
International Journal of Solids and Structures 46 (2009) 1373–1388
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/ locate / i jsols t r
Microstructural modelling of stress-dependent behaviour of clay

Zhen-Yu Yin *, Ching S. Chang
Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01002, USA
a r t i c l e i n f o

Article history:
Received 13 July 2008
Received in revised form 27 September 2008
Available online 17 November 2008

Keywords:
Anisotropy
Clays
Micromechanics
Constitutive relations
Plasticity
Stress reversal
0020-7683/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijsolstr.2008.11.006

* Corresponding author. Tel.: +1 413 545 5401; fax
E-mail addresses: zhenyu.yin@gmail.com (Z.-Y.

(C.S. Chang).
a b s t r a c t

The purpose of this paper is to investigate the stress-dependent behaviour of clay during drained and
undrained shearing by means of a micromechanical approach. A new micromechanical stress–strain
model is developed for clay using the approach developed in earlier studies by Chang and Hicher [Chang,
C.S., Hicher, P.Y., 2005. An elastic–plastic model for granular materials with microstructural consider-
ation. International Journal of Solids and Structures 42(14), 4258–4277]. In order to model the extension
test on a K0 consolidated sample, a formulation is developed to account for the stress reversal on a contact
plane. The model is then used to simulate numerous stress-path tests on Lower Cromer Till and kaolin
clay, including triaxial compression and extension tests, under both undrained and drained conditions,
with different K0 consolidation, and different over-consolidation ratios. The applicability of the present
model is evaluated through comparisons between the predicted and the measured results. The evolution
of local stresses and local strains at inter-particle planes are discussed in order to explain the stress-
induced anisotropy due to externally applied load. All simulations have demonstrated that the proposed
micromechanical approach is capable of modelling the stress-induced anisotropy and other major fea-
tures of the complex behaviour in clay.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Natural clay often exhibits significant anisotropic behaviour
that may be either caused by the clay’s fabric structure (inherent
structural anisotropy) or induced as a result of stress change
(stress-induced anisotropy). The fabric structure is usually created
during the geological formation process of a clay deposit, in which
the long axis of the soil particles tends to align in a preferred direc-
tion, thus generating the inherent structural anisotropy. However,
clay can still exhibit anisotropic behaviour even through its fabric
structure is isotropic. This type of anisotropic behaviour is induced
by the in situ stress and subsequent loading conditions (e.g., see the
work by Tavenas and Lereoueil, 1977; Muir Wood, 1990; Burland,
1990; Diaz Rodriguez et al., 1992). These studies have shown that
the behaviour of clay is highly stress-dependent in nature.
Therefore, clay always displays some degree of anisotropy under
external loads. For this reason, it is important for a stress–strain
model to have the capability of predicting stress-induced
anisotropy.

The models that account for stress-induced anisotropy have
been developed mainly through the elasto-plastic approach, such
as Nova (1985), Dafalias (1986), Whittle and Kavvadas (1994),
Pestana and Whittle (1999), Ling et al. (2002), Wheeler et al.
ll rights reserved.
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(2003), Dafalias et al. (2006), etc. The key feature of these mod-
els is a kinematic hardening rule which describes how the yield
surface moves and expands in accordance with the applied stres-
ses. The kinematic hardening rule, constructed phenomenologi-
cally from experimental results, can simulate the phenomenon
of stress-induced anisotropy. However, it is not an easy task to
facilitate a kinematic hardening rule for the complex behaviour
of soil.

Another interesting approach for modelling stress-induced
anisotropy is the micro-structural model. This approach embraces
slip plasticity models (Batdorf and Budianski, 1949; Calladine,
1971), multi-laminate models (Pande and Sharma, 1982; Cudny
and Vermeer, 2004) and micro-plane models (Bazant et al.,
1995). In this approach, material is considered as a collection of
slip planes in different orientations. The stresses on each plane
are considered as internal state variables, and their evolution can
serve to model the behaviour change on each individual plane.
Since the properties are stress-dependent, the results exhibit natu-
rally the stress-induced anisotropy.

Although conceptually, the micro-structural approach is
potentially attractive for modelling anisotropic material, it has
not been evaluated for natural clay with complex behaviour un-
der various stress paths in both drained and undrained condi-
tions. For this purpose, we have developed a micromechanical
model extended from the micro-structural approach of Chang
and Hicher (2005) to study the induced anisotropy in natural
soft clay. The macro behaviour of clay is very different from
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Fig. 1. Schematic plot for undrained compression behaviour of sand and clay: (a) under high confining pressure, (b) under low confining pressure, and (c) for NC and OC clay
(NC, normally consolidated; OC, overconsolidated).

Fig. 2. Local coordinate at inter-particle contact.
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sand. For example, the critical state line in e-log p0 plane is al-
ways parallel to the compression line for clay, whereas this is
not necessarily true for sand. Furthermore, undrained experi-
ments show very different nature in stress paths. Fig. 1 shows
the schematic plot for undrained paths of sand and clay.
Fig. 1a and b shows the behaviour of sand under high and low
confining pressures, respectively. Fig. 1c shows the undrained
stress paths for both normally consolidated and heavily overcon-
solidated clay. Near critical state, the undrained paths for sand
have pronounced behaviours of contraction and dilation (up-turn
or down-turn), whereas the undrained paths for clay do not have
such behaviour. Furthermore, the heavily overconsolidated clay
does not contract. However, for dense sand, it contracts before
dilation.

In order to model the differences between clay and sand, the
following extensions have been made in the present micromechan-
ics model: (1) the deformation between clay-clusters due to
compression is much bigger than sand. Thus, in addition to the
Mohr–Coulomb’s plastic shear sliding, a plastic normal deforma-
tion has been considered for two clusters in compression. (2) A
dilatancy type flow rule accounting for soil density is proposed
to reproduce the clay behaviour.

In order to have a general model applicable to various stress
paths including both compression and extension loads, we have
incorporated a formulation, similar to that used in kinematic hard-
ening rules, Masing’s rule or bounding surface (Dafalias and Herr-
mann, 1982), which can analyse the reverse shear loading
condition on a contact plane. With this new element, the model
can simulate correctly the extension tests followed anisotropic
consolidation.

Experimental results obtained from LCT (Lower Cromer Till) and
kaolin clay were adopted for evaluating the model applicability to
soils under a K0 consolidation followed by a drained or undrained
shearing. In Section 2, we present the model on the basis of a
microstructural approach. In Section 3, we compare the model’s
performance with the measured response. In Section 4, we show
the behaviour of contact planes within the assembly. We also dis-
cuss the relationship between the contact plane behaviour and the
assembly behaviour. Finally, the overall applicability of the present
model is evaluated based on the comparison of measured and pre-
dicted results.

2. Constitutive model

A clay particle is usually platy in shape. The size for a platy
particle generally ranges from 0.01 to 1 lm depending on the clay
type (e.g. Montmorillonite, Illite or Kaolinite). Clay particles at-
tract each other due to surface forces among particles such as
chemical, electrostatic, van der Waals forces, etc. These forces pull
together the particles to form particle-clusters. The size of the
clusters continues to grow until the clusters are large enough
so that the cluster weight, due to gravitation, becomes signifi-
cantly larger than the inter-particle surface forces. At this stage,
the cluster looses its potential to attract further clay particles,
and the size of clusters stops to grow. The ultimate cluster-size
depends on the clay particle type, the liquid inside the pores,
and its sedimentation history.

From the photos of clay material under scanning electron
microscopes, clusters formed by platy clay particles can be identi-
fied as rotund shape, although the microfabric within a cluster may
be either a flocculate or dispersed type structure (see Hicher et al.,
2000).

At the size of clusters, long-range forces such as electrostatic
and van der Waals forces are negligible, and clusters interact
with each other mainly through mechanical forces. This ex-
plains why sand and clay have similar qualitative behaviour
even though each material consists of different constituents
(Biarez and Hicher, 1994). Thus clay material, considered as a
collection of clusters, can be modelled by analogy to granular
material. It is also reasonable to anticipate that the cluster
model may not represent the microfabric of all types of clay.
Thus the degree of applicability of this model is necessary to
be evaluated.

In this model, we envision clay as an aggregate of clusters.
The deformation of a representative volume of clay is generated
by mobilizing and compressing of all clusters. Thus, the stress–
strain relationship can be derived as an average of the deforma-
tion behaviour of all local contact planes. For the ath contact
plane, the local forces f a

j and the local movements da
i can be de-

noted as follows: f a
j ¼ ff a

n ; f
a
s ; f

a
t g and da

i ¼ fd
a
n; d

a
s ; d

a
t g, where the

subscripts n, s, and t represent the components in the three
directions of the local coordinate system as shown in Fig. 2.
The direction outward normal to the plane is denoted as n;
the other two orthogonal directions, s and t, are tangential to
the plane.
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2.1. Density state of clay

Critical state concept is important to be considered in the mod-
elling of clay. At critical state, the clay material remains a constant
volume while it is subjected to a continuous distortion. The void
ratio corresponding to this state is ec, which is a function of effec-
tive mean stress p0 ¼ ðr0x þ r0y þ r0zÞ=3. The relationship has tradi-
tionally been written as follows:

ec ¼ ec0 � k ln
p

pcr0

� �
: ð1Þ

The two parameters (ec0,pcr0) represent a reference point on the
critical state line. For convenience, the value of pcr0 is taken to be
0.01 Mpa, thus the critical state line can be defined by two param-
eters ec0 and k. Using the critical state concept, the density state of
an assembly is defined as the ratio ec/e, where e is the void ratio of
the assembly.

2.2. Inter-cluster behaviour

In order to have a more apparent link between the micro and
macro variables, we define a local stress sa

i and a local strain ca
i ,

which are directly related to the local forces f a
j and the local move-

ments da
i at each contact, given by

sa
i ¼

Nla

3V
f a
i ; ca

i ¼ da
i =la; ð2Þ

where la is the length of the branch vector, which joins the cen-
troids of two contact clusters. V is the volume of the representa-
tive element. It is to be noted that the local stress sa

i is not the
stress on the physical contact area between the two clusters. It
should be rather viewed as the average stress on the inter-cluster
plane when the clusters and voids in the representative volume
are homogenized into a continuum. For an isotropic medium,
the local stress is identical to the tractions resolved on the plane
due to global stress (i.e., sa

i ¼ rjina
j ). A proof will be given later in

Eq. (24).
In the local coordinate system, the local stress and local strain

are, respectively, denoted as f sa
n sa

s sa
t g and f ca

n ca
s ca

t g. For
convenience, we use the notation ra ¼ sa

n for local normal stress
and the notation ea ¼ ca

n for local normal strain in the following
sections.

2.2.1. Elastic part
The inter-cluster behaviour can be characterized as the relation-

ship between local stress and local strain, given by

sa
i ¼ �ka

ijc
a
j ; ð3Þ

in which the stiffness tensor can be related to the contact normal
stiffness, �ka

n , and shear stiffness, �ka
r ,

�ka
ij ¼ �ka

nna
i na

j þ �ka
r ðsa

i sa
j þ ta

i ta
j Þ: ð4Þ

The inter-cluster stiffness can be expressed as the form adopted
for sand grains by Chang et al., 1989), given by

�ka
n ¼ �ka

n0
ra

pref

 !n

; �ka
r ¼ krR

�ka
n ¼ krR

�ka
n0

ra

pref

 !n

; ð5Þ

where ra is the local stress in normal direction, pref is the standard
reference pressure taken as 0.01 Mpa, and krR is the ratio of shear to
normal stiffness. �ka

n0; krR and n are material constants. The value of
n is found to be 0.33 for two elastic spheres according to Hertz-
Mindlin’s formulation (1969). Based on experimental measure-
ments of elastic modulus under different confining stress, the value
of n have been found to be 0.5–1.0 for clay.
2.2.2. Plastic part
2.2.2.1. Shear sliding. The elastic part of the tangential movement
between two clusters does not have a coupling effect (i.e., there
is no shear induced normal movements). However, plastic sliding
often occurs along the tangential direction of the contact plane
with an upward or downward movement (i.e., dilation or contrac-
tion). Stress-dilatancy is a well-known phenomenon in sand (see
discussions in the work by Taylor (1948), Rowe (1962), Goddard
and Bashir (1990), etc.), and should be correctly modelled. The
assertion of coupling effect due to plastic sliding of two clusters
is not supported by direct observations on the microfabric of actual
clay. It is rather a hypothesis presumed from the observed behav-
iour of soil specimen. The dilatancy equation used here is modified
from the equation adopted for sand by Chang and Hicher (2005),
given by

dep

dcp
¼ b

tan /m

tan /l
� 1

 !
tan /m

tan /l

 !a

1� e
ec

� �
: ð6Þ

The modified equation allows more flexibility for modelling
different types of behaviour. In this equation, the mobilized fric-
tion angle, tan/m = sa/ra. The constants a, b and /l are inter-
cluster properties; ec is the critical void ratio for the clay. When
the void ratio e is equal to the critical void ratio, zero dilation
holds. It is noted that the state variables e and ec are the state
of a cluster assembly, which is used to regulate the dilation of
individual inter-cluster contacts. It is rational to consider the mi-
cro variable as a function of the macro-state, because the inter-
cluster behaviour is indeed influenced by the density state of the
specimen.

In Eq. (6), /l is the inter-cluster friction angle, which in value is
very close to the internal friction angle of the clay measured at crit-
ical state. The values of a and b can be calibrated from experimen-
tal measurements of triaxial tests, which will be shown in the later
section on numerical simulation.

Note that the shear stress s and the rate of plastic shear strain
dcp in Eq. (6) are defined as

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

s þ s2
t

q
and dcp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdcp

s Þ2 þ ðdcp
t Þ

2
q

: ð7Þ

The yield function of a contact plane is assumed to be of Mohr–
Coulomb type, given by

F1ðs;r;j1Þ ¼ s� rj1ðcpÞ ¼ 0; ð8Þ

where j1(cP) is an isotropic hardening/softening parameter. Plastic
loading corresponds to dF1 > 0. The hardening parameter is defined
by a hyperbolic function in the j1 � cp plane, which involves two
material constants: /p and �kp.

j1 ¼
�kp tan /pcp

r tan /p þ �kpcp
: ð9Þ

When plastic deformation increases, j1 approaches asymptoti-
cally tan/p. For a given value of r, the initial slope of the hyper-
bolic curve is �kp=r. The flow rule is non-associated. Under a
loading condition, the shear plastic flow in the direction tangential
to the contact plane is determined by a normality rule applied to
the yield function. However, the plastic flow in the direction nor-
mal to the contact plane is governed by the stress-dilatancy equa-
tion in Eq. (6).

The value of �kp is found to be linearly proportion to �kn such that

�ka
p ¼ kpR

�ka
n ¼ kpR

�ka
n0

ra

pref

 !n

: ð10Þ
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The ratio kpR is a material parameter.
The internal friction angle /l is a constant for a given material.

However, the peak friction angle, /p, on a contact plane is depen-
dent on the density state of neighbouring clusters, which can be re-
lated to the void ratio e by

tan /p ¼
ec

e

� �m
tan /l; ð11Þ

where m is a material constant (Biarez and Hicher, 1994).
In a loose structure, clusters can rotate more freely, the peak

frictional angle /p is smaller than /l. On the other hand, a dense
structure provides higher degree of interlocking, which requires
more effort to mobilize the clusters in contact. Thus, the peak fric-
tional angle /p is greater than /l. When the loading stress reaches
the peak frictional angle /p, the dense structure dilates and the de-
gree of interlocking relaxes. As a consequence, the peak frictional
angle is reduced, which results in a strain-softening phenomenon.

Upon shear reversal, the direction of sliding of an inter-cluster
plane is reversed. Let us denote the stress state on the contact
plane at the moment of shear reversal be residual stress, which
has a significant influence on the subsequent sliding behaviour.
As a consequence, the hardening rule and the dilation follow the
equations below:

j1 ¼
�kp tan /�pcp�

r tan /�p þ �kpcp�
; ð12Þ

dep

dcp ¼ b
tan /�m
tan /�l

� 1

 !
tan /�m
tan /�l

 !a

1� e
ec

� �
: ð13Þ

Note that these two equations carry the same form as the previous
ones. The only difference is the superscript (*) marked on the plastic
shear strain cp*, the mobilized friction angle /�m, the internal friction
angle /�l, and the peak friction angle /�p, which are defined below to
show the effect of the reverse state (see Fig. 3).

cp� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcp

s � cpR
s Þ2 þ ðcp

t � cpR
t Þ

2
q

; ð14Þ
tan /�m ¼ tan /R � tan /m; ð15Þ
tan /�l ¼ tan /R � tan /l; ð16Þ
tan /�p ¼ tan /R � tan /p; ð17Þ

where tan/R is the mobilized friction angle tan/m at the moment of
stress reverse, and ðcpR

s ; cpR
t Þ are the plastic shear strain at the mo-

ment of stress reverse. Both tan/R and tan/m are positive when
the stresses applied to the sample are in a compression state and
negative in an extension state. The value of tan/l is positive when
the incremental stresses applied is in a compression state and vise
versa.
Fig. 3. Stress reversal at lo
Eq. (13) indicates that the amount of dilation is different upon
shear reversal. This concept is similar to that proposed by Balen-
dran and Nemat-Nasser (1993) and Wan and Guo (2001). Eq.
(12) suggests that the same form of hardening rule can be used
for both loading and unloading conditions, but requires some scal-
ing process on the values of tan/m and tan/p. This concept is sim-
ilar to that used in Masing’s rule and in bounding surface (Dafalias
and Herrmann, 1982).

2.2.2.2. Normal compression. In order to describe the compress-
ible behaviour between two clay clusters, a second yield sur-
face is added. The second yield function is assumed to be as
follows:

F2ðr;j2Þ ¼ r� j2ðepÞ for r > pp; ð18Þ

where the local normal stress r and local normal strain ep are de-
fined in Eq. (2). The normal plastic strain ep is generated from the
2nd yield surface only. The hardening function j2(ep) is defined as

j2 ¼ rp10ep=cp or ep ¼ cp log
j2

rp
; ð19Þ

where cp is the compression index for the compression curve plot-
ted on ep � logr plane. When the compression r is less than rp, the
plastic strain produced by the second yield function is null. Thus, rp

in Eq. (12) corresponds to the pre-consolidation stress in soil
mechanics.

2.2.3. Elasto-plastic relationship
With the basic elements of inter-cluster behaviour discussed

above, the final incremental local stress–strain relation of the in-
ter-cluster contact can be derived that includes both elastic and
plastic behaviour, given by

_sa
i ¼ �kap

ij
_ca

j : ð20Þ

Detailed derivation of the elasto-plastic stiffness tensor is given in
Appendix.

2.3. Stress–strain relationship

2.3.1. Macro–micro relationship
The stress–strain relationship for an assembly of clay-clus-

ters can be determined from integrating the inter-cluster
behaviour at all contacts. During the integration process, a
relationship is required to link the macro and micro variables.
Using the static hypotheses proposed by Liao et al. (1997), we
obtain the relation between the strain of assembly and inter-
cluster strain
ading and unloading.
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_uj;i ¼
XN

a¼1

_ca
j na

k Ba
ik; ð21Þ

where _cj is the local strain between two contact clusters; nk is
the unit vector of the branch joining the centres of two
contact clusters, and N is the total number of contacts, over
which the summation is carried out. The tensor Ba

ik in Eq.
(21) is defined as

Ba
ik ¼ A�1

ik ðl
aÞ2; where the fabric tensor Aik ¼

XN

a¼1

:lai lak ð22Þ

Using the principle of energy balance, which states the work
done in a representative volume element equal to the work done
on all inter-cluster planes within the element

rij _uj;i ¼
1
V

XN

a¼1

f a
j

_da
j ¼

3
N

XN

a¼1

sa
j

_ca
j ; ð23Þ

and using Eq. (21), the local stress on the ath contact plane is
derived as follows:

_sa
j ¼

N
3

_rijB
a
ikna

k : ð24Þ

For the case of isotropic fabric, it can be derived that Bik ¼ ð3=NÞdik,
where dik is the kronic delta. Thus, Eq. (24) is reduced to the usual
form _sa

j ¼ _rijna
j .

The stress increment _rij can be obtained by the contact forces
and branch vectors for all contacts (Christofferson et al., 1981;
Rothenburg and Selvadurai, 1981). In terms of local stress, it is

_rij ¼
1
V

XN

a¼1

f a
j lai ¼

3
N

XN

a¼1

sa
j na

i : ð25Þ

Applying the defined local stress in Eqs. (24), (25) is unconditionally
satisfied.

Using Eqs. (20), (21) and (24), the following relationship
between stress and strain can be obtained:

_ui;j ¼ Cijmp _rmp; ð26Þ

where

Cijmp ¼
N
3

XN

a¼1

ð�kep
jp Þ
�1na

k na
nBa

ikBa
mn: ð27Þ

The summation in Eq. (27) can be expressed by a closed-form
solution for some limited conditions such as the elastic modulus
of randomly packed equal-size particles (Chang et al., 1995). How-
ever, in an elastic–plastic behaviour, due to the non-linear nature
of the local constitutive equation, a numerical calculation with
an iterative process is necessary to carry out the summation in
Eq. (27) (see Chang and Hicher, 2005).

2.4. Summary of parameters

The material parameters are summarized as follows:

(1) Microstructural descriptions (two parameters)
- Contact number per unit volume, N/V and mean cluster

size, d.

(2) Inter-cluster properties (nine parameters)
- Inter-cluster elastic constants: �kn0; krR and n.
- Inter-cluster friction angle: /l and m(m = 1 suggested

for clays).
- Inter-cluster plastic compression index and plastic shear

stiffness ratio: cp and kpR.
- Dilation constants: a and b.
(3) density state of the assembly (three parameters)
- Critical state for the soil: k and ec0.
- Reference void ratio, e0, on the isotropic compression

line at p = 0.01 Mpa.

The size of a clay cluster d can be estimated from an electron
microscopic scanning photograph. The value of N/V is not easy to
obtain directly from experiments on clay. According to the exper-
imental data by Oda (1977) for three mixtures of spheres, the con-
tact number per unit volume can be approximately related to the
void ratio by

N
V
¼ 12

pd3ð1þ eÞe
: ð28Þ

Here, we use this equation as a first-order approximation to
estimate N/V for clay by treating d as the mean size of the clay clus-
ters. It is noted that the value of contact number per unit volume
changes with void ratio. The evolution is accounted during the
deformation process.

3. Experimental verification

3.1. Review of experimental results

The experimental verification is presented herein with refer-
ence to the test results on LCT by Gens (1982). The test results have
been used by researchers to verify conventional elastic–plastic
models with a kinematic hardening of yield surface (e.g. Pestana
et al., 2002; Dafalias et al., 2006). LCT is classified as a low plasticity
silty-clay, has a liquid limit wL = 25% and a plasticity index Ip = 13%.
The tests on LCT were all performed on specimens consolidated
from a slurry with an initial water content w = 31%. The database
includes both drained (compression) and undrained (compression
and extension) triaxial shear tests on isotropically and anisotropi-
cally consolidated specimens with over-consolidation ratios (OCR)
ranging from 1 to 10.

3.2. Calibration of model parameters

The model parameters for LCT were calibrated using an isotrop-
ically consolidated undrained triaxial compression test and an iso-
tropic consolidation test, as shown in Fig. 4. Parameter k = 0.066
was determined from the slope of the isotropic consolidation curve
(see Fig. 4a). The values of e0 can be determined from the isotropic
compression line corresponding to pref = 0.01 Mpa (see Fig. 4a).
Similarly, the value of ec0 can be determined from the critical state
line at pcr0 = 0.01 Mpa. The inter-particle friction angle /l can be
determined from the slope of the critical state line on p0–q plane.
Determined from the undrained triaxial test, /l = 30� (see
Fig. 4c). A typical value of m = 1 is used. Other parameters can be
obtained by curve fitting as shown in Fig. 4a–f as follows:

(1) Inter-particle elastic constants: �kn0, krR and n.
The exponent n = 1 was selected because it provides a linear j-

line (unloading–reloading curve in e–logp0 of consolidation test).
The value of �kn0 was determined from the j-line, as shown in
Fig. 4a. The value of krR was determined from the q–e1(deviatoric
stress versus axial strain) curve of the undrained compression test
at the small strain level (see Fig. 4e).

(2) Inter-particle normal hardening rule: cp.
The value of cp was determined from the compression and re-

bound slopes of the isotropic consolidation line (see Fig. 4a).
(3) Inter-particle shear hardening rule: kpR.
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The value of kpR was determined from the q � e1 curve of the
undrained compression test at the small strain level, as shown
Fig. 4b.

(4) Dilation constants a and b have a significant influence on the
shape of undrained stress path. They were determined from the
undrained compression test (see Fig. 4c–d). Fig. 4c shows the effect
of a (for b = 12), and the effect of b (for a = 1) on the shape of un-
drained stress path. In Fig. 4d, three values of a were selected
(i.e., 0.3, 1, and 2). For each value of a, we tried to best fit the mea-
sured undrained stress path by choosing the most suitable value of
b. By the trial and error process, a = 1 and b = 12 were selected. It is
Worth pointing out that the undrained stress path varies it shape
for different value of a and b (see Fig. 4c–d), which implies that
the proposed dilatancy flow rule can describe different shapes of
yield surface.

The model parameters for LCT are listed in Table 1. Using this
set of parameters, the q–e1 curve was predicted in Fig. 4f, which,
as expected, shows a good fit with the experimental curve.

3.3. Undrained shear behaviour

3.3.1. Different K0 (OCR = 1)
The parameters in Table 1 were calibrated from an undrained

compression test on an isotropically consolidated sample. Here,
we examine whether the same set of parameters can predict
the behaviour of anisotropically consolidated samples under
both compression and extension tests. For this purpose, several
triaxial tests were simulated. The samples were first anisotropi-
cally consolidated with four different consolidation stress ratio
K0 (i.e., the ratio of radial to axial stress r0r=r0a): 0.4, 0.5, 0.67,
and 0.8. Then, for each K0, two subsequent undrained tests were
Table 1
Values of model parameters for LCT and Kaolin clay.

Global parameters

e0 k ec0 a b

LCT 0.64 0.066 0.583 1 12
Kaolin 2.42 0.26 2.21 1 12
simulated; a compression test (with an increase of the axial
stress while keeping the radial stress constant) and an extension
test (with a decrease of the axial stress while keeping the radial
stress constant). For all the eight stress paths mentioned above,
Fig. 5 shows a good agreement between the numerical and the
experimental results using the parameters given in Table 1.
The extension test for K0 = 0.67 was predicted without reverse
plasticity, and plotted the results in Fig. 5a. The prediction show
significant differences from that using reverse plasticity, which
demonstrates the necessity of using reverse plasticity in the pro-
posed model.

A peculiar behaviour to be noted is the softening response in the
undrained compression tests for the two cases with higher K0 con-
solidation (see K0 = 0.4 and 0.5 in Fig. 5). The same form of soften-
ing response has often been observed in other types of clay (e.g.,
Boston blue clay by Ladd and Varallyay (1965); reconstituted Lon-
don clay by Jardine (1985); Northamption clay by Sambhandhar-
aksa (1977), etc.). The measured softening response cannot be
attributed to the destructuration process since the tested clays
are reconstituted in many studies mentioned above. This form of
softening response is difficult to be modelled by the conventional
methods using kinematic hardening of a yield surface (e.g., Wheel-
er et al., 2003; Ling et al., 2002). However, using specific rotational
kinematic hardening rules and yield surface shapes, Pestana et al.
(2002) and Dafalias et al. (2006) have managed to simulate the
softening response after K0 consolidation.

In the conventional macro plasticity models based on a critical
state framework, the stress state of soil under a large shear strain is
located on the critical state line in a stress space (e.g. p–q plane).
This can be proscribed by the yield surface and its kinematic hard-
ening rule. The corresponding void ratio of soil is governed by the
Inter-particle parameters

cp /0l (�) �kn0(Mpa) krR kpR

0.026 30 400 0.5 0.15
0.048 23 150 0.5 0.2
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position of yield surface at this instant, thus is not necessarily
equal to the critical state void ratio.

For the conventional macro plasticity models with an isotropic
hardening rule, the critical state void ratio may be reached for an
isotropically consolidated sample under a large shear strain. But,
for a K0 consolidated sample under a large shear strain, the pre-
dicted void ratio would not be equal to the critical void ratio.

For the conventional macro plasticity models with a kinemati-
cal hardening rule, in the case of a K0 consolidated sample under
a large shear strain, the predicted void ratio may be equal to the
critical state void ratio if the prescribed kinematic rule can move
the yield surface to the right position. Since the kinematic rule is
usually dependent solely on applied stress, the same rule may
not work for clays with different properties (e.g., soft or stiff clays).

Different from the approach via kinematic hardening of a yield
surface, the proposed micromechanical approach employs the
state variable of density ec/e (ec is the void ratio of critical state).
This assures the void ratio as well as the stress approach the critical
state simultaneously, for clays with any properties and under any
stress paths.

At a large shear strain, the stress state tends to be on the critical
state line. Thus, the magnitude of mean effective stress p0 is gov-
erned by the location of the critical state line (on the e–log p0

plane). The void ratio also approaches the critical state, thus the
shear strength q (on the p0–q plane) is determined from the p0 cor-
responding to the critical state ec (see the schematic plot in Fig. 6).
As a consequence, the softening response is reasonable to occur
when the deviatoric stress at the end of K0 consolidation is higher
than the shear strength determined from the critical state line.

3.3.2. Different OCR (K0 = 0.5)
Simulations have also been carried out to evaluate the model’s

performance for predicting the effects of OCR. The samples were
first anisotropically consolidated under K0 = .5 up to
r0a ¼ 350 kPa. Then, the samples were unloaded along a different
stress path to four different over-consolidation ratios, OCR = 1, 2,
4, 7 (see the dotted line in Fig. 7a). For each OCR, two subsequent
undrained tests were simulated; a compression test and an exten-
sion test. Fig. 7 shows the comparisons between the experimental
data and the model predictions for undrained triaxial tests with
four different OCRs. The comparisons in Fig. 7 indicate a good
agreement in the major features of the undrained behaviour for
samples with different OCRs. The predicted shear strengths for
the compression tests (OCR = 4 and 7), however, are lower than
those of the experimental ones (see Fig. 7b).

3.4. Drained shear behaviour

3.4.1. Different K0 (OCR = 1)
Four drained triaxial compression tests are also selected for

simulation. After being consolidated to different values of K0 (0.4,
0.5, 0.67, 1.0), the samples are loaded to failure in a drained condi-
tion as the stress paths shown in Fig. 8a. Fig. 8 shows a good agree-
ment between the numerical and the experimental results of
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drained triaxial tests, using the set of parameters determined from
an undrained test (Table 1). The measured volumetric strain in-
creases with the value of K0, whereas the shear strength decreases
with the value of K0. The model prediction reflects the measured
trends of behaviour.
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3.4.2. Different OCRs (K0 = 0.5)
Fig. 9 shows the comparisons between the experimental data

and the model predictions for drained K0-consolidated specimens
with different OCRs. Similar to the undrained tests, the samples
were first anisotropically consolidated under K0 = .5, then unloaded
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to different values of OCR (1, 1.5, 2, 4, and 7) through a different
stress path as the dotted line shown in Fig. 9a. Subsequently, the
samples are followed by an increase of axial load until the vertical
strain is 15%. The trends of shear strength and volume change for
samples with different values of OCR are also reproduced by the
present model using the same set of parameters in Table 1.

Overall, although there are discrepancies between experiments
and simulations, the model simulations in general have a better fit
to the experimental results than the simulations on the same tests
predicted from models by Pestana et al. (2002) and Dafalias et al.
(2006).

3.5. Test simulations for kaolin

In order to evaluate the model applicability on a true (non-nat-
ural) clay, undrained triaxial tests on saturated kaolin performed
by Wroth and Loudon (1967) were used. The selected tests were
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performed on kaolin specimens with isotropic consolidation under
different OCRs from 1 to 6.5.

The result of isotropic consolidation tests is shown in Fig. 10.
The critical state line in Fig. 10 was obtained from the undrained
compression test on normally consolidated sample. Similar to the
calibration procedure of model parameters for LCT, all parameters
for kaolin can be determined using two standard tests, namely (1)
an undrained compression test on an isotropically consolidated
sample (OCR = 1), and (2) an isotropic consolidation test. The val-
ues of parameters are summarized in Table 1. Fig. 11 shows the
comparison between measured and predicted results. The compar-
isons show that the predicted undrained stress paths represent the
behaviour of clay (see Fig. 1) and that the present model gives
excellent prediction for tests on all lightly and heavily over-consol-
idated samples using parameters determined from the tests on
normally consolidated samples.

4. Micromechanical analysis for induced anisotropy

In this section, we investigate the predicted local stress–strain
behaviour for contact planes. Since the applied loading is axi-sym-
metric about x-axis, the orientation of a given contact plane can be
represented by inclined angle, h, which is measured between the
branch vector and the x-axis of the coordinate system as shown
in Fig. 2. Seven contact planes selected for this investigation have
inclined angles h = 0�, 18�, 28�, 45�, 55�, 72�, and 90� (h = 0� corre-
sponds to a horizontal contact plane), as shown, respectively, in the
x–z plane in Fig. 12a. The local behaviour of contact planes dis-
cussed here includes both undrained (Fig. 12b) and drained condi-
tions (Fig. 12c). Six tests are examined: (1) undrained compression;
K0 = 0.5, OCR = 1, (2) undrained compression; K0 = 0.5, OCR = 7, (3)
undrained extension; K0 = 0.5, OCR = 1, (4) undrained extension;
K0 = 0.5, OCR = 7, (5) drained compression; K0 = 0.5, OCR = 1, and
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tests on isotropically consolidated samples of Hong Kong marine clay with various
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(6) drained compression; K0 = 0.5, OCR = 7. In order to study the
evolution of local stresses and strains, we have, in each test, se-
lected several load steps (see Fig. 12b–c), which are marked by hol-
low circles with load step numbers.

4.1. Undrained condition

4.1.1. Local stress–strain behaviour
We plot the simulated compression and extension test results

in Fig. 13a and b for OCR = 1, and in Figs. 13 and 10c and d for
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2 = 60�) for undrained compression tests and of 28� (close to p/
4 � /l/2 = 30�) for undrained extension tests. These active contact
planes contribute largely to the overall deformation of the speci-
men. Among the cases in Fig. 13, only the contact planes in the
compression test with OCR = 1 exhibit strain-softening phenome-
non, which agrees with the overall behaviour shown in Fig. 7.

4.1.2. . Orientation distributions of local stresses and strains
Fig. 14 shows the distributions of local stresses and strains on

planes of different orientations (in rose diagram). They are plotted
for the ending step of K0 consolidation (see points A and B in
Fig. 12b), and for the selected steps (see hollow circles in
Fig. 12b). The stress-induced anisotropy is discussed by comparing
the distributions between the compression and the extension tests.
The distributions between OCR = 1 and 7 are also compared to
highlight the effect of stress history.

4.1.2.1. Compare compression and extension tests with OCR = 1 (series
1C and 1E in Fig. 14). (1) The distribution of normal stress r at the
end of K0 consolidation (corresponding to step A in Fig. 12b)
has a long axis in the vertical direction (see the bold line in
Fig. 14-1C-a and 1E-a). As oppose to the circular distribution
due to the isotropic consolidation (dash line remarked as ‘‘case
of IC” in Fig. 14-1C-a), the shape of bold line clearly indicates a
material anisotropy since the soil properties are stress-depen-
dent. Subsequent to the K0 consolidation, the distribution
shrinks from step A to load step 3 and remains its long axis
in the vertical direction during the undrained compression
(Fig. 14-1C-a), whereas the distribution changes its long axis
from the vertical direction to the horizontal direction during
the undrained extension (Fig. 14-1E-a). Thus, the major axis of
material anisotropy does not coincide with the major axis of
applied stress – a non-coaxial condition has occurred in the un-
drained extension test.

(2) The distribution of shear stress s at the end of K0 consolida-
tion is also plotted in bold line as shown Fig. 14-1C-b and 1E-b.
Subsequent to the K0 consolidation, the distribution expands from
step A to load step 1 and then shrinks from load step 1 to load step
3 during the undrained compression, whereas the distribution
shrinks from step A to load step 1 and continues to shrink until
the distribution becomes a point at the origin, followed by expand-
ing into the opposite region from load step 1 to load step 3 (see
dash line in Fig. 14-1E-b, here we plot dash line only for the region
0� 6 h 6 90� to emphasize the evolution) during the undrained
extension. This signifies that the shear stresses on contact planes
have reversed their directions.

(3) The distribution of stress ratio s/r at the end of K0 consolida-
tion is shown as the bold line in Fig. 14-1C-c and 1E-c. Subsequent
to the K0 consolidation, the distribution expands from step A to
step 3 and remains the same shape during the undrained compres-
sion, whereas during undrained extension it shrinks from step A to
step 1 and then expands into the opposite region from step 1 to
step 3 (see dash line in Fig. 14-1E-c, here we plot dash line only
for the region 0� 6 h 6 90� to emphasize the evolution). In the un-
drained extension, both the shape and the major axis of the distri-
bution have been altered.

(4) The distribution of normal strain e at the end of K0 consolida-
tion is plotted as the bold line in Fig. 14-1C-d and 1E-d. Subsequent
to the K0 consolidation, strains during the undrained compression
decrease slightly for the contact planes with h < 45�, increase for
the contact planes with h between 45� and 72� due to the dilation
(shear induced normal strain) and decrease for the contact planes
with h > 72� due to the reduction of normal stress. Whereas during
the undrained extension strains decrease for the contact planes
with h < 45� due to a reduction of normal stress, and have very
small changes for the contact planes with h > 45�.
(5) The distribution of shear strain c in Fig. 14-1C-e shows that
very large strains have occurred at step 3 within a narrowly ori-
ented band near the orientation of 55� for undrained compression
(Fig. 14-1E-e), while very large strains have occurred near the ori-
entation of 28� for undrained extension, which agrees with the lo-
cated active planes in Fig. 13b.

4.1.2.2. Compare compression and extension tests with OCR = 7 (series
7C and 7E in Fig. 14). (1) The distribution of normal stress r at the
end of K0 consolidation is marked as step A (OCR = 1). The
sample is then unloaded from step A to step B (OCR = 7, see
the dotted line in Fig. 12b). This unloading process results in a
size reduction of the distribution and a change of the shape
from a long axis in the vertical direction to the horizontal direc-
tion (see Fig. 14-7C-a and 7E-a). Subsequently, during the un-
drained compression, the distribution expands from step B to
step 2 with a change of the long axis from the horizontal direc-
tion back to the vertical direction (Fig. 14-7C-a). Whereas, dur-
ing the undrained extension, the distribution expands from
step B to step 2 keeping the long axis in the horizontal direction
(Fig. 14-7E-a).

(2) After the end of K0 consolidation, the distribution of shear
stress s is reduced to a very small size during the unloading pro-
cess from step A to step B (see Fig. 14-7C-b and 7E-b). Subse-
quently, during both the undrained compression and the
undrained extension, the distribution expands from step B to step
2, which agrees with the local stress path in Fig. 12c where the
magnitude of shear stress increases for both compression and
extension conditions.

(3) After the end of K0 consolidation, the distribution of stress
ratio s/r is reduced to a very small size during the unload pro-
cess from step A to step B (see Fig. 14-7C-c and 7E-c). Subse-
quently, the distribution expands from step B to step 2 with
almost the same shape during the undrained compression,
whereas during the undrained extension the distribution ex-
pands from step B to step 2 with the shape of distribution
altered.

(4) After K0 consolidation, the distribution of normal strain e is
moderately reduced in size during the unloading process from step
A to step B (see Fig. 14-7C-d and 7E-d). Subsequently, during the
undrained compression, strains increase for the contact planes
with h < 45� and change slightly for those with other h angles.
Whereas, during the undrained extension, strains decrease for
the contact planes with h < 45� and increase for the contact planes
with h > 45�.

(5) Similar to the case OCR = 1, the distribution of shear strain c
in Fig. 14-7C-e shows large strains developed from step 1 to step 2
within a narrowly oriented band near h = 55� for the undrained
compression, while the distribution in Fig. 14-7E-e shows large
strains developed within a narrowly oriented band near h = 28�
for the undrained extension.

4.2. Drained condition

4.2.1. Local stress–strain behaviour
We plot the predicted local stress–strain behaviour for the two

drained compression tests shown in Fig. 12c (see Fig. 9 for the mea-
sured test results with OCR = 1 and 7). The local stress paths in
Fig. 15a (OCR = 1) and Fig. 15c (OCR = 7) show different slopes from
one contact plane to another. Under an increase of the vertical
stress, the planes oriented near horizontal direction (i.e., small val-
ues of h) are subjected mainly to a normal stress component Dr.
The shear component becomes more significant when the planes
are inclined. The local shear stress–strain curves (Fig. 15b and d)
show that every plane is mobilized to a different degree. For both
cases of OCR = 1 and 7, the contact plane with largest movement



Fig. 14. Schematic plot for induced anisotropy.
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has an orientation of 55�, similar to the behaviour observed in the
undrained compression case. Other planes are inactive with small
movement. It clearly indicates that the local strains do not uni-
formly conform to the overall strain of the specimen.
4.2.2. . Orientation distributions of local stresses and strains
Fig. 16 shows the distributions of local stresses and strains for

contact planes of different orientations (in rose diagram). They
are plotted for the end step of K0 consolidation and for the selected
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Fig. 15. Local behaviour on seven different inter-particle planes for drained triaxial test.
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load steps (see Fig. 12c, A for OCR = 1 and B for OCR = 7). The com-
parisons of the distributions (for OCR = 1 and 7) are discussed to
highlight the effect of stress history.

4.2.2.1. Compare drained tests with OCR = 1 and OCR = 7 (series 1D
and 7D in Fig. 16). (1) The distribution of normal stress r at the
end of K0 consolidation has a long axis in the vertical direction
(see the bold line in Fig. 16-1D-a). During the subsequent
drained compression, the distribution expands from step A to
step 2 keeping the long axis in the vertical direction. The
change of normal stresses is negligible for the contact planes
with h = 90�. Whilst for the case of OCR = 7 (Fig. 16-7D-a), the
unloading process from step A to step B (OCR = 7) results in a
reduction of the distribution size and a change of the distribu-
tion shape with a long axis from the vertical direction to the
horizontal direction (see Fig. 16-7D-a). During the subsequent
drained compression, the distribution expands from step B to
step 2 with a change in the long axis from the horizontal direc-
tion back to the vertical direction.

(2) After K0 consolidation, the distribution of shear stress s (see
the bold line in Fig. 16-1D-b), expands from step A to step 2 during
the drained compression for OCR = 1. Whilst for the case of
OCR = 7, the unloading process from step A to step B (OCR = 7) re-
sults in a very small size of the distribution (see Fig. 16-7D-b). Dur-
ing the subsequent drained compression, the distribution expands
from step B to step 2.

(3) The distributions of stress ratio s/r for both cases OCR = 1
and 7 are similar to that of shear stress s.

(4) After K0 consolidation, the distribution of normal strain e (see
the bold line in Fig. 16-1D-d at step A for OCR = 1) indicates a very
small change in strains for contact planes with h = 90�, whereas the
distribution shows an increase of strains for all other contact orien-
tations due to not only the compression of normal stress but also
the shear induced contraction. For the case of OCR = 7, the unload-
ing process from step A to step B results in a size reduction of the
distribution (see Fig. 16-7D-d). During the subsequent drained
compression, the distribution expands from step B to step 2. The
changes of the distribution are different from that of OCR = 1 be-
cause the normal strains in this case deform elastically. It is noted
that the stresses are within the elastic limits shown by the bold
line.

(5) The distribution of shear strain c (in Fig. 16-1D-e and 7D-e)
shows very large strains developed from step 1 to step 2 within a
narrowly oriented band near the orientation of 55� for both cases
of OCR = 1 and 7.

5. Conclusions and discussions

A new micromechanical stress–strain model has been devel-
oped based on the approach proposed by Chang and Hicher
(2005). In addition to the Mohr-Coulomb’s plastic shear sliding
for sand model, a plastic normal deformation has been considered
for two clusters in compression. A dilatancy type flow rule
accounting for soil density is proposed to reproduce the clay
behaviour. The model takes into account the conditions of shear
stress reversal on a contact plane. This feature is needed in order
for the model to simulate anisotropically consolidated soil samples
under compression and extension tests.

A calibration procedure for model parameters has been pre-
sented which requires only one undrained triaxial test and one iso-



Fig. 16. Schematic plot for induced anisotropy.
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tropic consolidation test. The applicability of the model has been
examined by comparing the predicted and the measured test re-
sults obtained from LCT, including: (a) undrained triaxial compres-
sion and extension tests (with OCR = 1 but different K0); (b)
undrained triaxial compression and extension tests (with K0 = 0.5
but different OCR); (c) drained triaxial compression tests (with
OCR = 1 but different K0); and (d) drained triaxial compression tests
(with K0 = 0.5 but different OCR). The predictions of all these tests
were performed using one set of parameters. The comparisons be-
tween predicted and measured results show reasonably good
agreement. The model was further validated by kaolin clay. It is
worth pointing out that the present model can predict the un-
drained softening response of a soil specimen in a compression test
following anisotropic consolidation. In the present model, the
stresses on each plane are considered as internal state variables,
and their evolution can serve to model the behaviour change on
each individual plane, thus the results exhibit naturally the
stress-induced anisotropy.

The predicted behaviour of contact planes has been examined
for soil samples under the triaxial compression and extension tests
in both drained and undrained conditions. It has been shown from
the rose diagrams that the shape of contact stress distribution
changes throughout the triaxial test, which clearly indicates the
development of anisotropy induced by the externally applied load,
since the properties on each contact plane are stress-dependent.
The local stress–strain response on contact planes has shown that
every contact plane is mobilized to a different degree. A few active
contact planes contribute largely to the deformation of the assem-
bly, while most contact planes are inactive and have small move-
ment. Therefore, the local strains are highly non-uniform.

Model predictions for the LCT and kaolin clay have demon-
strated that the present micromechanical approach is capable
of modelling the induced anisotropy and the salient features of
the complex behaviour in clay. As for future works, the induced
anisotropy will be examined for specimens with non-axisymmet-
ric stress states and with rotation of principal axes, such as the
experiments in true triaxial tests and hollow cylinder torsional
tests.

Appendix. Derivation of �kep
ij

Follow the consistency equation, dF = 0, which yield

dF ¼ @F
@si

dsi þ
@F
@j

@j
@cp

i

dcp
i ¼ 0: ðA1Þ

For the specific yield functions given in Eqs. (8) and (18), Eq. (A1)
can be expressed as

dF1 ¼
@F1

@si
dsi �

@j1

@cp

@cp

@cp
i

dcp
i ¼ 0;

dF2 ¼
@F2

@si
dsi �

@j2

@ep

@ep

@cp
i

dcp
i ¼ 0:

ðA2Þ

The derivatives in Eq. (A2) can be obtained from the definition of F1,
F2, j1, j2, cp and ep (plastic normal strain produced by the 2nd yield
surface) previously defined. The incremental plastic strain has two
components generated from the 1st and the 2nd yield surfaces,
respectively, as follows:

dcp
j ¼ dcp;1

j þ dcp;2
j : ðA3Þ

For the first component, we define the plastic flow vector n1
j such

that

dcp;1
j ¼ k1n

1
j : ðA4Þ
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For this yield surface, the plastic shear strain is obtained in accor-
dance with the associated flow rule (i.e., dcp;1

j ¼ k1ð@F1=@sjÞ), but
the plastic normal strain is obtained from the dilatancy equation gi-
ven in Eq. (6). In a vector form

dcp;1
n

dcp;1
s

dcp;1
t

8><
>:

9>=
>; ¼ k1

b s=rn
tan /l

� 1
� �

s=rn
tan /l

� �a
1� e

ec

� �
rs=s
rt=s

8>><
>>:

9>>=
>>;; ðA5Þ

where k1 = dcp, which is the scalar plastic strain defined in Eq. (7).
For the second component, we define the plastic flow vector n2

j

such that

dcp;2
j ¼ k2n

2
j : ðA6Þ

The plastic strain is obtained in accordance with the associated flow
rule (i.e., dcp;2

j ¼ k2ð@F2=@sjÞ). In a vector form

dcp;2
n

dcp;2
s

dcp;2
t

8><
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9>=
>; ¼ k2

1
0
0

8><
>:

9>=
>;; ðA7Þ

where k2 ¼ dcp;2
n ¼ dep, which is the compressive plastic strain de-

fined in Eq. (18).
Then, Eq. (A3) can be expressed as follows:

dcp
j ¼ k1n

1
j þ k2n

2
j : ðA8Þ

The strain is assumed to consist of elastic component and plastic
component. The stress can be calculated from the elastic compo-
nent by

dsi ¼ �ke
ijðdcj � dcp

j Þ: ðA9Þ

Substitute Eq. (A8) to Eq. (A9)

dsi ¼ �ke
ijðdcj � k1n

1
j � k2n

2
j Þ: ðA10Þ

Then substitute Eqs. (A10) and (A8) to Eq. (A2)
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given
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Eq. (A11) can be reduced to a matrix

form as
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Substituting Eq. (A12) into Eq. (A10), Eq. (A10) can be expressed in a
matrix form as follows:
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The incremental stress–strain relationship for two clusters under
sliding and compression can be expressed as

fdsig ¼ ½�kep
ij �fdcjg; ðA14Þ
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