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when the magnetic field intensity vector and magnetization vector are parallel. As a special
case, the following two problems are considered: (1) the magnetoelastic stability of a fer-
romagnetic plate-strip in a homogeneous transverse magnetic field; (2) the stress-strain
state of a ferromagnetic plane with a moving crack in a transverse magnetic field. It is
Magnetoelasticity shown that the modeling of magnetoelastic equations with a nonlinear law of magnetiza-
Ferromagnetic tion provides qualitative and quantitative predictions on physical quantities including crit-
Crack ical loads and stresses. In particular, it is shown that the critical magnetic field in plate
Stability stability problems found with the nonlinear law of magnetization is in better agreement
with the experimental finding than the one found with a linear law. Furthermore, it is also
shown that the stress concentration factor around a crack predicted with the nonlinear law
of magnetization is more accurate than the one obtained with a linear counterpart. Numer-
ical results are presented for above mentioned two problems and for various forms of non-
linear laws of magnetization.
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1. Introduction

Recent years have witnessed an increased interest in the investigation of problems of magnetoelasticity for ferromagnetic
materials. The general theory of magnetoelasticity for ferromagnetic body has been developed by many authors (Akhiezer
et al,, 1968; Brown, 1966; Dorfmann and Ogden, 2004; Eringen and Maugin, 1990; Landau and Lifshitz, 1995; Maugin,
1988; Moon, 1984; Pao and Yeh, 1973; Steigmann, 2004; Tiersten, 1964). These theories can be applied to investigate the
magnon-phonon interaction (magnetoacoustic resonance) effects. This coupling interaction is pronounced when the wave
frequency is near or above the magnetic resonance frequency, which is usually higher than 10° Hz (for example, magnetoa-
coustic resonance in a material yttrium-iron-garnet is observed when the frequency of spin waves is around 10'° Hz). A the-
ory presented by Pao and Yeh (1973) was applied to investigate the magnetoelastic stability of thin structural elements
(Moon, 1984; Maugin, 1988) and investigation of stresses around the cracks (Bagdasarian and Hasanyan, 2000; Hasanyan
and Philiposyan, 2001; Shindo, 1977; Shindo et al., 2000). A material is called soft ferromagnetic when the magnetic field
intensity vector H and magnetization vector M are parallel in the rigid body state, i.e. M = y(|H|)H (y is called the magnetic
susceptibility of the material). A soft magnetic material is characterized by small hysteresis losses (narrow hysterisis loop for
H-M curves) and low remnant magnetization. Nickel-iron alloys, which are widely used as core materials for motors, gen-
erators, inductors and transformers, are a typical example.
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In a large number of works related to the theory of magnetoelasticity of ferromagnetic materials, it has been assumed that
the magnetization of a material depends linearly (y = const.) upon the applied magnetic field. This assumption is valid for a
ferromagnetic in a domain of a very weak magnetic field, or for most nonferromagnetics in strong magnetic fields. With the
application of ferromagnetic structures in a strong magnetic fields (higher than 1 T), such as a structure of the first wall in a
fusion reactor, the magnetic field generated in the structures may be close to the region of saturation. For example, from the
requirements for the international thermonuclear experimental reactor (ITER), the toroidal magnetic field intensity is ~5
Tesla or more. In such cases, it is imperative to consider nonlinear dependence of magnetization on the magnetic field
(i.e. y#const.). The influence of a nonlinear law of magnetization on stability and vibration, wave propagation, stress—strain
state and other processes is critical. The results related to the magnetoelastic stability and vibration of thin-walled bodies,
the stress-strain state (SSS) and also the wave propagation of ferromagnetic materials with a linear law of magnetization are
of special interest by many authors (Bagdasaryan and Hasanyan, 1995; Hasanyan and Philiposyan, 2001; Lin and Yeh, 2002;
Maugin, 1988; Moon and Pao, 1969; Nishida et al., 1984; Sabir and Maugin, 1996; Shindo, 1977; Shindo et al., 2000; Zhao
and Lee, 2004). Moon and Pao (1969) were one of the first to investigate theoretically and experimentally the problem of
buckling of a ferromagnetic plate in a transversal magnetic field. They found that the theoretical value of the critical mag-
netic field when the plate losses its stability is almost 1.5 times high as the one which is given by experiments. Many
researchers (Hasanyan and Philiposyan, 2001; Van de Ven, 1983) try to explain the source of the differences between the
theoretical and experimental results. Note that all these investigations have been carried out using a linear law of
magnetization.

In plate stability problem, we show that the theoretical value of critical magnetic field, obtained using a nonlinear law of
magnetization is in better agreement with the experimental predictions. Furthermore, we show also that the stress concen-
tration around the crack in a ferromagnetic body strongly depends on the nonlinear law of magnetization.

2. Magnetoelastic equations and boundary conditions

It is assumed that the elastic dielectric medium with an ordered magnetic structure is in an external stationary magnetic
field with the magnetic intensity H° and the magnetic induction vector B’ = 1,H’, where g, = 47 x 1077 N/A? is the univer-
sal magnetic constant. The medium surrounding the body is assumed to be vacuum. Under the influence of the magnetic
field H° the total force f and body couple ¢ (per unit volume) acting on the body are as follows (Brown, 1966; Tiersten, 1964):

f=pu,M-V)H, c=puMxH, (2.1)

where H and M are magnetic field intensity and magnetization (the magnetic moment of a unit volume) inside the body, V
the gradient operator. The magnetic field intensity H and the magnetization M inside the magnetized body are related to the
external magnetic field H® through a set of magnetoelastic field equations, constitutive equations, and boundary conditions.
The vectors H and M are connected with the magnetic induction vector B by the relation B = 1, (H + M) and satisfy (in quasi-
stationary approximation) the Maxwell equations.

Let a particle of magnetizable and deformable solid originally at (X;X,X3) be moved, after deformation to (x1,x»,x3) at
time t. Both systems (X;X>X3) and (x1,X2,X3) are Cartesian components referring to a common frame. The function
X; = x;(X1,X2,Xs,t) or their inverses describe the deformation for the body as a whole.

The Maxwell’s equations in system of coordinates (x;,x,,x3) are

Bi _ OH; _
OXi n OXy B

The general field equations of magnetoelasticity are derived by substituting the body force f and body couple ¢, as defined in
(2.1), and the rate of energy supply

_ . OH; d (M
&= [oMiv; o T HoPHi g <?>

into the equations of balance of linear momentum, angular momentum, and energy, respectively. The results, expressed in
terms of the current position vector x; are (see Pao and Yeh, 1973; Tiersten, 1964)

0, ey 0. (2.2)

dp a;

PG =0, 23)

atij _8Hj - dV,'

em,-jt,»j +Cn = 0, (25)
du av; d M;

PGt =i+ topt e (1) 26)

where d/dt = 9/0t + vk(9/0x,) and v, = dx,/dt; t; is the magnetoelastic stresses; ey; is the permutation symbol with ep; = 1
or —1 depending on whether the indices are in a cyclic or an anticyclic order, respectively and e,; = 0 otherwise; p is the
mass density of the medium in the deformed state; U is the internal energy per unit mass.
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In addition to Egs. (2.2)-(2.6), the following boundary conditions on the deformed surface should be fulfilled:
mi[Bi =0], eum[H] =0, nt;+T}]=0, (2.7)

where n; is a unit normal to the deformed surface of discontinuity; [A] = A* — A~ is a jump of function A from the negative
side (—) to the positive side (+) of the deformed surface of discontinuity; Maxwell’s tensor Tg-” = BiH; — 0.55;;H¢H, where d
is the Kronecker symbol with §,;, = 1 when m = k and 6, = O otherwise;

It is obvious from Eq. (2.5) that the tensor t;,, is nonsymmetrical. It becomes symmetrical only if the magnetic moments
¢, = 0. Substituting the values of ¢, from Eq. (2.1) into Eq. (2.4) yield

eimk(tim + ,quiHm) = 07

hence the symmetry of the tensor t;, + t,M;Hy follows.
From (2.6), the following constitutive equations for a magnetoelastic media is obtained

_ ou d 8)(1
fi=p d(0x;/0X,.) dt (ax,)’ @8)
ou
HoHi = o (2.9)

where y; = M;/p.

Since U must be invariant in rigid body rotation, the theorem on invariant functions of several vectors (see Akhie-
zer et al., 1968; Tiersten, 1964) limits U to be a function of the lengths of the vectors, the scalar product of a pair of
vectors and the determinants of their components taken three at a time. Thus, U must be reduce at most to a func-
tion of

_ 1 OXy OXy R L
E'J*i(B_X,a_X,_OU) and u; = M;/p. (2.10)

The final form of the energy density function should be
U =U(Ey, ). (2.11)
For detailed derivations of Eq. (2.11), see Akhiezer et al., 1968 and Tiersten, 1964.
Using Egs. (2.9)-(2.11) and Eq. (2.8) can be written in the following compact form:
£ o 0% OU %
= P3Xy 9Eq X,

Next, the expression for the specific intrinsic energy of the deformable elastic nonconductive magnetosoft ferromagnetic
body is chosen in the following form:

U(Ey, i) = U (Ey) + U™ (), (2.13)

where U% and U™ are elastic and magnetic energy, respectively.
In the case of a soft ferromagnetic material the following statement can be proved:
The vectors H and u are parallel in the basic state if and only if the magnetic energy U™ satisfies the condition

U™ (. g, 15) = UL, (o] = 18 + 1 + 42 (2.14)

i. e. the function U™ depends only on the module of the vector p.
The sufficient condition can be deduced from Eqgs. (2.10) and (2.14) as follows:

_oum _ou" 1
o~ ol 1l

The necessary condition should be proved. For simplicity, it is assumed that the function does not depend on the component
Us. Then from (2.14) and the condition H 11 g, it follows that H = " (¢, ;) - u, where y* (14, it,) is a continuous differentia-
ble scalar function. Taking into account (2.14) and (2.10)

ou™

+,U0MjHi. (212)

W =H11 u (His parallel to u). (2.15)

i

H, :87/11: V(s 1) - (2.16)
ou™ .
H, :a—uz:l// (s 1) - oy, (2.17)
It follows from Egs. (2.16) and (2.17) that
o~ o* .
= = = R
gy = Moy = W =¥
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i.e., the function ¢* depends only on the module of the vector u. The function U™ also depends only on the module of the
vector p. It is proved next. In polar coordinates (u; = || sin6, p, = |u|cos0), Eqs. (2.16) and (2.17) can be expressed in
the following way:

ou™ ou™ .
W - Ctgaw =y () - |l
ou™ ou™

W + thW =y (|ul) - [l

From these two equations the relationship (tg6 + ctg6)(dU™/90) = 0 can be obtained.
Since (tg0 + ctg)+0, it follows that oU™ /060 = 0 (i.e. U™ does not depend on the direction of magnetization vector p). In
other words, U™ depends only on the modulus of magnetization vector u:

U™y, ) = U™ (Jal).- (2.18)

In general case (when ;#0), the proof can be done in spherical system of coordinates.
It follows from the above statement that

1 1
H= (a1 or H=p,(M)-M.o (M) = o5 M]) . (2.19)
Eq. (2.19) can be expressed also in a following form:
M = 7(H)H. (2.20)

The function y(/H|) is the magnetic susceptibility. From the proof it is clear that the susceptibility y for magnetosoft mate-
rials will depend only on the modulus of a magnetic field. Fig. 1 shows the typical dependence of y(|H|) on the modulus of a
magnetic field (curve 1 is for superpermalloy and curve 2 for soft iron).

Experimental investigations shown that the magnetic susceptibility of magnetosoft ferromagnetic materials can be
approximated by the following formulae (Bozort, 1951):

(1) Dreifous form:
x(H) = (B/uoH)arctg(oH), (2.21)
where
B =2Bs/m, 00 = (U — 1)t/ B,

and B; denotes the induction saturation, yu,, is the initial relative magnetic permeability of the material. Eq. (2.21) is a good
approximation to the curves 1-2 in Fig. 1 for large magnetic fields.
(2) Instead of Eq. (2.21) sometimes the Rayleigh dependence is used

X(H) = p. + b;H, (2.22)
which is the linear approximation of the Dreifous form and is applicable if H < H.. Here, H, is the coercitive force and p, is
the magnetic susceptibility of the material. Eq. (2.22) is a good approximation of the curves 1-2 in Fig. 1 for moderate mag-

netic fields.
(3) Linear dependence. If the coefficient of nonlinearity b, = 0, then from (2.22) one can get

y(H) =const. = i, — 1. (2.23)

2.510*

H(Oersted)

0.4

Fig. 1. Dependence of magnetic susceptibility on magnetic field.
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Eq. (2.23) is a good approximation to the curves 1-2 in Fig. 1 for weak magnetic fields.

This type of relation is used in the constitutive equations for soft ferromagnetic materials in weak magnetic fields or for
nonferomagnetic materials even in strong magnetic fields.

(4) The model of magneto rigid (magnetically saturated) materials is

x(H) = M/H, (2.24)
where M; = B/, is the saturation magnetization. Eq. (2.24) is a good approximation to the curves 1-2 in Fig. 1 for large

magnetic fields.

The numerical values of coefficients o, 8, Ms, ko and b, for different ferromagnetic materials can be found in Bozort (1951).
Thus the specific intrinsic energy for soft ferromagnetic elastic materials we represented in the following form:

U(eg, Mi) = U”'(eg) + U™ (). (2.25)

From (2.8) and (2.9), the constitutive equations of a magnetoelastic media (stress-strain-magnetic field relations) are ob-
tained if specific intrinsic energy for soft ferromagnetic elastic materials is provided.

3. The linearized equations and boundary conditions

In general the equations and boundary conditions of magnetoelasticity are nonlinear. These equations and boundary

conditions can be linearized by replacing transformation x; = x;(X;,X>,X3,t) by
xi = Xjoy + ui(X1, X2, X3, t)

where u;(X;,X2, X3, t) is the displacement vector and d; is the Kronecker delta which shifts a vector at x; parallels from x; to
X;. Let us decompose magnetic field characteristics in the following form:

B:Bo-ﬁ-b7 H:Ho-i-h7 M=M;, +m. (31)

Here, By, My and Hj are the magnetic induction vector, the magnetization and the magnetic field intensity, respectively, in a
rigid state, b, m and h are the perturbations to the mentioned quantities due to the deformation of the body. The values of
By, My and Hy are determined from the solution of the following magnetostatic problem:

(a) Equations in the domain occupied by the body (internal domain):
rotHy =0, divBy =0, (3.2)
where By = ,LLO(H() +M0) = ,Llo[l + X(Ho)] -Hp, Hy = |H0|
(b) Equations in the external domain (domain outside of the body):
rotHY =0, divB{ =0, (3.3)
where BY = pioHY, MY = 0.
(c) Conditions on the surface of the nondeformed body:
ng - [Bo) =0, ng x [He] =0, (34)
(d) Conditions at infinity:

BY =B’ whenr= (¥ +x+x)"* - . (3.5)
Assuming that |0u;/0X;| < 1, |bi|/|Bo| < 1, |m;|/|[Mo| < 1 |hi|/|Ho| < 1 the characteristics of the stress-strain state of a body
(the displacement vector components i, and stress tensor components t;; ) and the vectors b, m and h are being determined
from (2.2)-(2.6). Assuming that the deformations and the absolute values of b, m and h are small, one can linearize these

equations and boundary conditions similar to Pao and Yeh (1973). As a result, the following linear equations and boundary
conditions for the magnetoelastic body can be obtained from (2.2)-(2.4)

tiij + to(MojHoij + Mojhij + miHoji) — ptoMojHoi e — Eiathej = 90%7 (3.6)

P = po(1 —uk), ejlhej — HojmUmi] =0, bij — Bojxtj =0 (i,j,k=1,2,3). (3.7)
For isotropic materials the following applies:

tij = 0y + UoHoiMoj + 4o (Hoifmo; + Hojimoi),

Oy = Al + pU(Uij + ), By = poHoiMo; (3.8)

where / and pu are the Lame coefficients (i = E/2(1 + v), E and v are Young’s modulus and Poisson’s ratio, respectively).
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The boundary conditions (2.7) can be linearized and expressed as follows (for the details see Maugin, 1988; Pao and Yeh,
1973):
Noi[tij + t?j/’} =0, noibi] — UminomBoi] =0, ey {nojlhk] — NomUmj[Hok]} =0, (3.9)
where
t4 = BoiHoj + Boih; + Bojhi — 0.5 1140 (Hgy, -+ 2Hokhy.).
After linearization of (2.20)
m=a-h, b=y,(I+a)-h, (3.10)

where ] the identity matrix and the elements of the matrix a are determined as follows:

_ HoHy d;
@y = 705+ 2K Ho = \JH, + HEy + HE (3.11)
0 0

The final equations of motion (3.6) for an isotropic magnetoelastic media with a nonlinear law of magnetization (2.20) can be
express as

L Hep Po O
A gy = e

div[(I + @)h] - Bojuig; = O, (3.12a- -¢)
eijk [hkj — Hoj,mum,k] =0.

The first component of a body force (1,/u)fi (i=1,2,3) is expresses as

1_
%fl = bi1hy1 + bi2han + bishs s + bighiz + bishi 3 + bishas + % [2MojHo1; + HojMo1 ] — %MOjHOI,kuk‘j - ﬁtlj‘kuk.ﬁ
(3.13)
where

bi1 = yHoi + 2a11Ho1,  bia = aHot + a12Hea, b1z = yHor + ai3Hos,  bis = xHoz + 3a12Hor + a11Hog,
bis = yHos + 3a13Ho1 + a11Hos, bis = 2a23Ho1 + a13Ho + a12Hos

Expressions for (u,/u)f> and (u,/w)fs can be derived from (u,/u)fy by cyclic permutation 1 — 2 — 3 — 1.
For the domain outside the body (considered to be vacuum), the magnetic field equations should satisfy the following
equations:

o _

ah;e)*O 3.14
o ' G149

ijk O—Xk =
When y = const., Egs. (3.12a-c) and boundary conditions (3.9) are analogous to the equations and boundary conditions
obtained in Pao and Yeh (1973).

Another model for a soft ferromagnetic material with a nonlinear law of magnetization is developed by Zheng and Wang
(2001).

To illustrate the preceding theory, in the next sections the following two problems will be considered:

07

o the magnetoelastic stability of a ferromagnetic plate-strip in homogeneous transverse magnetic field;
e stress-strain state of ferromagnetic plane with a moving crack in a transverse magnetic field.

4. Stability of a ferromagnetic plate-strip in a homogeneous transverse magnetic field

Assume that an isotropic homogeneous plate-strip of constant thickness 2h in the direction 0x, and infinite length in the
direction Ox; is located in an external uniform magnetic field By = (0, By, 0), By = const. (see Fig. 2). Equilibrium equations
are solved to determine whether a nontrivial equilibrium configuration exists for a deformed plate. There is a critical value
for the externally applied magnetic induction By corresponding to this equilibrium state when the plate buckles. A plane-
strain problem will be considered. In this case, the nonzero components of the displacement and magnetic field components
are

Uy = Uy(X1,X2), Uy =Uy(X1,X2), U3 =0,

W'Y = (h{¥) (x1,%2), h5¥ (x1,%2),0),h" = grad . (4.1)
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X,

L1 1] e

[ | X

Fig. 2. Soft ferromagnetic plate-layers in a transversal magnetic field.

The solution of the system of Eqgs. (3.12)-(3.14) can be represented in the following form:

Ui (X1,X2) = U(X2) cos(kx1), Uz (X1,X2) = O(x2) sin(kx;)

@ (x1,x,) = Acosh(kyx,) sin(kx;) where 92 = (1 +ay;)/(1 + az), 4.2)
when |x;| < h and

D (x1,X5) = ay Sign(x,) exp[—kx, sign(x,)] sin(kx; )
when |x;| > h. In Egs. (4.1) and (4.2) u(x;) and v(x,) are

u(x) = by sinh(kx,) + by[(3 — 4v) sinh(kx,) + kx, cosh(kx,)] + QJA sinh(kyxs),
v(X2) = by cosh(kx,) + bykx, sinh(kx,) + Q9A cosh(kyxs),

where

Q) = p{al(1=2v)/(2 = 2v) = + iay? /(2 = 2v)}/(1 = y*)%,
Q) =7 {Aa[1 = (1=2v)7%/(2 = 2v)] = i /(2 = 2V)}/(1 = *)?,
21 = 2o (Ho)Ho/ 1,
42 = Moy (Ho)Ho[2(x + Hoy')(1 + ) — Hoyx'l/ Iy (1 + 1)1,
ayp =), dax =X+H0X’, )(/:d)(/dHo
The parameter k = 7/l is the wave number and [ is the wavelength in the direction 0x;.
Substituting solution (4.2) into the boundary conditions (3.9) yield a system of linear homogeneous algebraic equations
for the unknown coefficients b,, b,, a; and A. The critical magnetic field when the plate-strip losses its stability is deter-

mined from the condition of the determinant of the algebraic equations being zero. Under the assumption ykh < 1, the fol-
lowing equation is derived for the critical magnetic field:

4dQ3(1 —Wkh[2(1 = v)y?/(1 =2v) = 1] - 4dQ?(l —v)kh/(1 =2v) — 4d,L(1 — v)kh4d,e; (1 — v)y*kh
+8(kh)*[y*1 + a1 )kh + 1] =0, (4.3)
where
L= poHoar1/pt, 1 = poHotaa /11, di = —j(Ho)/(%(Ho) +1).
From (4.3), the critical magnetic field H,. for instability of a plate-strip can be determined. The critical value of the external
magnetic field BY can be determined from
By /tto = 1+ % (Ho.) Ho.. (4.4)

Let us consider some particular cases:

(1) Linear dependence: y(Ho) = const. = . — 1 .From (4.3) and (4.4), one can obtain

B2 (1, — 1)/ (pop?) = (kh)* (pkh + 1) /[3(1 = v) (1, + 1)]. (4.5)
Assuming khp, > 1, from (4.5)

Epy(kh)? E(kh)> 1
31 —v)u Vi

Bge*,Linear) _ ,uo.urHlé* _ Hé* — (46)
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Expression (4.6) coincides with analogous results obtained by authors: Hasanyan and Philiposyan (2001), Maugin
(1988), Moon and Pao (1969) and Van de Ven (1983).
Rayleigh form: y(Ho) = u. + bHo.From Eq. (4.3), it is easy to get

—
N
—

—4(ugH3, JE)y*kh(1 — v?)(u, + beHo.) (. + 2b:Ho.) + (8/3)(kh)’ [khy*(1 + p, + 2b,Ho.) + 1] = 0. (4.7
Under the assumption kh(u, + b:Ho.) > 1 one obtains
(HoHz./E) (1, + brHo,)* = (kh)* /(3 —3v?) 48)

or the following expression for critical magnetic field Ho.,:

_ K L
Ho. = 5 { 14+4/1 +4er0*//4].

The critical value of the external magnetic field Bf)? can be expressed as

B — o[, + byHo,JHo. = % [—1 +y/1+ 4eri/ur} Ho[tt; + brHo.]. (4.9)

From (4.9), it follows that Ho, — Hj,, when b, — 0, i.e. the critical magnetic field to be found from a nonlinear law of
magnetization coincides with one found on the base of linear law of magnetization. A critical magnetic field deter-
mined theoretically for a cantilever beam (with a linear law of magnetization) is almost 1.5 times larger than a critical
magnetic field found from experiments (Moon and Pao, 1969). By comparing (4.6) and (4.9), it appears that Hy, < H5,
when b, > 0. It means that the critical magnetic field found from nonlinear law of magnetization is always smaller
than that found from linear law of magnetization. In other words the critical value of a magnetic field found by for-
mulae (4.9) is much closer to the experimental results than the critical value of magnetic field found by formulae (4.6).
For example, when the material of a ferromagnetic plate is a pure iron (i, = 150; b, = 2 x 10° m/A) and kh = 1072 the
critical value of a magnetic field is BE*™" — 0.58 T with the linear law of magnetization, and B"*""™") — 0.44 T with
the nonlinear law of magnetization. The experimental value of the critical magnetic field is Bg‘if""e”’”“”‘“’) =036T
(Moon and Pao, 1969). From this primary observation, it is clear that the critical magnetic field found with nonlinear
law of magnetization is in better agreement with experimental results than one with the linear law of magnetization.
Dreifous form: y(Ho) = (8/1oHo)arctg(oHo).In this case, it is very difficult to obtain an analytic formula for Ho.. Numer-
ical analysis shows that the critical magnetic field decreases with B, increasing and monotonically increases with y;
increasing. Ignoring the volume forces (4; = 2, = 0) does not lead to a large change of the critical magnetic field, in fact
it remains almost the same. Also in this case, the critical magnetic field with nonlinear law of magnetization is in bet-
ter agreement with an experiment results. Notice that for a very weak magnetic field from (4.3) the results reported in
Hasanyan and Philiposyan (2001), Maugin (1988), Moon and Pao (1969) and Van de Ven (1983) can be reproduced.

—
w
=

5. Stress-strain state of a ferromagnetic plane with a moving crack

The problem of a stress—strain state of a ferromagnetic plane with a moving crack is discussed in this paragraph. A soft
magnetic ferroelastic body which is modeled with a nonlinear law of magnetization, immersed in a magnetic field perpen-
dicular to a crack line is considered. Assuming that the processes in moving coordinates are stationary Fourier transform
method is used to reduce the mixed boundary value problem to the pairs of dual integral equations which are solved ana-
lytically. The magnetoelastic stress intensity factor and its dependency on the crack velocity, material constants and nonlin-
ear law of magnetization are obtained.

5.1. Formulation of the problem

Let a magnetoelastic plane with a finite crack of length 2a be located in a magnetic field H® = (0, Hy, 0), Hy = const. The
crack is moving with the constant velocity V < cg(cr is a speed of propagation of Rayleigh waves for a considered media) and
is located in a plane x;0x, along a line x, = 0, and —a + Vt < x; < a + Vt (see Fig. 3).

In-plane nontrivial displacements are

U = U (X1,X2,t1), Uy = Up(X1,X2,L1), U3 =0.
A moving coordinate system (oxyz) attached to the center of the moving crack is chosen such that (Nishida et al., 1984)
X=x1—-Vt, t=t, Yy=X3, Z=X3. (5.1

It is assumed that the crack propagation occurs during an interval of time when in the moving system of coordinates the
magnetoelastic state is time-invariant. Magnetic field Hy, magnetization My and magnetic induction By characterizing unde-
formed state of a body according (3.2)-(3.5) are given as

HO = Ho7 MO = X(HO) g HQ, Bo = in(l -+ X(HO)) - Ho.
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Fig. 3. Ferromagnetic plane with a crack in a magnetic field.

The displacement u; and magnetic potential @ characterizing the stress—strain state of a ferromagnetic body are determined
from Egs. (3.12-3.14). Introducing u; and u, such that

U =@, + lp.xz’ U =0Q,, — lp.xp (5.2)

where ¢ and ¢ are potential functions from Eq. (3.12) the following two decoupled equations with respect to ¢ and  are
obtained:

AV — @, + 01Dy, =0, SV~ + 5Py =0, (5.3)
where
o V22— i1 ,

M2 9.
V2 = 9 )0x3 + &% )03, 5§_ﬁc2, 5%:—%@, 2 =2(1-v)/(1-2v)c,

J1 = 2)(Ho)(1 + y(Ho))hZ, 72 = 2a[2()(Ho) + Hoy'(Ho))/%(Ho) — Hoy'(Ho) /(1 + %(Ho))]/2.
he = poHo /1, ¢3 = u/p-

Using coordinate transformations (5.1), Egs. (5.3) and (3.12) become
S%(p.xx T Q@+ Dy = 0, S%wxx + lp.yy +1®y = 0, ,))2 Pux+ Dy = 0, (54)

where s? =1 — M,-z, M; =V/c;, ri=8;/c? (i=1,2). The Mach numbers M; < 1 since the crack is propagating at subsonic
speed.
The boundary conditions of the problem are

uz(x,0) =0 when [x| > a, (5.5)

&(x,0)=0 when |x| > aq, (5.6)

@, (x,0) +dq - uyx(x,0)=0 when [x| <a, (5.7)

Uzx(x,0) + u1y(x,0)+L-®, =0 when |x| < oo, (5.8)
2y 21-v

mul_x(x,O) + ]( — ZV) Uzy(x,0) — ey - @ (x,0) = —Pomec + Pomeg = —Po when x| < a, (5.9)

where Popqg :bf‘x(Hoy(X(Ho) —2)/(x(Ho) +1)%; 1 -Pomec is a mechanical force acting on the surface of the crack,
er = h2(1+ y(Ho))[x?(Ho) — 2% (Ho)], di = —x(Ho)/(x(Ho) + 1), L = 11/2, b} = (x(Ho) + 1)*h’.

5.2. The solution methodology

By applying the Fourier transform method to Eq. (5.4) the potential functions are readily obtained

o]
2
o2 — By

oy =1 [ {A(a) expl—fuyl + 3

J—o0

C(o) exp[—|oty]} exp|[—iox]do, (5.10)
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W(XJ):l/fB(OC)eXP[ Bay] exp[—iox]dor, (5.11)

d(x,y) = / C(a) exp[—7|ay] exp[—iox]dot, (5.12)

where A, B and C are unknown functions to be defined from boundary conditions (5.5)-(5.9) and f? = o(1 — M?).
The unknowns A, B and C can be rewritten as function of a new quantity D(a):

B(o) = " iﬂz {—200 = dq[0Q; (o) + ip|ot| Q5 () — oL} D(a0) }, (5.13)
2
Ao) = ﬂl {1 +d1Qy(a) + % [—200 — dy (2Q; (o) + iy[or] Q5 (o) — fo)]D(OC)}., (5.14)
1 o — B
where

7_@ s A0 o0 7 4G 7
Qi(w) =-i-1Q}, Qy(2)=-Q}, Ql_ 22 M2+C%y2—M§

From the boundary conditions (5.5)-(5.9), the determination of unknown D(«) leads to the following dual integral equations:

%/m D(a) exp[—ixa]da =0, |x| > a, (5.15)
% / * D()[fo() + dfon(o0)] expl—ixoldoc = Po, x| < @ (5.16)
where
41— M3\/1 - M3 — (2 - M3)?
fo(o) = [oR. (M7, M3), R (M5, M3) = = + () = [Rn (M3, M3),
M?\/1 - M?

(2-M3)

\1-M:

The magnetoelastic stress t5, (x,0)/i = tx(x,0)/1 + t} (x,0)/u is expressed through D(x) as follows:

2¢/1-M3 _
7(Q2+Q . 2v QO 2(1-v)

2 2 0
Rm(MllMZ) = M2 1-2v 1 1-2v Q27+el’))-

1
{Qg—M;(Q%Q‘]’V—U +

t5,(x,0) = Pomag +% [ D(o)[fe(00) + dif;; ()] exp[—ixor]do, (5.17)

where

b2 2(122 Z/C(Ho)

fn(@) =fe(0) —er -yl = Ro - plotf, Ro= az; = y(Ho) + Ho - ¥'(Ho).

Z(Ho) +1
Let us
Py S
E(s) = . , 5.18
) Fem(M2,M5) Va2 —s2 (-18)
where
Fem(Mi,M3) = R.(M3,M3) + diRn (M7, M3).
Then the solution of dual integral equations (5.15) and (5.16) can be represented as
a
D(x) :%/ E(s) exp[—ios]ds. (5.19)
When y = 0, the magnetoelastic stress t] (x,y)/u have the following form:
kq s W X0
t5,(x,0)/ 1t = Pomag +— /4] /e STds =Pomeg + ki q 1+ 5~, x<-a,. (5.20)
1, x| <a

The normalized stress intensity factor can be expressed as

. F: (M? M?).a'>
ki =a'?. lim /2(x —a)t,(x,0) = em—122 —  p, 5.21
1 X040 ( ) 22( ) Fem(M%7M§) 05 ( )
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where
Fo (M, M3) = R. (M, M3) + di R (M7, M3) — €1 — Ro.
From (5.21), when V = 0, i.e. the crack is stationary the following is obtained:
k| 1di =+ 1) —Roy + /2~ (7 = DQYI/m}. (5.22)
Poa'2lyo 14+ di(1—v)fery + (0 + 1nQY + [41/2 = (7 = DQY)/n}

where 7 =2(1 — v)/(1 — 2v). In a case of magnetosoft material with a linear law of magnetization (y(Ho) = y = const.), when
the velocity of a crack is equal to zero (V = 0) it follows from (5.21) or (5.22) that

ki ~ a'2Po[1 — x(1 = v)b2] ", (5.23)

where b2 = (y + 1)*h’.

Result (5.23) first time was derived by Shindo (1977).
Notice that for a magnetosoft material with a linear law of magnetization the intensity factor k; — oo when

b? — 1/x(1 —v?) (see formulae (5.23) and Shindo (1976)). At the same time, from Eq. (5.21), the denominator of Eq.

(5.21) cannot be zero when the magnetization law is given by y(H) = M,/H.
It follows from abovementioned that the nonlinear law of magnetization can have qualitative and quantitative influence

on magnetoelastic quantities.
It follows from Eq. (5.21) that for a magnetosoft material with a linear law of magnetization (y(Ho) = y = const.) the

stress intensity factor has the following form:

Gy

2 2
ki = —a'?Py{ R, (M, M?) + L ﬂfz,/lfMg + 2612 2 - 2_M,
V1= M oM J1-M

3
N (5.24)

L | 2-M? 5 51 2 — M?
X QA R(MI,M3) + —5 | ——=—-24/1-M5| +—— |2~ -2 b5
My [\/1-M? ciM; J1-M2| K

where
0

Ly = (zbi,) and C%=172V-
1

= Ly.

5.3. Numerical results

Numerical calculations have been carried out for a normalized stress intensity factor k; = ki/a'2Py. In particular, the
dependence of the stress intensity factor on the magnetic field h” = u,H2/1 = H* x 1077 and normalized velocity of the

crack b = V?/c? is found.

3T kl
24 s
' B '
I ooy
==
A P AP AN
0 o | -~ | DR PR ’ | =
- \\ ] L . ‘J L %
0.05™~ - 0.1 N 0.1 “j ! 0.2
14 =0 k '
1 TN oo
a=t AN L
24 ST a=3 “ _ .\l
— - —-3=5 ~
3L —--—a=77

Fig. 4. Dependence of k; on nondimensional speed of movement v, for selected magnetic fields hz =ax107'S
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From Eq. (5.21), it appears that if hf#O the intensity factor k; — oo when V — V, < ¢, (where V, is the velocity leading the
denominator of Eq. (5.21) to zero). If h? = 0 the stress intensity factor k; does not depend on the speed of a moving crack.
These conclusions show that the intensity factor essentially depends on an external magnetic field, the speed of a moving
crack and physical parameters of the problem.

Synergistic implications of the interaction of the elastic and magnetic fields on the intensity factor for different type of
law of magnetizations are displayed in Figs. 4-7.

In Fig. 4, effects of the normalized speed of moving crack » = V?/c2 on the normalized intensity factor k; for various
values of normalized magnetic fields hf are shown. The law of magnetization is set by Eq. (2.23), i.e. a magnetosoft
material with the linear law of magnetization. The numerical results are carried out for g, = 10°, v = 0.35. As shown
inzFig. 4, the external magnetic field (hf;éO) essentially changes the value k; in comparison with a pure elastic case
(h; =0).

In Figs. 5 and 6, the dependence of k; on a normalized magnetic field is given for various values of normalized speed of a
moving crack. In the numerical simulations it is assumed v = 0.3. The law of magnetization is set by Eq. (2.22). Fig. 7 is set for
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Fig. 6. Dependence of k; on magnetic field h> = H? x 107" for selected values of nondimensional speed of movement when p, = 10°, b, = 10°.
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Fig. 7. Dependence of k; on magnetic field hf = H* x 107" for selected values of nondimensional speed of movement when B; = 5 T,,; = 5 x 10°.
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Table 1
Dependence of k; on dimensionless magnetic field H for parameters b = 10%, k = 10° when speed of cracks movement b = 0
J(H) = (b/H)arctg(ixH/b) 7(H) = const. = K
H=0 1 1
H=10 1.07 1.079
H=20 1.405 1.398
H=30 2.846 2.517
H =40 —6.553 92.25
H =50 -1.25 —2.46

the nonlinear law of magnetization (2.21). In all cases, the normalized intensity factor k; essentially depends on enclosed
magnetic field and the speed of a moving crack.
From the numerical simulations, it is possible to conclude that:

(a) With an increase of the magnetic field, the intensity factor k; first decreases, passing through zero to become negative,
but then sharply increases (for V?/c2 = b < 0.21). Negative intensity factor is physically impossible under tensile stress
field. The crack surfaces will approach each other, and, if the compressive stress is large enough, the crack will close.
However, only circumstances in which the crack remains open are considered here. This observation implies that the
magnetic field can retard the propagation of a crack in ferromagnetic materials. Analog type of phenomena for energy
release rate was observed and discussed by Li and Kardomateas (2007) in a problem related to the investigation of
stress fields in a piezoelectromagneto-elastic anisotropic bimaterials with an interface crack.

(b) The Fig. 7 shows that for normalized velocity V?/c2 = b = 0.219 the stress intensity factor is increases as magnetic
field increases, a tendency is opposite for other velocities. This phenomenon is due to fact that the velocity of a crack
Vz/cf =0 =0.219 is close to the velocity of a propagation of Rayleigh waves (in discussed case the Rayleigh waves
speed is Uz = 0.28). The intensity factor k; — oo with the increase of the magnetic field for b ~ vp.

(c) An applied magnetic field makes the stress intensity factor and magnetoelastic stresses velocity dependent. A mag-
netic field can increase or it can decrease the stress intensity factor (depends on crack speed). At critical magnetic field
strengths, the stresses in the vicinity of the crack change sign. Magnetoelastic behavior of ferromagnetic body is highly
sensitive to material properties.

(d) Figs. 5-7 shows also that the intensity factor k; essentially different for different laws of magnetization.

Note that the linear law expressed by Eq. (2.23) takes place at a rather weak magnetic field. The nonlinear laws (2.21) and
(2.22) can be used for a strong magnetic field.

Table 1 shows the dependence of the intensity factor k; on the normalized magnetic field H = 109hf for two different
laws of magnetizations: Dreifous form and linear law. It clearly appears that the nonlinear law of magnetization has a
strong influence on the intensity factor k; starting from H = 30. The simulations based on the linear law of magnetization and
on the nonlinear law of magnetization give the same results for the intensity factor k; for a small magnetic field.

6. Conclusions

The equations of magnetoelasticity for magnetosoft materials with a nonlinear law of magnetization are presented. The
following two problems are considered on the basis of these equations: (1) the magnetoelastic stability of a ferromagnetic
plate-layer in a homogeneous transverse magnetic field, (2) the stress—strain state of a ferromagnetic plane with a moving
crack in a transverse magnetic field. The nonlinear law of magnetization should be taken into account when dealing with
stability problem of plates in strong external magnetic field. The nonlinear law of magnetization has a strong influence on
the magnetoelastic characteristics in the crack propagation problems.

The present model can be used in magnetoelasticity studies where soft ferromagnetic materials are used in the presence
of a strong magnetic field. Possible applications include the use of an applied magnetic field for increasing the stress intensity
factor during machining (which should assist chip formation and increase machinability), and applying a magnetic field to
lower stress intensity factors in structural components (which should effectively increase toughness).
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