n2

 !
e1 � Be2

 !
;

Jra3 ¼
2kak3

k2
2 � k2

3

@fW
@fa

ea � Ae3 þ
@fW
@na

ea � Be3

 !
; a ¼ 1;2: ð4:3Þ

On specializing a triaxial deformation to a biaxial deformation
applied on a thin sheet that lies on the (X1,X2)-plane with the
Cauchy stress component r33 = 0, we have,

Jr33 ¼ k3
@fW
@k3
¼ 0; ð4:4Þ

where k3 is implicitly related to k2 and k1. In the case of an incom-
pressible material, we have, for biaxial deformation, the stress–
strain relations

r11 ¼ k1
@W
@k1

; r22 ¼ k2
@W
@k2

; ð4:5Þ

r12 ¼
2k1k2

k2
1 � k2

2

@W
@f1
� @W
@f2

� �
e1 � Ae2 þ

@W
@n1
� @W
@n2

� �
e1 � Be2

� �
;

ð4:6Þ

ra3 ¼
2kak3

k2
a � k2

3

@W
@fa

ea � Ae3 þ
@W
@na

ea � Be3

� �
; a ¼ 1;2; ð4:7Þ

where we have used the relations ka
@W
@ka
¼ ka

@eW
@ka
� k3

@eW
@k3

(a = 1,2) and
p ¼ k3

@eW
@k3

to obtain the relations (4.5)–(4.7).
When the preferred directions a and b are taken to be perpen-

dicular to e3, we have,

ra;3 ¼ 0; a ¼ 1;2: ð4:8Þ

In this case, it is explicit in Eq. (4.6) that r12 vanishes if a or b is
along one of the coordinate axes or for an mechanically equivalent
material when fa = na (a = 1,2) and e1 � Ae2 = �e1 � Be2. In this case
the Biot stress is coaxial with U and r is coaxial with the left stretch
tensor V.

When the material is inextensible in the preferred directions we
have the constraints a � Ca = 1 and b � Cb = 1. In this case,

r ¼ 2F
@We

@C
FT � pI þ qFa� Faþ rFb� Fb; ð4:9Þ
where q and r are the Lagrange multipliers associated with the con-
straints a � Ca = 1 and b � Cb = 1, respectively. The Cartesian compo-
nents of the Cauchy stress are

r11 ¼ k1
@W
@k1
þ qk2

1f1 þ rk2
1n1;

r22 ¼ k2
@W
@k2
þ qk2

2f2 þ rk2
2n2;

r12 ¼
2k1k2

k2
1 � k2

2

@W
@f1

e1 � Ae2 þ
@W
@n1

e1 � Be2

� �
þ qk1k2e1 � Ae2 þ rk1k2e1 � Be2:

ð4:10Þ

The rest of the stress components have zero values since a and b are
perpendicular to e3.

4.2. Extension and inflation of a thick-walled tube

Here, we examine a non-homogeneous deformation which has
several applications. We consider an incompressible thick-walled
circular cylindrical tube with initial geometry defined by

A 6 R 6 B; 0 6 H 6 2p; 0 6 Z 6 L; ð4:11Þ

where A, B, L are positive constants and R, H, Z are cylindrical polar
coordinates. The resulting deformation is described by the
equations

r2 � a2 ¼ 1
kz
ðR2 � A2Þ; h ¼ H; z ¼ kzZ; ð4:12Þ

where a is the internal radius of the deformed tube, r, h and z are
cylindrical polar coordinates in the deformed configuration, and kz

(constant) is the axial stretch.
The principal stretches are given by

k1 ¼
1

kkz
; k2 ¼ k ¼ r

R
; k3 ¼ kz; ð4:13Þ

where we have introduced the notation k. It can be easily shown
that the principal directions are in the directions

e1 ¼ ER; e2 ¼ EH; e3 ¼ EZ ; ð4:14Þ

where ER, EH, EZ are the base vectors for the R, H, Z cylindrical coor-
dinate system.

Consider the case when the preferred directions are in the
directions

a ¼ cos ðaÞEH þ sin ðaÞEZ and
b ¼ �sin ðaÞEH þ cos ðaÞEZ ; ð4:15Þ

where 0 6 a 6 p
2 and f1 = 0. With k and kz as the independent vari-

ables the strain energy function fW can be expressed as

Wtðk; kz; f2; n2Þ ¼ fW 1
kkz

; k; kz;0; f2;0; n2

� �
: ð4:16Þ

The components of the Cauchy stress in the cylindrical coordinate
system are:

rhh � rrr ¼ k
@Wt

@k
; rzz � rrr ¼ kz

@Wt

@kz
; ð4:17Þ

rhz ¼
2cskzk

k2 � k2
z

@Wt

@f2
� @Wt

@n2

� �
; rrh ¼ rrz ¼ 0; ð4:18Þ

where c = cos (a) and s = sin (a). It is clear that when a = 0 or a ¼ p
2

the shear stress rhz is zero.
By considering the symmetry of the problem, the equation of

equilibrium with negligible body forces reduces to

drrr

dr
þ 1

r
ðrrr � rhhÞ ¼ 0: ð4:19Þ
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The above equation is to be solved in conjunction with the bound-
ary conditions

rrr ¼
�P on r ¼ a

0 on r ¼ b

	
ð4:20Þ

corresponding to the pressure P P 0 on the inside of the tube and
zero traction on the outside. b is the external radius of the deformed
tube.

Integrating Eq. (4.19), using the first part of Eq. (4.17) and the
relation

dr
r
¼ dk

kð1� k2kzÞ
ð4:21Þ

we get the equation for the pressure in terms of k, i.e.,

P ¼
Z b

a
k
@Wt

@k
dr
r
¼
Z ka

kb

ðk2kz � 1Þ�1 @Wt

@k
dk; ð4:22Þ

where ka ¼ a
A and kb ¼ b

B. From the first part of Eq. (4.12) we derive
the relations

k2
akz � 1 ¼ R2

A2 ðk
2kz � 1Þ ¼ B2

A2 ðk
2
bkz � 1Þ ð4:23Þ

which relates kb with ka. Eq. (4.22) provides an expression for the
pressure P as a function of ka when kz is fixed. The axial load N
needed to hold kz fixed can be obtained by the relation

N ¼ 2p
Z b

a
rzzrdr þ pPa2; ð4:24Þ

where the pressure contributes to the axial load of the deformed
tube with closed ends. Using the relationZ b

a
rrrrdr ¼ Pa2

2
�
Z b

a

1
2

k
@Wt

@k
r dr ð4:25Þ

and Eqs. (4.13) and (4.21), we have,

N
2p
¼
Z b

a
kz
@Wt

@kz
� k

2
@Wt

@k

� �
rdr þ Pa2: ð4:26Þ

If material is inextensible in the preferred direction the compo-
nents of the Cauchy stress have the relations

rzz � rrr ¼ kz
@Wt

@kz
þ qk2

z s2 þ tk2
z c2;

rhh � rrr ¼ k
@Wt

@k
þ qk2c2 þ tk2s2;

rzh ¼ kkzcs
2

k2 � k2
z

@Wt

@f2
� @Wt

@n2

� �
þ q� t

 !
:

ð4:27Þ

The pressure P on the inside of the tube required to maintain the
deformation is given by

P ¼
Z b

a
k
@Wt

@k
þ qk2c2 þ tk2s2

� �
dr
r
: ð4:28Þ

The expression for axial load N is given by

N
2p
¼
Z b

a
kz
@Wt

@kz
� k

2
@Wt

@k
þ qk2

z s2 þ tk2
z c2 � q

2
k2c2 � t

2
k2s2

� �
rdr

þ Pa2: ð4:29Þ
4.3. Simple shear

In Sections 4.1 and 4.2, results for homogeneous and non-
homogeneous deformations, where the principal directions are
fixed during deformation, are given. In this section we give results
for a simple shear deformation where the principal directions of U
change continuously during deformation. For simplicity, we only
consider incompressible materials.

Let the axes of x and X to coincide and the deformation can be
described by the equations

x1 ¼ X1 þ cX2; x2 ¼ X2; x3 ¼ X3; ð4:30Þ
where the amount of shear c P 0. Let h denote the orientation (in the
anticlockwise sense relative to the X1 axis) of the in plane Lagran-
gean principal axes. The angle h is restricted according by the fol-
lowing (Shariff, 2008)

p
4
6 h <

p
2
: ð4:31Þ

The principal directions have components

e1 ¼
c

s

0

264
375; e2 ¼

�s

c

0

264
375; e3 ¼

0
0
1

264
375; ð4:32Þ

where c = cos(h) and s = sin (h). It can be easily shown (Shariff, 2008)
that the principal stretches take the values

k1 ¼
cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

p
2

P 1; k2 ¼
1
k1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

p
� c

2
6 1;

k3 ¼ 1 ð4:33Þ

and

c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

1

q ; s ¼ k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

1

q ; c2 � s2 ¼ �ccs: ð4:34Þ

Without loss of generality, we consider r33 = 0, since incompress-
ibility allows the superposition of an arbitrary hydrostatic stress
without effecting the deformation.

The Cartesian components of stress take the form

r11 ¼ 2½l1ðs2ð1þ c2Þ þ ccsÞ þ l2ðc2ð1þ c2Þ � ccsÞ � 2l4cs� l3�

r12 ¼ 2½l1ðcs2 þ csÞ þ l2ðcc2 � csÞ þ l4ccs�

r22 ¼ 2ðl1s2 þ l2c2 þ 2l4cs� l3Þ;
r13 ¼ 2ðl5ðc þ csÞ þ l6ð�sþ ccÞÞ;
r23 ¼ 2ðl5sþ l6cÞ; ð4:35Þ

where

l1 ¼
1

2k1

@fW
@k1

; l2 ¼
1

2k2

@fW
@k2

; l3 ¼
1

2k3

@fW
@k3

;

l4 ¼
1

k2
1 � k2

2

@fW
@f1
� @

fW
@f2

 !
e1 � Ae2 þ

@fW
@n1
� @

fW
@n2

 !
e1 � Be2

 !
;

l5 ¼
1

k2
1 � k2

3

@fW
@f1

e1 � Ae3 þ
@fW
@n1

e1 � Be3

 !
;

l6 ¼
1

k2
2 � k2

3

@fW
@f2

e2 � Ae3 þ
@fW
@n2

e2 � Be3

 !
: ð4:36Þ

In general, the Poynting relation r11 � r22 = cr12 (generally associ-
ated with isotropic theory) does not hold. Poynting relation is a
relation between stress components and the deformation which is
independent of the choice of (isotropic) constitutive equation. It is
interesting to see if this universal relation holds for orthotropic
materials under certain conditions. From (4.35)

r11 � r22 ¼ cr12 � 2l4csð4þ c2Þ; ð4:37Þ
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Hence, from (4.37), we see that Poynting relation holds if and only if
l4 = 0; no conditions are required for l5 or l6. An example of a case
when l4 = 0 for an arbitrary strain energy function is, when the
one of the preferred directions a or b is parallel to e1 or e2. For
example, if the components of a and b are

1
2ffiffi
3
p

2

0

264
375 ð4:38Þ

and

�
ffiffi
3
p

2
1
2

b3

264
375; ð4:39Þ

respectively, where b3 is any third component of b, then Poynting
relation holds at the particular strain when c ¼ 2ffiffi

3
p .

We note that l5 and l6 appear in r13 and r23 only. In view of this,
we have the relations

sr13 þ cr23 ¼ 2ðl5ð2csþ cs2ÞÞ ð4:40Þ

and

cr13 � sr23 ¼ 2ðl6ðcc2 � 2csÞÞ: ð4:41Þ

Since 2cs + cs2 and cc2 � 2cs ¼ 3k2
1�1

k2
1þ1

are both positive and arbitrary,

k1r13 þ r23 ¼ 0 ð4:42Þ

and

r13 � k1r23 ¼ 0 ð4:43Þ

if and only if l5 = 0 and l6 = 0, respectively. Since l5 and l6 can be zero
for an arbitrary strain energy, the relations (4.42) and (4.43) are
‘‘deformation-dependent’’ universal relations, i.e., they are indepen-
dent of the choice of orthotropic constitutive equation. We use the
term ‘‘deformation-dependent’’ since the relations hold at particu-
lar strains and at particular directions of a and b. An example of
l5 = 0 and l6 – 0 at a particular strain is when both a and b are per-
pendicular to e1 but not perpendicular to e2 and e3. An example of
l6 = 0 and l5 – 0 is when both a and b are perpendicular to e2 but
not perpendicular to e1 and e3. Since in the above two examples,
either l6 – 0 or l5 – 0, and since fW is arbitrary, the shear stresses
r13 and r23 are generally non-zero. The author believe that the uni-
versal relations (4.42) and (4.43) do not exist in the literature and
may not be straightforward to derive using the classical invariants.

In the case when the preferred directions are perpendicular to
the direction e3, the shear components r13 = r23 = 0 and we have
the relations

@k1

@c
¼ s2;

@k2

@c
¼ �c2;

@f1

@c
¼ 2k1sc3e1 � Ae2;

@f2

@c
¼ � @f1

@c
;

@n1

@c
¼ 2k1sc3e1 � Be2;

@n2

@c
¼ � @n1

@c
:

ð4:44Þ

In general, the Poynting relation does not hold. Since a simple shear
deformation depends on c, the strain energy function can be consid-
ered as a function of c, i.e., We ¼ cW ðcÞ. Using Eq. (4.44), we can eas-
ily deduce (after some algebra) that, for a and b perpendicular to e3,

r12 ¼ cW 0ðcÞ: ð4:45Þ
4.3.1. Inextensible fibres
For a material that is inextensible in the preferred directions a

and b, the last two terms of Eq. (4.9) take the simple forms
Fa� Fa ¼
X

i;j

kikjðei � AejÞêi � êj; Fb� Fb

¼
X

i;j

kikjðei � BejÞêi � êj; ð4:46Þ

where êi are the Eulerian principal directions with components

ê1 ¼
s

c

0

264
375; ê2 ¼

�c

s

0

264
375; ê3 ¼

0
0
1

264
375: ð4:47Þ
5. Functional form of incompressible We

In order to refine the functional form of We for an incompress-
ible material, we consider the polynomial expansion

We ¼
X
a;b;c

Ca;b;cðka
1k

b
2k

c
3 � 1Þ; ð5:1Þ

where the terms Ca,b,c are functions of fi and ni, and a, b, and c are
non-negative integers. Note that we do not intend to use the above
polynomial form as a constitutive model or as an ‘‘Nth’’ order
approximation; we only use it to obtain a reduced functional form
of We.

For an incompressible material, k1k2k3 = 1 and we can write
(5.1) in the form

We ¼
X

r;s

Cð1Þr;s ðk
r
1k

s
2 � 1Þ þ

X
r;s

Cð2Þr;s ðk
r
1k

s
3 � 1Þ þ

X
r;s

Cð3Þr;s ðk
r
2k

s
3 � 1Þ;

ð5:2Þ

where r and s are non-negative integers, and CðiÞr;s are functions of fi

and ni. To obtain the symmetry given in Eq. (2.9), certain conditions
have to be imposed on the coefficients CðiÞr;s. Before we do this, we
write the expansion given in Eq. (5.2) in the form

We ¼
X
r¼0

Cð1Þr;0 ðk
r
1 � 1Þ þ

X
s¼1

Cð1Þ0;s ðk
s
2 � 1Þ þ

X
r¼0

Cð2Þr;0ðk
r
1 � 1Þ

þ
X
s¼1

Cð2Þ0;s ðk
s
3 � 1Þ þ

X
r¼0

Cð3Þr;0ðk
r
2 � 1Þ þ

X
s¼1

Cð3Þ0;s ðk
s
3 � 1Þ

þ
X
r;s–0

Cð1Þr;s ðk
r
1k

s
2 � 1Þ þ

X
r;s–0

Cð2Þr;s ðk
r
1k

s
3 � 1Þ

þ
X
r;s–0

Cð3Þr;s ðk
r
2k

s
3 � 1Þ: ð5:3Þ

To satisfy the symmetry given in Eq. (2.9), CðiÞr;s must take certain
forms (as shown below), and since k0

i ¼ 1, we can re-write the
above equation in the form

We ¼
X
r¼0

Drðf1; n1Þðkr
1 � 1Þ þ

X
r¼0

Erðf1; n1Þðkr
1 � 1Þ

þ
X
r¼0

Drðf2; n2Þðkr
2 � 1Þ þ

X
r¼0

Erðf2; n2Þðkr
2 � 1Þ

þ
X
r¼0

Drðf3; n3Þðkr
3 � 1Þ þ

X
r¼0

Erðf3; n3Þðkr
3 � 1Þ

þ
X
r;s–0

cr;sðf1; f2; n1; n2Þðkr
1k

s
2 � 1Þ

þ
X
r;s–0

cr;sðf1; f3; n1; n3Þðkr
1k

s
3 � 1Þ

þ
X
r;s–0

cr;sðf2; f3; n2; n3Þðkr
2k

s
3 � 1Þ; ð5:4Þ

where cr,s(x,y,z, t) = cr,s(y,x, t,z) and cr,s = cs,r. From the above equa-
tion and in view of Weierstrass approximation theorem, we can
write the strain energy function in the form
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We ¼
X3

i¼1

f̂ ðki; fi; niÞ þ ĝðk1; k2; f1; f2; n1; n2Þ

þ ĝðk1; k3; f1; f3; n1; n3Þ þ ĝðk2; k3; f2; f3; n2; n3Þ; ð5:5Þ

where

f̂ ðki; fi; niÞ ¼
X
r¼0

ðDrðfi; niÞ þ Erðfi; niÞÞðkr
i � 1Þ

and

ĝðki; kj; fi; fj; ni; njÞ ¼
X
r;s–0

cr;sðfi; fj; ni; njÞðkr
i k

s
j � 1Þ; i–j: ð5:6Þ

The function ĝ has the symmetry ĝðki; kj; fi; fj; ni; njÞ ¼ ĝðkj; ki; fj;

fi; nj; niÞ; i – j.

5.1. Semi-linear form and its extension

A general incompressible nonlinear (finite deformation) ortho-
tropic strain energy function is more difficult to analyse than a
(infinitesimal) linear one. For an incompressible material, the lin-
ear strain energy function has six ground state constants (see Eq.
(2.16)), where their role are generally fully understood. However,
more often, previously proposed nonlinear strain energy func-
tions that contain all six invariants have constants (sometimes
more than six) that are indirectly related to the ground state
constants and generally, their role are not straightforward to ana-
lyse. A nonlinear strain energy function where its classical
ground state constants are explicitly expressed is attractive in
the sense that their role are easier to analyse. Using our proposed
invariants its straightforward to extent the linear strain energy to
a semi-linear form (for moderate strains) with only ground
state constants, i.e., the terms in We given by (5.5) have the
forms

f ðki; fi; niÞ ¼ ðki � 1Þ2 lþ 2l1fi þ 2l2ni þ
b1

2
f2

i þ
b2

2
n2

i þ b3fini

� �
ĝðki; kj; fi; fj; ni; njÞ ¼ ðki � 1Þðkj � 1Þ b1fifj þ b2ninj

�
þ b3ðfinj þ nifjÞ

�
; i – j: ð5:7Þ

For larger strains, we propose an extension of the semi-linear form,
where

f ðki; fi; niÞ ¼ rðkiÞ lþ 2l1fi þ 2l2ni þ
b1

2
f2

i þ
b2

2
n2

i þ b3fini

� �
ĝðki; kj; fi; fj; ni; njÞ ¼ sðkiÞsðkjÞ b1fifj þ b2ninj þ b3ðfinj þ nifjÞ

� �
i – j;

ð5:8Þ

where r = s2. It is clear from (5.8) and (5.5) that the strain energy
function has a unique value if two or more of the principal stretches
have the same value. However, s may have constants that are not
related to the ground state constants. We impose the conditions,
for x > 1, r0(x) > 0, rðxÞ > r 1

x

� �
; r0ðxÞ þ r0 1

x

� �
> 0 and for x < 1, r0(x) < 0

(see also Shariff (2000)). For stress free configurations, we impose
r0(1) = s(1) = r(1) = 0. These conditions are satisfied if r take the
semi-linear form (5.7). Note that, although the semi-linear form is
valid for mildly moderate strains, useful information can be ex-
tracted from it, and in view of the ground-state-constant similarity
between the semi-linear and the extended forms (see Eqs. (5.7) and
(5.8)), this information can be used for the extended strain energy
function. For example, consider three cases of simple shear defor-
mations, where the directions a and b have the Cartesian
components:
Case (i):
a ¼
0
1
0

264
375; b ¼

1
0
0

264
375: ð5:9Þ
Case (ii):
a ¼
0
1
0

264
375; b ¼

0
0
1

264
375: ð5:10Þ
Case (iii):
a ¼
1
0
0

264
375; b ¼

0
1
0

264
375: ð5:11Þ
We now partially analyse our extended constitutive equation.
Using terminologies of Holzapfel and Ogden (2009), where they
model passive myocardium via orthotropic elasticity, a and b are
the fibre and sheet directions, respectively. Their sheet-normal
direction is perpendicular to both a and b. We note that in infini-
tesimal (or semi-linear) elasticity, when l1(or l2) = 0, b1 (or
b2) = 0 and b3 = 0, the material becomes transversely isotropic;
when all of the ground state constants, except l, are zero, the
material becomes isotropic. The constants l1, b1 and l2, b2 are
associated with stiffness of the fibre and sheet, respectively. b3 is
a constant associated with both the sheet and fibre. In view of Sec-
tion 4.3, with some algebra, we found that the shear stresses r12 of
Cases (i) and (ii) are different in general. This difference is verified
in the experimental data of Dokos et al. However, if the ground
state constants l2 = b2 = b3 = 0 (the material is transversely isotro-
pic) then the shear stresses are the same. Note that in the past
some authors modeled orthotropic materials by letting We = Wo(I1,
I2, I4,I6) (or Wo(I1, I4, I6) Holzapfel and Ogden, 2009). For this type of
strain energy, the shear stresses for Cases (i) and (ii) are the same,
i.e.,

r12 ¼ 2c
@Wo

@I1
þ @Wo

@I2
þ @Wo

@I4

� �
: ð5:12Þ

Hence we cannot capture the difference between the shear stresses
of an orthotropic material with that of a transversely isotropic
material with strain energy

WmðI1; I2; I4Þ ¼WoðI1; I2; I4;1Þ: ð5:13Þ

Note that I6 = 1 for both Cases (i) and (ii). Even in infinitesimal elas-
ticity the shear stress

r12 ¼ cðlþ l1 þ l2Þ ð5:14Þ

in Case (i) and

r12 ¼ cðlþ l1Þ ð5:15Þ

in Case (ii) are different; they are only the same if and only if l2 = 0.
Let r12f and r12s be the shear stresses for Cases (i) and (iii),

respectively. We have

r12f � r12s ¼ ðl1 � l2Þ
2csðk2

1r0ðk1Þ þ r0ðk2ÞÞ
1þ k2

1

þ 8cðcsÞ2

k2
1 � k2

2

ðrðk1Þ
(

� rðk2ÞÞ
)
þ ðb1 � b2Þ

csðk2
1r0ðk1Þ þ r0ðk2ÞÞ
2ð1þ k2

1Þ

(

þ 2cðcsÞ2

k2
1 � k2

2

ðrðk1Þ � rðk2ÞÞ
)
: ð5:16Þ
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In view of the properties of r, it is clear from above that, if l1 > l2

and b1 > b2, (the fibre constants are larger than the sheet constants)
the shear response when the fibre direction is extended is stiffer
than when the sheet direction is extended; Dokos et al. (2002) data
confirmed this behavior. However, in infinitesimal elasticity the
shear stresses are the same, with their form given in Eq. (5.14).

In view of the discussion in the preceding paragraph, we indi-
cate that the extended strain energy function (5.8) facilitate analy-
ses of mechanical responses. Since s is single variable function, it is
easier to analyse than multivariable functions. However, due to the
scope of this paper, we shall not, in this communication, develop a
specific form of (5.8) or discuss constitutive inequalities; this will
be done in the near future.

6. Experimental advantage

In a triaxial test of an incompressible solid, the principal
stretches k1 and k2 can be varied independently. Three of the
invariants f1, f2, b1 and b2 can be varied independently by taking
different samples, of the same material, with different preferred
directions (relative to a principal direction (say)). Hence, it allows
us to determine the functional form of W by doing tests that holds
four out five invariants constant so that the dependence of W on
the remaining invariant can be identified. We note in passing that
the invariants I1, I2, I4, I5, I6 and I7 cannot be varied independently
in a triaxial test.

In a triaxial deformation, where the deformation can be
described by Eq. (4.1), we have,

r11 � r33 ¼ k1
@W
@k1

; r22 � r33 ¼ k2
@W
@k2

: ð6:1Þ

Note in the case when a preferred direction is not parallel to one of
the principal directions, some of the shear stresses have none zero
values. It is assumed that the shear stresses can be controlled in the
triaxial experiment; the author is not sure if this can be done prac-
tically. Care must be taken so that the data in all regions of the
(k1,k2,f1,f2,n1,n2) space are taken. Note that we are only concerned
with the subset of the (k1,k2,f1,f2,n1,n2) space where 0 < k1, 0 < k2,
0 6 f1 6 1, 0 6 f2 6 1, f2 6 1 � f1, 0 6 n1 6 1, 0 6 n2 6 1 and
n2 6 1 � n1.

We shall take advantage of the symmetry given in Eq. (2.9) to
obtain the functional form of W. Let fa(k1,k2,f1,f2,n1,n2) be the
functional form constructed from the r11�r33

k1
data. In view of Eq.

(6.1) we have

Wðk1; k2; f1; f2; n1; n2Þ ¼
Z

faðk1; k2; f1; f2; n1; n2Þdk1

þ fbðk2; f1; f2; n2; n1Þ: ð6:2Þ

We now require the functional form of fb. Due to the symmetry ex-
press in Eq. (2.9), it follows from Eq. (6.2) thatZ

@fa

@k2
ðk1; k2; f1; f2; n1; n2Þdk1 þ

@fb

@k2
ðk2; f1; f2; n1; n2Þ

¼ faðk2; k1; f2; f1; n2; n1Þ: ð6:3Þ

Hence we have

fbðk2; f1; f2; n1; n2Þ ¼ �
Z Z

@fa

@k2
ðk1; k2; f1; f2; n1; n2Þdk1

� �
dk2

þ
Z

faðk2; k1; f2; f1; n2; n1Þdk2

þ fcðf1; f2; n1; n2Þ:
ð6:4Þ
Let

gaðk1; k2; f1; f2; n1; n2Þ ¼
Z

faðk1; k2; f1; f2; n1; n2Þdk1 ð6:5Þ

and

gbðk1; k2; f1; f2; n1; n2Þ ¼ �
Z Z

@fa

@k2
ðk1; k2; f1; f2; n1; n2Þdk1

� �
dk2

þ
Z

faðk2; k1; f2; f1; n2; n1Þdk2:

ð6:6Þ

If we assume that W(1,1,f1,f2,n1,n2) = 0 in the undeformed config-
uration we have

fcðf1; f2; n1; n2Þ ¼ �gað1;1; f1; f2; n1; n2Þ � gbð1;1; f1; f2; n1; n2Þ:
ð6:7Þ

Hence, the functional form of fb is obtained and the functional form
of W can be obtained from Eq. (6.2).
Appendix A

If, for arbitrary a and b, we choose the directions of the
Cartesian X1 and X2 axes to be parallel to a and b, respectively,
we then have

I1 ¼ trC; I2 ¼
ðtrCÞ2 � trC2

2
;

I3 ¼ detðCÞ; I4 ¼ C11; I5 ¼ C1rCr1;

I6 ¼ C22; I7 ¼ C2rCr2;

ðA1Þ

where Cij are the components of C relative to the Cartesian basis.
Since C has six independent components, there is a relation among
the invariants I1�7. However, this relation is a syzygy since no one
invariant can be expressed as a polynomial in the remainder. Hence,
the polynomial invariant set {I1�7} is a minimal integrity basis
(Spencer, 1984) with a syzygy.

In the case of the proposed invariants, consider the (right-
handed) orthonormal set of vectors OT = {a1,a2,a3}, where a1 = a,
a2 = b and a3 a unit vector perpendicular to a and b. Then the com-
ponents of the rotation matrix A from the basis OT to the basis
{e1,e2,e3} are given by

Aij ¼ ai � ej; ðA2Þ

where ej are the principal directions of C. Aij depends on the three
independent Euler angles. Since the four invariants f1 = (a � e1)2,
f2 = (a � e2)2, n1 = (b � e1)2, n2 = (b � e2)2 depend on three indepen-
dent Euler angles, there exists a relation between the four invari-
ants. In particular,

a � b ¼
X3

i¼1

ða � eiÞðb � eiÞ ¼ 0; ðA3Þ

where

a � e3 ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2

p
; b � e3 ¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n1 � n2

p
: ðA4Þ

It is clear from Eqs. (A3) and (A4) that we cannot express any one of
the four invariants as a polynomial in the remaining three invari-
ants. Hence the polynomial invariant set {k1,k2,k3,f1,f2,n1,n2} is a
minimal integrity basis with a syzygy.
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Appendix B

Following the work of Shariff (2008), the inverse of Eq. (2.13) is,

ki ¼
1ffiffiffi
3
p I1 þ 2Acos

wþ 2pi
3

� �� �1
2

; i ¼ 1;2;3;

f1 ¼
k2

2 þ k2
3

d1
ðI4 � k2

3Þ �
1
d1
ðI5 � k4

3Þ;

f2 ¼ �
k2

1 þ k2
3

d2
ðI4 � k2

3Þ þ
1
d2
ðI5 � k4

3Þ;

n1 ¼
k2

2 þ k2
3

d1
ðI6 � k2

3Þ �
1
d1
ðI7 � k4

3Þ;

n2 ¼ �
k2

1 þ k2
3

d2
ðI6 � k2

3Þ þ
1
d2
ðI7 � k4

3Þ;

ðB1Þ

where

A ¼ I2
1 � 3I2

� �1
2
;

w ¼ cos�1 1

2A3 ð2I3
1 � 9I1I2 þ 27I3Þ;

d1 ¼ k2
1 � k2

3

� �
k2

2 þ k2
3

� �
� k4

1 � k4
3

� �
;

d2 ¼ � k2
2 � k2

3

� �
k2

1 þ k2
3

� �
þ k4

2 � k4
3

� �
:

ðB2Þ

Eq. (B1) is only valid for k1 – k2 – k3. When two or more principal
stretches have the same value the corresponding principal direc-
tions have non-unique values. In the case of k1 = k2 – k3 we have,

f3 ¼
I4 � k2

1

k2
3 � k2

1

¼ I5 � k4
1

k4
3 � k4

1

and we choose f1 ¼ f2 ¼
1� f3

2
: ðB3Þ

n3 ¼
I6 � k2

1

k2
3 � k2

1

¼ I7 � k4
1

k4
3 � k4

1

and we choose n1 ¼ n2 ¼
1� n3

2
: ðB4Þ

In the case of k1 = k3 – k2, we have,

f2 ¼
I4 � k2

3

k2
2 � k2

3

¼ I5 � k4
3

k4
2 � k4

3

and we choose f1 ¼
1� f2

2
: ðB5Þ

n2 ¼
I6 � k2

3

k2
2 � k2

3

¼ I7 � k4
3

k4
2 � k4

3

and we choose n1 ¼
1� n2

2
: ðB6Þ
In the case of k2 = k3 – k1, we have

f1 ¼
I4 � k2

3

k2
1 � k2

3

¼ I5 � k4
3

k4
1 � k4

3

and we choose f2 ¼
1� f1

2
: ðB7Þ

n1 ¼
I6 � k2

3

k2
1 � k2

3

¼ I7 � k4
3

k4
1 � k4

3

and we choose n2 ¼
1� n1

2
: ðB8Þ

In the case when k1 = k2 = k3 we choose f1 = f2 = n1 = 0 and n2 = 1.
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