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ABSTRACT 

We report a novel approach to control flexural waves in thin plates using metasurfaces 

constituted of an array of parallel arranged composite beams with their neutral planes 

the same as that of the host plate. The composite beams are composed of two 

connecting parts made of different materials, and have a thickness identical to that of 

the host plate. To steer flexural waves in thin plates, a rectangular zone is subtracted 

from the thin plate and is then filled with the designed metasurface. The time delay of 

flexural waves in each composite beam of the metasurface is tuned through the 

varying length of the two connecting components, while keeping the total length 

fixed. To quantitatively evaluate the time delay in each composite beam, a theoretical 

model for analyzing the phase of the transmitted flexural waves is developed based on 

both Mindlin plate theory and Timoshenko beam theory. To control the flexural waves 

at will, each composite beam in the metasurface is delicately designed according to 

the proposed theoretical model. For illustrative purposes, the refracted and focusing 

metasurfaces are designed and numerically validated. 

1. Introduction 

Thin plates are basic mechanical elements extensively employed in engineering 

(Evans and Porter, 2007) and consequently their dynamic behavior has been well 

explored (Climente et al., 2015; Evans et al., 2008; Norris and Vemula, 1995). Control 

of various elastic waves in them is of great benefit to the development of structural 

health monitoring, design of new micro-electro-mechanical system (MEMs) (Baboly 
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et al., 2018) , energy harvesting (Zareei et al., 2018), etc. To date, such control can be 

achieved in three popular forms of anomalous refraction (Farhat et al., 2010; Su et al., 

2018; Su and Norris, 2016), focusing (Dubois et al., 2013; Tol et al., 2017; Torrent et 

al., 2014; Wu et al., 2011; Yan et al., 2013; Yi et al., 2016; Zareei et al., 2018), and 

cloaking (Brun et al., 2014; Cho et al., 2016; Colombi et al., 2015; Colquitt et al., 

2014; Farhat et al., 2009a; Farhat et al., 2009b; Futhazar et al., 2015; Liu et al., 2016; 

Stenger et al., 2012; Zareei and Alam, 2017). As reported in the existing literature, 

there are two ways to control a wave: the active mode, through the employment of 

one or more physical fields (Chen et al., 2016; Yi et al., 2016), and the passive mode. 

In this work, we pay attention only to the control of flexural waves in thin plates 

by refraction and focusing. Generally, such control can be realized through two 

approaches. One is the incorporation of additional sub-structures/elements deposited 

on the thin plates (Gusev and Wright, 2014), such as composite stubs constituted of 

silicone rubber and lead (Yan et al., 2013) and piezoelectric patches (Yi et al., 2016) 

attached to the thin plates, and through-holes (Wu et al., 2011) or blind holes (Tol et 

al., 2016, 2017) of different diameters drilled on the thin plates. It is well known that 

the speed of flexural waves in thin plates and beams is not only a function of material 

properties, but also highly depends on the thickness of plates and beams. 

Consequently, the other way to control flexural waves in thin plates is achieved 

through the spatial modulation of the thickness h (Climente et al., 2013; Lefebvre et 

al., 2015; Zareei et al., 2018). Note that the critical physics behind both approaches is 

the same and is in tuning the local refractive index for flexural waves. For more 

details on the controlling of flexural and other waves in thin plates, we refer the reader 

to the review work of Zhu et al. (Zhu et al., 2015). 

As mentioned above, the speed of flexural waves in thin plates and beams 

depends on both the material properties and the thickness h. In this work, instead of 

the thickness h that has already been considered by others (Climente et al., 2013; 

Lefebvre et al., 2015; Su et al., 2018; Su and Norris, 2016; Zareei et al., 2018), the 

material properties are chosen to manipulate the flexural waves. The idea is that a 
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rectangular zone is subtracted from the thin plate to yield a hole, and the hole is then 

filled with a series of composite beams with the same thickness as the host plate. 

These composite beams are composed of two connecting parts made of different 

materials, one of which is the same as that of the host plate and the other is an 

otherwise isotropic and homogeneous material. The composite beams are parallel 

distributed with their axes along the propagation direction of the incident flexural 

wave and connected at two ends to the host plate. A small gap is reserved for adjacent 

beams to allow them to work as an individual beam. As the total length of the 

composite beam is fixed, the time delay of flexural waves through it can be tuned by 

different combinations of the two connecting parts. The metasurface, an aggregation 

of the composite beams, with a specific function to tune the flexural waves, can then 

be designed based on the proper selection of the composite beams. 

The rest of this paper is organized as follows. The design of the metasurfaces and 

the transmission properties of the unit cell are introduced and analyzed in Sec. 2, with 

an emphasis on the phase modulation of the transmitted flexural waves by the varying 

length of the two connecting components of the composite beams. Two metasurfaces 

are designed and numerically verified using full finite-element-method (FEM) 

simulations to examine the proposed approach in Sec.3. Conclusions are presented in 

Sec. 4. 

2. Design of metasurfaces and transmission properties 

2.1 Description of metasurfaces 

Figure 1 shows the front and top views of a metasurface comprised of thin 

composite beams connected at two ends to a host plate with an identical thickness. 

The thickness, width, and length of the composite beams are denoted h, b, and l, 

respectively. The gap between two adjacent beams is denoted a, which is assumed to 

be much smaller than b. In this work, h=5 mm, b=3 mm, l=5 cm, and a=0.3 mm 

unless stated otherwise. All the composite beams are comprised of two kinds of 

materials, denoted materials 1 and 2, as shown in Fig. 1. Here, material 1 is selected 
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to be aluminum and material 2 is a material with a higher Young’s-modulus-to-mass-

density ratio. In fact, carbon-fiber-reinforced composite is an excellent candidate for 

material 2. In principal, other materials can also be used for material 2, provided that 

it has a higher Young’s-modulus-to-mass-density ratio compared with material 1. The 

detailed properties for materials 1 and 2 used in this work are tabulated in Table 1. 

Variables 𝑙1  and 𝑙2  denote the lengths of the two connecting components of the 

composite beams. The ratio 𝑙1 𝑙2⁄  is defined as 𝛼 , which ranges from 0 to 1, 

representing distinct composite beams. As illustrated by the arrows in Fig. 1, the x 

direction indicates the propagation direction of flexural waves, while the z direction 

indicates the vibration of material particles. 

 

Fig. 1. Front and top views of metasurface made by parallel aligned thin composite 

beams to control flexural waves in thin plates. Different colors denote different 

materials. 

Table 1. Materials used. 

Material 

Young’s 

modulus 

𝐸 (Gpa) 

Poisson’s 

ratio 

𝜐 

Mass 

density 

𝜌 (kg/m
3
) 

1 70.0 0.33 2700 

𝑙1 𝑙2
 

 

 

 
 

Front view

Material 1

Flexural waves

𝑙
 

 

 
 

     𝑙

b  

 

 

Material 1

Material 2

 

 

 

 

 

 
Top view
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2 500.0 0.31 2000 

2.2 Governing equations for flexural waves in thin plates and thin beams 

In this work, Young’s modulus, shear modulus, Poisson’s ratio, and mass density 

are denoted E, 𝜇, 𝜐, and 𝜌, respectively. Superscripts (1) and (2) indicate quantities 

associated with materials 1 and 2, respectively. Values for the plates and the beams are 

denoted by subscripts p and s. Since the frequency of flexural waves considered in this 

work is relatively high, i.e. 𝑘 > 1, more accurate Mindlin plate and Timoshenko 

beam theory have been adopted to describe the dynamic behaviors of plates and 

beams. 

In Mindlin plate theory (Su et al., 2018), the governing equation for flexural 

waves in a plate with a thickness h, in the absence of any external loading, is 

expressed as 

 

2 2

2 2

2 3 2

2 2
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0,
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w w
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w h
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  

  (1) 

where 𝑤( , 𝑡) is the out-of-plane displacement on the neutral plane and 𝛹( , 𝑡) the 

bending angle. The bending stiffness of the plate is denoted 𝐷  𝐸 3/12(1 − 𝜐2), 

and 𝜒 and 𝜆 are the shear and inertia correction factors, respectively, defined as  
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  (2) 

based on the recent work of Norris (Norris, 2018), where 𝜒0  𝜋
2 12⁄ . General 

solutions to Eq. (1) can be expressed in the form of travelling waves as 𝑤( , 𝑡)  

𝑊̃𝑒𝐢(𝑘𝑥−𝜔𝑡)  and 𝛹( , 𝑡)  𝛹̃𝑒𝐢(𝑘𝑥−𝜔𝑡) , where i denotes an imaginary unit. 

Substituting the above two expressions for 𝑤( , 𝑡) and 𝛹( , 𝑡) into Eq. (1) gives 
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The equation for the wave number k is then obtained 

 
2 2 2
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with 𝑘𝐿  𝜔√𝜌(1 − 𝜈
2) 𝐸⁄ , 𝑘𝑇  𝜔√𝜌 𝜇⁄ , and 𝑘𝐹  (𝜌 𝜔

2 𝐷⁄ )1/4 representing the 

wave numbers of the longitudinal and transverse waves in two-dimensional plane-

strain problems and the flexural waves in plates, respectively. Then, four solutions for 

k are 
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，

  (5) 

where 𝑘1,2  are real and represent travelling waves, but 𝑘3,4  are imaginary and 

correspond to evanescent waves as our frequency of interest ω <
1

ℎ
√12𝜇𝜒 𝜆𝜌⁄ . 

The corresponding governing equation for flexural waves in the beam of a 

thickness h is expressed as: 
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where 𝐼  𝑏 3/12 is the area moment of inertia and A=b∗h the cross-section area. 

Similarly, substituting the same expressions for 𝑤( , 𝑡) and 𝛹( , 𝑡) as those for the 

plates into Eq. (6) gives 
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  (7) 

The equation for k in Eq. (7) is the same as that for plates presented in Eq. (4), while 

the expressions for 𝑘𝐿 and 𝑘𝐹 are replaced by 𝑘𝐿  𝜔√𝜌 𝐸⁄  and 𝑘𝐹  (𝜌𝐴𝜔
2 𝐸𝐼⁄ )1/4, 

respectively. Four solutions for k are also available, two of which are real and 

correspond to travelling waves, while the other two are imaginary as ω <
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1

ℎ
√12𝜇𝜒 𝜆𝜌⁄  and correspond to evanescent waves. 

2.3 Transmission of flexural waves through composite beam in metasurfaces 

To obtain the transmission spectrum of flexural waves through the composite 

beams in the designed metasurfaces, a unit cell between the two dashed lines shown 

in Fig. 2 was reproduced in the y direction to generate a fictional periodic structure. 

The unit cell is constituted by four parts labelled 1-4 as shown in Fig. 2. Under the 

incidence of a plane flexural travelling wave in the x direction, parts 1 and 2 can be 

assumed to be plane-strain beams, while parts 3 and 4 are directly taken as beams. 

The dynamic behavior of parts 1 and 4 can be described by Eq. (1), and Eq. (6) for 

parts 2 and 3. Hence, with the omission of time harmonic terms, the wave fields in the 

unit cell can be expressed as  
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  (8) 

where 𝑘𝛽𝑗
(𝑖)

  denote the wave numbers of four flexural waves (j=1, 2, 3, and 4) in the 

plate (𝛽=p) or the beam (𝛽=s) made of material i (i=1,2). Parameters 𝑅𝑖
(1)

, 𝐴(𝑖), 𝐵(𝑖), 

𝑈(𝑖), 𝑉(𝑖), and 𝑇𝑖
(1)

 (i=1, 2) are the 12 unknown coefficients that are determined by the 

continuity of out-of-plane displacements, bending angles, shear forces, and bending 

moments at the three interfaces of    , 𝑙1 and 𝑙. The bending angles in both plates 

and beams are related to the out-of-plane displacements through Eq. (3) in the form  

    
2 2

.
k

x W x
k

 
 

i
  (9) 

The shear force in the beam is 𝑄  𝜇𝜒 𝑏 (
𝜕𝑊

𝜕𝑥
−𝛹) and 𝑄  𝜇𝜒 𝑏′ (

𝜕𝑊

𝜕𝑥
−𝛹) in the 

plate, where 𝑏′  𝑏 +  . The bending moment in the beam is 𝑀  𝐸𝐼
𝜕Ψ

𝜕𝑥
 and 

𝑀  𝐷𝑏′
𝜕Ψ

𝜕𝑥
 in the plate. Therefore, the equations governing the 12 unknowns can be 
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established. The detailed expressions for the linear system are given in the Appendix 

1. Solving this system yields the unknowns. 

 

Fig. 2. Front and top views of unit cell used to analyze transmission spectrum of 

flexural waves through composite beams in designed metasurfaces. Incident wave is a 

plane flexural travelling wave. Black arrow denotes the propagation direction and red 

circle with dot the vibration direction of material particles. 

Figure 3 shows the analytical magnitudes and phases of the transmitted waves at 

different frequencies. In this case, 𝛼=0.5. It is evident that, the magnitude of the 

transmitted travelling wave (𝑇1
(1)

) is considerably larger than that of the transmitted 

evanescent wave (𝑇2
(1)

), which indicates that the transmitted evanescent wave is 

negligible. 

   

𝑙

𝑙1 𝑙2

     𝑙

𝑊   𝑒𝐢𝑘 
 
𝑥

 

 

 
 

 
 
 

b 𝑏′

 

 

 

 
 

Front view

Top view

Unit cell

part 1 part 2 part 3 part 4

 

  

 
 
 
 

(a)
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Fig. 3. Theoretical magnitudes (a) and phases (b) of transmitted waves changing with 

frequency. 

The influence of 𝛼 on the phase of the transmitted travelling wave (𝑇1
(1)

) at four 

frequencies is illustrated in Fig. 4. The results indicate that changing of α  is an 

effective way to make the phase of the transmitted travelling wave range from –π to 

π, particularly at higher frequencies. Therefore, according to the generalized Snell’s 

law (Yu et al., 2011), it is possible that flexural waves in thin plates can be tuned by 𝛼. 

 

Fig. 4. Phases of transmitted travelling waves (𝑇1
(1)

) changing with α at four different 

frequencies. 

3. APPLICATIONS OF PROPOSED APPROACH 

As an illustration for the applications of the idea proposed above, two numerical 

experiments were conducted. One is the design of a planar refraction lens and the 

other is a focusing lens, both for the flexural waves in thin plates. 

(b)
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3.1 Planar refraction lens for flexural waves in thin plates 

A planar refraction lens for normal incident flexural waves propagating in thin 

plates was designed at 80 kHz. As an example, the angle of the refracted wave 

through this lens was set at 30°. According to the generalized Snell’s law, for this 

case, 14 composite beams are selected from the phase of the transmitted travelling 

wave versus the α curve, as the solid dots show in Fig. 5. The detailed parameters for 

the 14 composite beams are tabulated in Table 2. It is worth mentioning that the 

transmitted travelling wave has a very high transmission coefficient, as illustrated in 

Table 2. 

 

Fig. 5. Fourteen composite beams selected for planar refraction lens for flexural 

waves propagating in thin plates with refraction angle 30° at 80 kHz. 

Table 2. Parameters of 14 composite beams constituting the lens with refraction angle 

30° for flexural waves in thin plates at 80 kHz. 

No. 𝛼 𝛷(π) |𝑇1
(1)
| 

1 0.5024 -1.0000 0.9904 

2 0.5735 -0.8475 0.9973 

3 0.6417 -0.6950 0.9655 

4 0.7052 -0.5426 0.9307 

5 0.7660 -0.3901 0.9195 

6 0.8271 -0.2376 0.9329 

7 0.8932 -0.0851 0.9638 

8 0.9722 0.0674 0.9968 

9 0.1573 0.2199 0.9993 

10 0.2299 0.3723 0.9710 

11 0.2972 0.5248 0.9388 

1
2

3
4

5
6

7
8

9
10

11
12

13

14

The theoretical phases 

of 𝑇1
1

versus 𝛼 curve
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12 0.3610 0.6773 0.9339 

13 0.4252 0.8298 0.9547 

14 0.4941 0.9823 0.9872 

To examine the performance of the designed lens, full numerical simulations in 

frequency domain using COMSOL
®

 MultiPhysics software were conducted under its 

Solid Mechanics module. The numerical model is plotted in Fig. 6 with the inset 

showing the detailed structure of the designed lens, where the blue color represents 

material 1 and the gray material 2. In the numerical simulation, the entire domain was 

discretized using three-dimensional (3D) solid elements, and the perfectly matched 

layers (PMLs) were employed at the external zone to yield non-reflecting boundaries. 

To avoid rigid motion, the surfaces labelled 1, 2, and 3 and those on the other end 

were fixed in the x direction, and the surfaces labelled 4, 5 and the corresponding 

ones on the other side were not allowed to move in the y and z directions. A uniform 

out-of-plane displacement with a unit magnitude was applied on the dashed line AB to 

generate a plane flexural wave. Note that, such boundary conditions and applied loads 

were used in all the following simulations. The detail of geometries has been 

indicated in Fig. 6 (a). The simulated out-of-plane displacement fields shown in Fig. 

6(d) indicate that the refracted wave is indeed at an angle of 30° with respect to the 

incident wave, which is in good agreement with the theoretically prescribed value. 

Although this lens was only designed for the single frequency of 80 kHz, numerical 

simulations at other frequencies, i.e., 75 and 90 kHz, were also conducted and the 

results illustrated in Fig. 7(a) and 7(b), respectively. The results show that the angle of 

the refracted wave is approximately 30° at 75 kHz and 26° at 90 kHz, which is 

slightly different from the predicted angle, i.e., 30°. It can be concluded that, although 

this lens was designed to work at a single frequency, it actually works reasonably well 

in a range of frequencies centered on the design frequency. 
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Fig. 6. Numerical simulation performed to examine feasibility of designed planar lens 

with refraction angle of 30° for flexural waves in thin plates at 80 kHz: (a) 3D view of 

numerical model, (b) lens constituted by three sub-structures, (c) detailed structure of 

sub-structure composed of 14 composite beams numbered 1-14, and (d) top view of 

out-of-plane displacements. 

     

Fig. 7. Top view of simulated out-of-plane displacements for designed planar lens 

presented in Fig. 6 at (a) 75 and (b) 90 kHz. 

As a further application, Fig. 8 shows the simulated out-of-plane displacement 

field for a designed wave-splitting lens. As shown in the inset, four sub-structures are 

employed in this lens, two of which are the same as that used in Fig. 6, while the 

detailed structure of the other two is illustrated in Fig. 8(c) and denoted sub-structure 

2. They are constituted by 10 composite beams numbered 15-24 with detailed 

parameters listed in Table 3. They are properly selected according to the proposed 

theoretical model. The results indicate that the incident flexural wave is split into two 

parts and their propagation angles are found to be in good agreement with the 
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prescribed values of 30° and 45°. As before, numerical simulations were also 

conducted at other frequencies around the design frequency of 80 kHz, as illustrated 

by the results in Fig. 9. It is indicated in the figure that the refraction angle of the two 

split waves slightly changes from the prescribed 30° and 45°. 

 

Fig. 8. Top view of simulated out-of-plane displacements (a) for designed splitter with 

refraction angles of 30° and 45° for flexural waves in thin plates at 80 kHz, (b) 

structure of the splitter, and (c) detailed structure of sub-structure 2. 

Table 3. Parameters of 10 composite beams constituting sub-structure 2 used in the 

splitter for flexural waves in thin plates at 80 kHz. 

No. 𝛼 𝛷(π) |𝑇1
(1)
| 

15 0.5024 -1.0000 0.9904 
16 0.6023 -0.7844 0.9874 
17 0.6944 -0.5687 0.9354 
18 0.7806 -0.3531 0.9207 
19 0.8696 -0.1374 0.9517 
20 0.9784 0.0782 0.9980 
21 0.1933 0.2938 0.9894 
22 0.2906 0.5095 0.9410 
23 0.3809 0.7251 0.9381 
24 0.4748 0.9408 0.9786 
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Fig. 9. Top view of simulated out-of-plane displacements for designed splitter 

presented in Fig. 8 at (a) 70 and (b) 90 kHz. 

3.2 Lens to focus flexural waves in thin plates  

A lens with a focal distance equals to 4 times the length of the composite beams 

was designed to focus flexural waves in thin plates. The required phase profile along 

the vertical direction is described by Eq. (19) in (Su et al., 2018). For this case, 54 

composite beams are selected from the curve at 80 kHz presented in Fig. 4. Table A1 

in the Appendix 2 lists the detailed parameters of these 54 beams, numbered from 1-

54. As before, full numerical simulations were performed. The numerical model used 

and results are illustrated in Fig. 10 with the inset showing the designed metasurface. 

Results show that the wavefronts of the transmitted wave are concavely bent and the 

focal point is found to be approximately 17 cm from the metasurface, as illustrated in 

Fig. 10(e), which agrees with the designed focal distance to a remarkable degree. 
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Fig. 10. Results of numerical simulation performed to examine feasibility of designed 

focusing lens with a focal distance of 20 cm for flexural waves in thin plates at 80 

kHz: (a) 3D view of numerical model, (b) structure of designed metasurface, (c) top 

view of real part, (d) imaginary part, and (e) magnitude of out-of-plane displacements. 

4. Conclusions  

In conclusion, in this paper we proposed a novel approach for controlling 

flexural waves in thin plates using metasurfaces made of composite beams. The 

composite beams are made of two connecting parts with different materials. As the 

total length is fixed, different combinations of geometric size for the two parts yield 

distinct composite beams. A theoretical model based on Mindlin plate theory and 

Timoshenko beam theory was developed to evaluate transmission of flexural waves 

through such a composite beam connected at two ends to thin plates. Theoretical 

results indicate that phases of the transmitted travelling flexural wave can be tuned 

between – π and π by changing the lengths of the two connecting parts, indicating that 

the proposed composite beams are capable of steering flexural waves effectively. To 

examine the performance of the proposed idea, two numerical experiments were 

conducted. One was the design of a planar lens to refract flexural waves in thin plates 

and the other that of a focusing lens for flexural waves. The results of full numerical 

simulations verify the two designs. In addition to these two illustrative applications, 

this idea also benefits other applications, i.e., non-reciprocal propagation of flexural 

waves with the combination of phononic crystals. 
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Appendix 1: Linear equations for 12 unknowns 

The continuity of out-of-plane displacements at locations    , 𝑙1 and 𝑙 yields, 
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, for 𝑖=1, 2, 3, 4; 𝑗=1, 2 and 𝛽  𝑝, 𝑠.  

The corresponding continuity of bending angles gives rise to  
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(𝑗) , for 𝑖=1, 2, 3, 4; 𝑗=1, 2 and 𝛽  𝑝, 𝑠.  

The equations for the 12 unknowns based on the continuity of shear forces are 

expressed as 
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 for 𝑖=1, 2, 3, 4 and 𝑗=1, 2; 𝑗=1, 2 and 𝛽  𝑝, 𝑠. 

The continuity of the bending moment gives  
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with 𝜏𝛽𝑖
(𝑗)
 𝐢𝑘𝛽𝑖

(𝑗)
∗ 𝑝𝛽𝑖

(𝑗)
 for 𝑖=1, 2, 3, 4 and 𝑗=1, 2; 𝑗=1, 2 and 𝛽  𝑝, 𝑠. 

Appendix 2: Parameters for 54 composite beams 

Table A1. Parameters of 54 composite beams constituting lens to focus  

flexural waves at 80 kHz. 

No. 𝛼 𝛷(π) |𝑇1
(1)
| 

1 0.9352 0 0.9844 

2 0.9346 -0.0008 0.9842 

3 0.9335 -0.0032 0.9837 

4 0.9313 -0.0073 0.9828 

5 0.9284 -0.0129 0.9814 

6 0.9247 -0.0201 0.9797 

7 0.9202 -0.0290 0.9775 

8 0.9149 -0.0394 0.9750 

9 0.9090 -0.0515 0.9721 

10 0.9023 -0.0651 0.9686 

11 0.8951 -0.0802 0.9649 

12 0.8872 -0.0969 0.9609 

13 0.8788 -0.1152 0.9566 

14 0.8699 -0.1349 0.9521 

15 0.8604 -0.1562 0.9476 

16 0.8505 -0.1790 0.9429 

17 0.8401 -0.2033 0.9384 

18 0.8293 -0.2290 0.9340 

19 0.8181 -0.2561 0.9300 

20 0.8063 -0.2847 0.9264 

21 0.7942 -0.3147 0.9233 

22 0.7815 -0.3460 0.9210 

23 0.7683 -0.3788 0.9197 

24 0.7547 -0.4128 0.9195 

25 0.7404 -0.4482 0.9207 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 
 

26 0.7256 -0.4849 0.9235 

27 0.7101 -0.5229 0.9281 

28 0.6939 -0.5621 0.9346 

29 0.6770 -0.6025 0.9431 

30 0.6593 -0.6442 0.9531 

31 0.6407 -0.6870 0.9643 

32 0.6212 -0.7310 0.9758 

33 0.6008 -0.7762 0.9865 

34 0.5794 -0.8224 0.9948 

35 0.5571 -0.8698 0.9993 

36 0.5341 -0.9182 0.9993 

37 0.5107 -0.9677 0.9946 

38 0.4872 -1.0182 0.9861 

39 0.4638 -1.0697 0.9753 

40 0.4406 -1.1222 0.9637 

41 0.4178 -1.1756 0.9528 

42 0.3950 -1.2300 0.9436 

43 0.3722 -1.2853 0.9367 

44 0.3493 -1.3415 0.9328 

45 0.3258 -1.3986 0.9327 

46 0.3018 -1.4566 0.9369 

47 0.2769 -1.5153 0.9456 

48 0.2510 -1.5749 0.9583 

49 0.2240 -1.6353 0.9734 

50 0.1958 -1.6964 0.9884 

51 0.1664 -1.7584 0.9979 

52 0.1360 -1.8210 0.9996 

53 0.1055 -1.8844 0.9931 

54 0.0754 -1.9485 0.9809 

 


