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Linearized equations and boundary conditions of a magnetoelastic ferromagnetic body are
obtained with the nonlinear law of magnetization. Magnetoelastic interactions in a multi-
domain ferromagnetic materials are considered for magneto soft materials, i.e. the case
when the magnetic field intensity vector and magnetization vector are parallel. As a special
case, the following two problems are considered: (1) the magnetoelastic stability of a fer-
romagnetic plate-strip in a homogeneous transverse magnetic field; (2) the stress–strain
state of a ferromagnetic plane with a moving crack in a transverse magnetic field. It is
shown that the modeling of magnetoelastic equations with a nonlinear law of magnetiza-
tion provides qualitative and quantitative predictions on physical quantities including crit-
ical loads and stresses. In particular, it is shown that the critical magnetic field in plate
stability problems found with the nonlinear law of magnetization is in better agreement
with the experimental finding than the one found with a linear law. Furthermore, it is also
shown that the stress concentration factor around a crack predicted with the nonlinear law
of magnetization is more accurate than the one obtained with a linear counterpart. Numer-
ical results are presented for above mentioned two problems and for various forms of non-
linear laws of magnetization.

Published by Elsevier Ltd.
1. Introduction

Recent years have witnessed an increased interest in the investigation of problems of magnetoelasticity for ferromagnetic
materials. The general theory of magnetoelasticity for ferromagnetic body has been developed by many authors (Akhiezer
et al., 1968; Brown, 1966; Dorfmann and Ogden, 2004; Eringen and Maugin, 1990; Landau and Lifshitz, 1995; Maugin,
1988; Moon, 1984; Pao and Yeh, 1973; Steigmann, 2004; Tiersten, 1964). These theories can be applied to investigate the
magnon–phonon interaction (magnetoacoustic resonance) effects. This coupling interaction is pronounced when the wave
frequency is near or above the magnetic resonance frequency, which is usually higher than 109 Hz (for example, magnetoa-
coustic resonance in a material yttrium–iron–garnet is observed when the frequency of spin waves is around 1010 Hz). A the-
ory presented by Pao and Yeh (1973) was applied to investigate the magnetoelastic stability of thin structural elements
(Moon, 1984; Maugin, 1988) and investigation of stresses around the cracks (Bagdasarian and Hasanyan, 2000; Hasanyan
and Philiposyan, 2001; Shindo, 1977; Shindo et al., 2000). A material is called soft ferromagnetic when the magnetic field
intensity vector H and magnetization vector M are parallel in the rigid body state, i.e. M ¼ vðjHjÞH (v is called the magnetic
susceptibility of the material). A soft magnetic material is characterized by small hysteresis losses (narrow hysterisis loop for
H–M curves) and low remnant magnetization. Nickel–iron alloys, which are widely used as core materials for motors, gen-
erators, inductors and transformers, are a typical example.
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In a large number of works related to the theory of magnetoelasticity of ferromagnetic materials, it has been assumed that
the magnetization of a material depends linearly (v ¼ const:Þ upon the applied magnetic field. This assumption is valid for a
ferromagnetic in a domain of a very weak magnetic field, or for most nonferromagnetics in strong magnetic fields. With the
application of ferromagnetic structures in a strong magnetic fields (higher than 1 T), such as a structure of the first wall in a
fusion reactor, the magnetic field generated in the structures may be close to the region of saturation. For example, from the
requirements for the international thermonuclear experimental reactor (ITER), the toroidal magnetic field intensity is �5
Tesla or more. In such cases, it is imperative to consider nonlinear dependence of magnetization on the magnetic field
(i.e. v–const:Þ. The influence of a nonlinear law of magnetization on stability and vibration, wave propagation, stress–strain
state and other processes is critical. The results related to the magnetoelastic stability and vibration of thin-walled bodies,
the stress–strain state (SSS) and also the wave propagation of ferromagnetic materials with a linear law of magnetization are
of special interest by many authors (Bagdasaryan and Hasanyan, 1995; Hasanyan and Philiposyan, 2001; Lin and Yeh, 2002;
Maugin, 1988; Moon and Pao, 1969; Nishida et al., 1984; Sabir and Maugin, 1996; Shindo, 1977; Shindo et al., 2000; Zhao
and Lee, 2004). Moon and Pao (1969) were one of the first to investigate theoretically and experimentally the problem of
buckling of a ferromagnetic plate in a transversal magnetic field. They found that the theoretical value of the critical mag-
netic field when the plate losses its stability is almost 1.5 times high as the one which is given by experiments. Many
researchers (Hasanyan and Philiposyan, 2001; Van de Ven, 1983) try to explain the source of the differences between the
theoretical and experimental results. Note that all these investigations have been carried out using a linear law of
magnetization.

In plate stability problem, we show that the theoretical value of critical magnetic field, obtained using a nonlinear law of
magnetization is in better agreement with the experimental predictions. Furthermore, we show also that the stress concen-
tration around the crack in a ferromagnetic body strongly depends on the nonlinear law of magnetization.

2. Magnetoelastic equations and boundary conditions

It is assumed that the elastic dielectric medium with an ordered magnetic structure is in an external stationary magnetic
field with the magnetic intensity H0 and the magnetic induction vector B0 ¼ l0H0, where l0 ¼ 4p� 10�7 N/A2 is the univer-
sal magnetic constant. The medium surrounding the body is assumed to be vacuum. Under the influence of the magnetic
field H0 the total force f and body couple c (per unit volume) acting on the body are as follows (Brown, 1966; Tiersten, 1964):
f ¼ l0ðM � rÞH; c ¼ l0M�H; ð2:1Þ
where H and M are magnetic field intensity and magnetization (the magnetic moment of a unit volume) inside the body, r
the gradient operator. The magnetic field intensity H and the magnetization M inside the magnetized body are related to the
external magnetic field H0 through a set of magnetoelastic field equations, constitutive equations, and boundary conditions.
The vectors H and M are connected with the magnetic induction vector B by the relation B ¼ l0ðHþMÞ and satisfy (in quasi-
stationary approximation) the Maxwell equations.

Let a particle of magnetizable and deformable solid originally at ðX1X2X3Þ be moved, after deformation to ðx1; x2; x3Þ at
time t. Both systems ðX1X2X3Þ and ðx1; x2; x3Þ are Cartesian components referring to a common frame. The function
xi ¼ xiðX1;X2;X3; tÞ or their inverses describe the deformation for the body as a whole.

The Maxwell’s equations in system of coordinates ðx1; x2; x3Þ are
@Bi

@xi
¼ 0; eijk

@Hj

@xk
¼ 0: ð2:2Þ
The general field equations of magnetoelasticity are derived by substituting the body force f and body couple c, as defined in
(2.1), and the rate of energy supply
e ¼ l0Mitj
@Hj

@xi
þ l0qHi

d
dt

Mi

q

� �
into the equations of balance of linear momentum, angular momentum, and energy, respectively. The results, expressed in
terms of the current position vector xi are (see Pao and Yeh, 1973; Tiersten, 1964)
dq
dt
þ q

@ti

@xi
¼ 0; ð2:3Þ

@tij

@xi
þ l0Mi

@Hj

@xi
¼ q

dvi

dt
; ð2:4Þ

emijtij þ cm ¼ 0; ð2:5Þ

q
dU
dt
¼ tij

@tj

@xi
þ l0qHi

d
dt

Mi

q

� �
; ð2:6Þ
where d=dt ¼ @=@t þ tkð@=@xkÞ and tk ¼ dxk=dt; tij is the magnetoelastic stresses; emij is the permutation symbol with emij ¼ 1
or �1 depending on whether the indices are in a cyclic or an anticyclic order, respectively and emij ¼ 0 otherwise; q is the
mass density of the medium in the deformed state; U is the internal energy per unit mass.
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In addition to Eqs. (2.2)–(2.6), the following boundary conditions on the deformed surface should be fulfilled:
ni½Bi ¼ 0�; eijknj½Hk� ¼ 0; ni½tij þ TM
ij � ¼ 0; ð2:7Þ
where ni is a unit normal to the deformed surface of discontinuity; ½A� ¼ Aþ � A� is a jump of function A from the negative
side ð�Þ to the positive side ðþÞ of the deformed surface of discontinuity; Maxwell’s tensor TM

ij ¼ BiHj � 0:5dijHkHk, where dmk

is the Kronecker symbol with dmk ¼ 1 when m ¼ k and dmk ¼ 0 otherwise;
It is obvious from Eq. (2.5) that the tensor tim is nonsymmetrical. It becomes symmetrical only if the magnetic moments

ck ¼ 0. Substituting the values of ck from Eq. (2.1) into Eq. (2.4) yield
eimkðtim þ l0MiHmÞ ¼ 0;
hence the symmetry of the tensor tim þ l0MiHm follows.
From (2.6), the following constitutive equations for a magnetoelastic media is obtained
tij ¼ q
@U

@ð@xj=@XkÞ
d
dt

@xj

@Xk

� �
; ð2:8Þ

l0Hi ¼
@U
@li

; ð2:9Þ
where li ¼ Mi=q.
Since U must be invariant in rigid body rotation, the theorem on invariant functions of several vectors (see Akhie-

zer et al., 1968; Tiersten, 1964) limits U to be a function of the lengths of the vectors, the scalar product of a pair of
vectors and the determinants of their components taken three at a time. Thus, U must be reduce at most to a func-
tion of
EIJ ¼
1
2

@xk

@XI

@xk

@XJ
� dIJ

� �
and li ¼ Mi=q: ð2:10Þ
The final form of the energy density function should be
U ¼ UðEIJ ;liÞ: ð2:11Þ
For detailed derivations of Eq. (2.11), see Akhiezer et al., 1968 and Tiersten, 1964.
Using Eqs. (2.9)–(2.11) and Eq. (2.8) can be written in the following compact form:
tij ¼ q
@xi

@XK

@U
@EKL

@xj

@XL
þ l0MjHi: ð2:12Þ
Next, the expression for the specific intrinsic energy of the deformable elastic nonconductive magnetosoft ferromagnetic
body is chosen in the following form:
UðEIJ;liÞ ¼ UelðEIJÞ þ UmðliÞ; ð2:13Þ
where Uel and Um are elastic and magnetic energy, respectively.
In the case of a soft ferromagnetic material the following statement can be proved:
The vectors H and l are parallel in the basic state if and only if the magnetic energy Um satisfies the condition
Umðl1;l2;l3Þ ¼ UmðjljÞ; jlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ l2
2 þ l2

3

q
ð2:14Þ
i. e. the function Um depends only on the module of the vector l.
The sufficient condition can be deduced from Eqs. (2.10) and (2.14) as follows:
Hi ¼
@Um

@li
¼ @Um

@jlj
1
jljli ) H "" l ðH is parallel to lÞ: ð2:15Þ
The necessary condition should be proved. For simplicity, it is assumed that the function does not depend on the component
l3. Then from (2.14) and the condition H "" l, it follows that H ¼ w�ðl1;l2Þ � l, where w�ðl1;l2Þ is a continuous differentia-
ble scalar function. Taking into account (2.14) and (2.10)
H1 ¼
@Um

@l1
¼ w�ðl1;l2Þ � l1; ð2:16Þ

H2 ¼
@Um

@l2
¼ w�ðl1;l2Þ � l2; ð2:17Þ
It follows from Eqs. (2.16) and (2.17) that
l1
@w�

@l2
¼ l2

@w�

@l1
) w� ¼ w�ðjljÞ;
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i.e., the function w� depends only on the module of the vector l. The function Um also depends only on the module of the
vector l. It is proved next. In polar coordinates (l1 ¼ jlj sin h, l2 ¼ jlj cos hÞ, Eqs. (2.16) and (2.17) can be expressed in
the following way:
@Um

@jlj � ctgh
@Um

@h
¼ w�ðjljÞ � jlj;

@Um

@jlj þ tgh
@Um

@h
¼ w�ðjljÞ � jlj;
From these two equations the relationship ðtghþ ctghÞð@Um=@hÞ ¼ 0 can be obtained.
Since ðtghþ ctghÞ–0, it follows that @Um=@h ¼ 0 (i.e. Um does not depend on the direction of magnetization vector l). In

other words, Um depends only on the modulus of magnetization vector l:
Umðl1;l2Þ ¼ UmðjljÞ: ð2:18Þ
In general case (when l3–0), the proof can be done in spherical system of coordinates.
It follows from the above statement that
H ¼ u�ðjljÞ � l or H ¼ u1ðjMjÞ �M;u1ðjMjÞ ¼ u
1
q
jMj

� �
� 1
q
: ð2:19Þ
Eq. (2.19) can be expressed also in a following form:
M ¼ vðjHjÞH: ð2:20Þ
The function vðjHjÞ is the magnetic susceptibility. From the proof it is clear that the susceptibility v for magnetosoft mate-
rials will depend only on the modulus of a magnetic field. Fig. 1 shows the typical dependence of vðjHjÞ on the modulus of a
magnetic field (curve 1 is for superpermalloy and curve 2 for soft iron).

Experimental investigations shown that the magnetic susceptibility of magnetosoft ferromagnetic materials can be
approximated by the following formulae (Bozort, 1951):

(1) Dreifous form:
vðHÞ ¼ ðb=l0HÞarctgðaHÞ; ð2:21Þ
where
b ¼ 2Bs=p;a ¼ ðlri � 1Þl0=b;
and Bs denotes the induction saturation, lri is the initial relative magnetic permeability of the material. Eq. (2.21) is a good
approximation to the curves 1–2 in Fig. 1 for large magnetic fields.

(2) Instead of Eq. (2.21) sometimes the Rayleigh dependence is used
vðHÞ ¼ lr þ brH; ð2:22Þ
which is the linear approximation of the Dreifous form and is applicable if H < Hc . Here, Hc is the coercitive force and lr is
the magnetic susceptibility of the material. Eq. (2.22) is a good approximation of the curves 1–2 in Fig. 1 for moderate mag-
netic fields.

(3) Linear dependence. If the coefficient of nonlinearity br ¼ 0, then from (2.22) one can get
vðHÞ ¼ const: ¼ lr � 1: ð2:23Þ
1

2

χ

0.4 
H(Oersted) 

2.5 104 

Fig. 1. Dependence of magnetic susceptibility on magnetic field.
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Eq. (2.23) is a good approximation to the curves 1–2 in Fig. 1 for weak magnetic fields.
This type of relation is used in the constitutive equations for soft ferromagnetic materials in weak magnetic fields or for

nonferomagnetic materials even in strong magnetic fields.
(4) The model of magneto rigid (magnetically saturated) materials is
vðHÞ ¼ Ms=H; ð2:24Þ
where Ms ¼ Bs=l0 is the saturation magnetization. Eq. (2.24) is a good approximation to the curves 1–2 in Fig. 1 for large
magnetic fields.

The numerical values of coefficients a; b; Ms; j0 and br for different ferromagnetic materials can be found in Bozort (1951).
Thus the specific intrinsic energy for soft ferromagnetic elastic materials we represented in the following form:
Uðeij;MiÞ ¼ UelðeijÞ þ UmðjljÞ: ð2:25Þ
From (2.8) and (2.9), the constitutive equations of a magnetoelastic media (stress–strain-magnetic field relations) are ob-
tained if specific intrinsic energy for soft ferromagnetic elastic materials is provided.
3. The linearized equations and boundary conditions

In general the equations and boundary conditions of magnetoelasticity are nonlinear. These equations and boundary
conditions can be linearized by replacing transformation xi ¼ xiðX1;X2;X3; tÞ by
xi ¼ XJdiJ þ uiðX1;X2;X3; tÞ;
where uiðX1;X2;X3; tÞ is the displacement vector and diJ is the Kronecker delta which shifts a vector at xi parallels from xi to
XJ . Let us decompose magnetic field characteristics in the following form:
B ¼ B0 þ b; H ¼ H0 þ h; M ¼ M0 þm: ð3:1Þ
Here, B0; M0 and H0 are the magnetic induction vector, the magnetization and the magnetic field intensity, respectively, in a
rigid state, b; m and h are the perturbations to the mentioned quantities due to the deformation of the body. The values of
B0; M0 and H0 are determined from the solution of the following magnetostatic problem:

(a) Equations in the domain occupied by the body (internal domain):
rot H0 ¼ 0; divB0 ¼ 0; ð3:2Þ
where B0 ¼ l0ðH0 þM0Þ ¼ l0½1þ vðH0Þ� �H0, H0 ¼ jH0j.
(b) Equations in the external domain (domain outside of the body):
rot HðeÞ0 ¼ 0; divBðeÞ0 ¼ 0; ð3:3Þ
where BðeÞ0 ¼ l0HðeÞ0 ; MðeÞ
0 ¼ 0.

(c) Conditions on the surface of the nondeformed body:
n0 � ½B0� ¼ 0; n0 � ½H0� ¼ 0; ð3:4Þ
(d) Conditions at infinity:
BðeÞ0 ! B0 when r ¼ ðx2
1 þ x2

2 þ x2
3Þ

1=2 !1: ð3:5Þ
Assuming that j@ui=@XJj � 1, jbij=jB0j � 1, jmij=jM0j � 1 jhij=jH0j � 1 the characteristics of the stress–strain state of a body
(the displacement vector components uk and stress tensor components tim) and the vectors b; m and h are being determined
from (2.2)–(2.6). Assuming that the deformations and the absolute values of b; m and h are small, one can linearize these
equations and boundary conditions similar to Pao and Yeh (1973). As a result, the following linear equations and boundary
conditions for the magnetoelastic body can be obtained from (2.2)–(2.4)
tji;j þ l0ðM0jH0i;j þM0jhi;j þmjH0j;iÞ � l0M0jH0i;kuk;j � �tij;kuk;j ¼ q0
@2ui

@t2 ; ð3:6Þ

q ¼ q0ð1� uk;kÞ; eijk½hk;j � H0j;mum;k� ¼ 0; bi;i � B0j;kuk;j ¼ 0 ði; j; k ¼ 1;2;3Þ: ð3:7Þ
For isotropic materials the following applies:
tij ¼ rij þ l0H0iM0j þ l0ðH0im0j þ H0jm0iÞ;
rij ¼ kdijuk;k þ lðui;j þ uj;iÞ;�tij ¼ l0H0iM0j ð3:8Þ
where k and l are the Lame coefficients (l ¼ E=2ð1þ mÞ, E and m are Young’s modulus and Poisson’s ratio, respectively).
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The boundary conditions (2.7) can be linearized and expressed as follows (for the details see Maugin, 1988; Pao and Yeh,
1973):
n0i½tij þ tM
ij � ¼ 0; n0i½bi� � um;in0m½B0i� ¼ 0; eijkfn0j½hk� � n0mum;j½H0k�g ¼ 0; ð3:9Þ
where
tM
ij ¼ B0iH0j þ B0ihj þ B0jhi � 0:5l0dijðH2

0k þ 2H0khkÞ:
After linearization of (2.20)
m ¼ â � h; b ¼ l0ðI þ âÞ � h; ð3:10Þ
where Î the identity matrix and the elements of the matrix â are determined as follows:
aij ¼ vdij þ
H0iH0j

H0

dv
dH0

; H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

01 þ H2
02 þ H2

03

q
: ð3:11Þ
The final equations of motion (3.6) for an isotropic magnetoelastic media with a nonlinear law of magnetization (2.20) can be
express as
Dui þ
1

1� 2m
uj;ij þ

l0

l
fi ¼

q0

l
@2ui

@t2 ;

div½ð̂I þ âÞh� � B0j;kuk;j ¼ 0; ð3:12a- -cÞ
eijk½hk;j � H0j;mum;k� ¼ 0:
The first component of a body force ðl0=lÞfi ði ¼ 1;2;3Þ is expresses as
l0

l
f1 ¼ b11h1;1 þ b12h2;2 þ b13h3;3 þ b14h1;2 þ b15h1;3 þ b16h2;3 þ

l0

l
½2M0jH01;j þ H0jM01;j� �

l0

l
M0jH01;kuk;j �

1
l

�t1j;kuk;j;

ð3:13Þ
where
b11 ¼ vH01 þ 2a11H01; b12 ¼ a22H01 þ a12H02; b13 ¼ vH01 þ a13H03; b14 ¼ vH02 þ 3a12H01 þ a11H02;

b15 ¼ vH03 þ 3a13H01 þ a11H03; b16 ¼ 2a23H01 þ a13H02 þ a12H03
Expressions for ðl0=lÞf2 and ðl0=lÞf3 can be derived from ðl0=lÞf1 by cyclic permutation 1! 2! 3! 1.
For the domain outside the body (considered to be vacuum), the magnetic field equations should satisfy the following

equations:
@bðeÞi

@xi
¼ 0; eijk

@hðeÞj

@xk
¼ 0: ð3:14Þ
When v = const., Eqs. (3.12a–c) and boundary conditions (3.9) are analogous to the equations and boundary conditions
obtained in Pao and Yeh (1973).

Another model for a soft ferromagnetic material with a nonlinear law of magnetization is developed by Zheng and Wang
(2001).

To illustrate the preceding theory, in the next sections the following two problems will be considered:

	 the magnetoelastic stability of a ferromagnetic plate-strip in homogeneous transverse magnetic field;
	 stress–strain state of ferromagnetic plane with a moving crack in a transverse magnetic field.
4. Stability of a ferromagnetic plate-strip in a homogeneous transverse magnetic field

Assume that an isotropic homogeneous plate-strip of constant thickness 2h in the direction 0x2 and infinite length in the
direction 0x1 is located in an external uniform magnetic field B0 ¼ ð0;B0;0Þ; B0 ¼ const: (see Fig. 2). Equilibrium equations
are solved to determine whether a nontrivial equilibrium configuration exists for a deformed plate. There is a critical value
for the externally applied magnetic induction B0 corresponding to this equilibrium state when the plate buckles. A plane-
strain problem will be considered. In this case, the nonzero components of the displacement and magnetic field components
are
u1 ¼ u1ðx1; x2Þ; u2 ¼ u2ðx1; x2Þ; u3 ¼ 0;

hði;eÞ ¼ ðhði;eÞ1 ðx1; x2Þ; hði;eÞ2 ðx1; x2Þ;0Þ;hði;eÞ ¼ gradUði;eÞ: ð4:1Þ



Fig. 2. Soft ferromagnetic plate-layers in a transversal magnetic field.
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The solution of the system of Eqs. (3.12)–(3.14) can be represented in the following form:
u1ðx1; x2Þ ¼ uðx2Þ cosðkx1Þ; u2ðx1; x2Þ ¼ tðx2Þ sinðkx1Þ

UðiÞðx1; x2Þ ¼ A coshðkcx2Þ sinðkx1Þ where c2 ¼ ð1þ a11Þ=ð1þ a22Þ; ð4:2Þ
when jx2j < h and
UðeÞðx1; x2Þ ¼ a1 signðx2Þ exp½�kx2 signðx2Þ� sinðkx1Þ
when jx2j > h. In Eqs. (4.1) and (4.2) uðx2Þ and tðx2Þ are
uðx2Þ ¼ b1 sinhðkx2Þ þ b2½ð3� 4mÞ sinhðkx2Þ þ kx2 coshðkx2Þ� þ Q 0
1A sinhðkcx2Þ;

tðx2Þ ¼ b1 coshðkx2Þ þ b2kx2 sinhðkx2Þ þ Q 0
2A coshðkcx2Þ;
where
Q 0
1 ¼ cfk1½ð1� 2mÞ=ð2� 2mÞ � c2� þ k2c2=ð2� 2mÞg=ð1� c2Þ2;

Q 0
2 ¼ c2fk2½1� ð1� 2mÞc2=ð2� 2mÞ� � k1=ð2� 2mÞg=ð1� c2Þ2;

k1 ¼ 2l0vðH0ÞH0=l;
k2 ¼ l0vðH0ÞH0½2ðvþ H0v0Þð1þ vÞ � H0vv0�=½lvð1þ vÞ�;
a11 ¼ v; a22 ¼ vþ H0v0; v0 ¼ dv=dH0:
The parameter k ¼ p=l is the wave number and l is the wavelength in the direction 0x1.
Substituting solution (4.2) into the boundary conditions (3.9) yield a system of linear homogeneous algebraic equations

for the unknown coefficients b1; b2; a1 and A. The critical magnetic field when the plate-strip losses its stability is deter-
mined from the condition of the determinant of the algebraic equations being zero. Under the assumption ckh� 1, the fol-
lowing equation is derived for the critical magnetic field:
4dQ0
2ð1� mÞkh½2ð1� mÞc2=ð1� 2mÞ � 1� � 4dQ0

1ð1� mÞkh=ð1� 2mÞ � 4d1Lð1� mÞkh4d1e1ð1� mÞc2kh

þ8ðkhÞ3½c21þ a11Þkhþ 1� ¼ 0; ð4:3Þ
where
L ¼ l0H0a11=l; e1 ¼ l0H0a22v=l; d1 ¼ �vðH0Þ=ðvðH0Þ þ 1Þ:
From (4.3), the critical magnetic field H0� for instability of a plate-strip can be determined. The critical value of the external
magnetic field BðeÞ0� can be determined from
BðeÞ0� =l0 ¼ ½1þ vðH0�Þ�H0�: ð4:4Þ
Let us consider some particular cases:

(1) Linear dependence: vðH0Þ ¼ const: ¼ lr � 1 .From (4.3) and (4.4), one can obtain
BðeÞ20� ðlr � 1Þ2=ðl0ll2
r Þ ¼ ðkhÞ2ðlrkhþ 1Þ=½3ð1� mÞðlr þ 1Þ�: ð4:5Þ

Assuming khlr 
 1, from (4.5)

Bðe;LinearÞ
0� ¼ l0lrH

L
0� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
El0ðkhÞ3

3ð1� m2Þ

s
or HL

0� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðkhÞ3

3ð1� m2Þl2
r

s
1ffiffiffiffiffiffil0
p : ð4:6Þ
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Expression (4.6) coincides with analogous results obtained by authors: Hasanyan and Philiposyan (2001), Maugin
(1988), Moon and Pao (1969) and Van de Ven (1983).
(2) Rayleigh form: vðH0Þ ¼ lr þ brH0.From Eq. (4.3), it is easy to get
�4ðl0H2
0�=EÞc2khð1� m2Þðlr þ brH0�Þ2ðlr þ 2brH0�Þ þ ð8=3ÞðkhÞ3½khc2ð1þ lr þ 2brH0�Þ þ 1� ¼ 0: ð4:7Þ

Under the assumption khðlr þ brH0�Þ 
 1 one obtains

ðl0H2
0�=EÞðlr þ brH0�Þ2 ¼ ðkhÞ3=ð3� 3m2Þ ð4:8Þ

or the following expression for critical magnetic field H0�:

H0� ¼
lr

2br
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4brH

L
0�=lr

q� �
:

The critical value of the external magnetic field BðeÞ0� can be expressed as

Bðe;NonlinearÞ
0� ¼ l0½lr þ brH0��H0� ¼

lr

2br
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4brH

L
0�=lr

q� �
l0½lr þ brH0��: ð4:9Þ

From (4.9), it follows that H0� ! HL
0� when br ! 0, i.e. the critical magnetic field to be found from a nonlinear law of

magnetization coincides with one found on the base of linear law of magnetization. A critical magnetic field deter-
mined theoretically for a cantilever beam (with a linear law of magnetization) is almost 1.5 times larger than a critical
magnetic field found from experiments (Moon and Pao, 1969). By comparing (4.6) and (4.9), it appears that H0� < HL

0�
when br > 0. It means that the critical magnetic field found from nonlinear law of magnetization is always smaller
than that found from linear law of magnetization. In other words the critical value of a magnetic field found by for-
mulae (4.9) is much closer to the experimental results than the critical value of magnetic field found by formulae (4.6).
For example, when the material of a ferromagnetic plate is a pure iron (lr ¼ 150; br ¼ 2� 105 m=AÞ and kh ¼ 10�2 the
critical value of a magnetic field is Bðe;LinearÞ

0� ¼ 0:58 T with the linear law of magnetization, and Bðe;NonlinearÞ
0� ¼ 0:44 T with

the nonlinear law of magnetization. The experimental value of the critical magnetic field is Bðe;ExperimentalÞ
0� ¼ 0:36 T

(Moon and Pao, 1969). From this primary observation, it is clear that the critical magnetic field found with nonlinear
law of magnetization is in better agreement with experimental results than one with the linear law of magnetization.
(3) Dreifous form: vðH0Þ ¼ ðb=l0H0ÞarctgðaH0Þ.In this case, it is very difficult to obtain an analytic formula for H0�. Numer-
ical analysis shows that the critical magnetic field decreases with Bs increasing and monotonically increases with li

increasing. Ignoring the volume forces ðk1 ¼ k2 ¼ 0Þ does not lead to a large change of the critical magnetic field, in fact
it remains almost the same. Also in this case, the critical magnetic field with nonlinear law of magnetization is in bet-
ter agreement with an experiment results. Notice that for a very weak magnetic field from (4.3) the results reported in
Hasanyan and Philiposyan (2001), Maugin (1988), Moon and Pao (1969) and Van de Ven (1983) can be reproduced.
5. Stress–strain state of a ferromagnetic plane with a moving crack

The problem of a stress–strain state of a ferromagnetic plane with a moving crack is discussed in this paragraph. A soft
magnetic ferroelastic body which is modeled with a nonlinear law of magnetization, immersed in a magnetic field perpen-
dicular to a crack line is considered. Assuming that the processes in moving coordinates are stationary Fourier transform
method is used to reduce the mixed boundary value problem to the pairs of dual integral equations which are solved ana-
lytically. The magnetoelastic stress intensity factor and its dependency on the crack velocity, material constants and nonlin-
ear law of magnetization are obtained.

5.1. Formulation of the problem

Let a magnetoelastic plane with a finite crack of length 2a be located in a magnetic field H0 ¼ ð0;H0;0Þ;H0 ¼ const. The
crack is moving with the constant velocity V < cRðcR is a speed of propagation of Rayleigh waves for a considered media) and
is located in a plane x1ox2 along a line x2 ¼ 0; and �aþ Vt < x1 < aþ Vt (see Fig. 3).

In-plane nontrivial displacements are
u1 ¼ u1ðx1; x2; t1Þ; u2 ¼ u2ðx1; x2; t1Þ; u3 ¼ 0:
A moving coordinate system ðoxyzÞ attached to the center of the moving crack is chosen such that (Nishida et al., 1984)
x ¼ x1 � Vt1; t ¼ t1; y ¼ x2; z ¼ x3: ð5:1Þ
It is assumed that the crack propagation occurs during an interval of time when in the moving system of coordinates the
magnetoelastic state is time-invariant. Magnetic field H0, magnetization M0 and magnetic induction B0 characterizing unde-
formed state of a body according (3.2)–(3.5) are given as
H0 ¼ H0; M0 ¼ vðH0Þ �H0; B0 ¼ l0ð1þ vðH0ÞÞ �H0:



Fig. 3. Ferromagnetic plane with a crack in a magnetic field.
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The displacement ui and magnetic potential U characterizing the stress–strain state of a ferromagnetic body are determined
from Eqs. (3.12–3.14). Introducing u1 and u2 such that
u1 ¼ u;x1
þ w;x2

; u2 ¼ u;x2
� w;x1

; ð5:2Þ
where u and w are potential functions from Eq. (3.12) the following two decoupled equations with respect to u and w are
obtained:
c2
1r2u�u;t1t1

þ d2
1U;x2 ¼ 0; c2

2r2w� w;t1t1
þ d2

2U;x1 ¼ 0; ð5:3Þ
where
r2 ¼ @2=@x2
1 þ @

2=@x2
2; d2

1 ¼
c2k2 � k1

c2 � 1
c2

2; d2
2 ¼ �

c2ðk2 � k1Þ
c2 � 1

c2
2; c2

1 ¼ 2ð1� mÞ=ð1� 2mÞc2
2;

k1 ¼ 2vðH0Þð1þ vðH0ÞÞh2
c ; k2 ¼ k1½2ðvðH0Þ þ H0v0ðH0ÞÞ=vðH0Þ � H0v0ðH0Þ=ð1þ vðH0ÞÞ�=2;

h2
c ¼ l0H2

0=l; c2
2 ¼ l=q:
Using coordinate transformations (5.1), Eqs. (5.3) and (3.12) become
s2
1u;xx þu;yy þ r1U;y ¼ 0; s2

2w;xx þ w;yy þ r2U;y ¼ 0; c2U;xx þU;yy ¼ 0; ð5:4Þ
where s2
i ¼ 1�M2

i ; Mi ¼ V=ci; ri ¼ di=c2
i ði ¼ 1;2Þ. The Mach numbers Mi < 1 since the crack is propagating at subsonic

speed.
The boundary conditions of the problem are
u2ðx;0Þ ¼ 0 when jxj > a; ð5:5Þ
Uðx; 0Þ ¼ 0 when jxj > a; ð5:6Þ
U;xðx;0Þ þ d1 � uy;xðx; 0Þ ¼ 0 when jxj < a; ð5:7Þ
u2;xðx;0Þ þ u1;yðx; 0Þ þ L �U;x ¼ 0 when jxj <1; ð5:8Þ

2m
1� 2m

u1;xðx; 0Þ þ
2ð1� mÞ
1� 2m

u2;yðx; 0Þ � e1 �U;yðx;0Þ ¼ �P0mec þ P0mag ¼ �P0 when jxj < a; ð5:9Þ
where P0mag ¼ b2
c � vðH0Þ � ðvðH0Þ � 2Þ=ðvðH0Þ þ 1Þ2; l � P0mec is a mechanical force acting on the surface of the crack,

e1 ¼ h2
c ð1þ vðH0ÞÞ½v2ðH0Þ � 2vðH0Þ�; d1 ¼ �vðH0Þ=ðvðH0Þ þ 1Þ; L ¼ k1=2; b2

c ¼ ðvðH0Þ þ 1Þ2h2
c .

5.2. The solution methodology

By applying the Fourier transform method to Eq. (5.4) the potential functions are readily obtained
uðx; yÞ ¼ 1
p

Z 1

�1
AðaÞ exp½�b1y� þ d1

c2
1

jaj
a2 � b2

1

CðaÞ exp½�jajy�
( )

exp½�iax�da; ð5:10Þ
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wðx; yÞ ¼ 1
p

Z 1

�1
BðaÞ exp½�b2y� exp½�iax�da; ð5:11Þ

Uðx; yÞ ¼ 1
p

Z 1

�1
CðaÞ exp½�cjajy� exp½�iax�da; ð5:12Þ
where A; B and C are unknown functions to be defined from boundary conditions (5.5)–(5.9) and b2
i ¼ a2ð1�M2

i Þ:
The unknowns A; B and C can be rewritten as function of a new quantity DðaÞ:
BðaÞ ¼ i

a2 � b2
2

f�2a� d1½aQ �2ðaÞ þ icjajQ �1ðaÞ � aL�gDðaÞg; ð5:13Þ

AðaÞ ¼ 1
b1

1þ d1Q �2ðaÞ þ
a

a2 � b2
2

½�2a� d1ðaQ �2ðaÞ þ icjajQ �1ðaÞ � aLÞ�DðaÞ
( )

; ð5:14Þ
where
Q �1ðaÞ ¼ �i
jaj
a

Q 0
1; Q �2ðaÞ ¼ �Q 0

1; Q0
1 ¼

d�1
c2

1

c
c2 �M2

1

þ d�2
c2

2

c
c2 �M2

2

From the boundary conditions (5.5)–(5.9), the determination of unknown DðaÞ leads to the following dual integral equations:
1
p

Z 1

�1
DðaÞ exp½�ixa�da ¼ 0; jxj > a; ð5:15Þ

1
p

Z 1

�1
DðaÞ½feðaÞ þ d1fmðaÞ� exp½�ixa�da ¼ P0; jxj < a; ð5:16Þ
where
feðaÞ ¼ jajR�ðM2
1;M

2
2Þ; R�ðM2

1;M
2
2Þ ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

2

q
� ð2�M2

2Þ
2

M2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1

q ; f mðaÞ ¼ jajRmðM2
1;M

2
2Þ;

RmðM2
1;M

2
2Þ ¼

ð2�M2
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
1

q Q0
2 �

1
M2

2

ðQ 0
2 þ Q 0

1c� LÞ
" #

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

2

q
M2

2

ðQ 0
2 þ Q 0

1c� LÞ � 2m
1� 2m

Q 0
1 �

2ð1� mÞ
1� 2m

Q 0
2cþ e1c:
The magnetoelastic stress tc
22ðx;0Þ=l ¼ t22ðx; 0Þ=lþ tM

22ðx;0Þ=l is expressed through DðaÞ as follows:
tc
22ðx; 0Þ ¼ P0mag þ

1
p

Z 1

�1
DðaÞ½feðaÞ þ d1f �mðaÞ� exp½�ixa�da; ð5:17Þ
where
f �mðaÞ ¼ feðaÞ � e1 � cjaj � R0 � cjaj; R0 ¼ b2
c

2a22 � 2vðH0Þ
vðH0Þ þ 1

; a22 ¼ vðH0Þ þ H0 � v0ðH0Þ:
Let us
EðsÞ ¼ P0

FemðM2
1;M

2
2Þ
� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � s2
p ; ð5:18Þ
where
FemðM2
1;M

2
2Þ ¼ R�ðM2

1;M
2
2Þ þ d1RmðM2

1;M
2
2Þ:
Then the solution of dual integral equations (5.15) and (5.16) can be represented as
DðaÞ ¼ 1
p

Z a

�a
EðsÞ exp½�ias�ds: ð5:19Þ
When y ¼ 0, the magnetoelastic stress tT
yyðx; yÞ=l have the following form:
tc
22ðx;0Þ=l ¼ P0mag þ

k1

p

Z a

�a

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2
p � 1

s� x
ds ¼ P0mag þ k1

1� xffiffiffiffiffiffiffiffiffi
x2�a2
p ; x > a;

1þ xffiffiffiffiffiffiffiffiffi
x2�a2
p ; x < �a;

1; jxj 6 a:

8><
>: : ð5:20Þ
The normalized stress intensity factor can be expressed as
k1 ¼ a1=2 � lim
x!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� aÞ

p
tc

22ðx; 0Þ ¼
F�emðM

2
1;M

2
2Þ � a1=2

FemðM2
1;M

2
2Þ

P0; ð5:21Þ
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where
F�emðM
2
1;M

2
2Þ ¼ R�ðM2

1;M
2
2Þ þ d1RmðM2

1;M
2
2Þ � e1 � cR0:
From (5.21), when V ¼ 0, i.e. the crack is stationary the following is obtained:
k1

P0a1=2

����
V¼0
¼ 1þ d1ð1� mÞfðcþ 1ÞgQ 0

1 � R0cþ ½k1=2� ðc� 1ÞQ 0
1�=gg

1þ d1ð1� mÞfe1cþ ðcþ 1ÞgQ 0
1 þ ½k1=2� ðc� 1ÞQ 0

1�=gg
; ð5:22Þ
where g ¼ 2ð1� mÞ=ð1� 2mÞ. In a case of magnetosoft material with a linear law of magnetization (vðH0Þ ¼ v ¼ const:), when
the velocity of a crack is equal to zero (V ¼ 0) it follows from (5.21) or (5.22) that
k1 � a1=2P0½1� vð1� mÞb2
c �
�1
; ð5:23Þ
where b2
c ¼ ðvþ 1Þ2h2

c .
Result (5.23) first time was derived by Shindo (1977).
Notice that for a magnetosoft material with a linear law of magnetization the intensity factor k1 !1 when

b2
c ! 1=vð1� m2Þ (see formulae (5.23) and Shindo (1976)). At the same time, from Eq. (5.21), the denominator of Eq.

(5.21) cannot be zero when the magnetization law is given by vðHÞ ¼ Ms=H.
It follows from abovementioned that the nonlinear law of magnetization can have qualitative and quantitative influence

on magnetoelastic quantities.
It follows from Eq. (5.21) that for a magnetosoft material with a linear law of magnetization (vðH0Þ ¼ v ¼ const:) the

stress intensity factor has the following form:
k1 ¼ � a1=2P0 R�ðM2
1;M

2
2Þ þ

L1

M2
2

2�M2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
1

q � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

2

q2
64

3
75þ d1

c2
1M2

1

2� 2�M2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
1

q
2
64

3
75

8><
>:

9>=
>;

� R�ðM2
1;M

2
2Þ þ

L1

M2
2

2�M2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
1

q � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

2

q2
64

3
75þ d1

c2
1M2

1

2� 2�M2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2
1

q
2
64

3
75� v3

l2
r

b2
c

8><
>:

9>=
>;
�1

; ð5:24Þ
where
L1 ¼ ðvb2
c lrÞ and

d1

c2
1

¼ 1� 2m
1� m

� L1:
5.3. Numerical results

Numerical calculations have been carried out for a normalized stress intensity factor k1 ¼ k1=a1=2P0. In particular, the
dependence of the stress intensity factor on the magnetic field h2

c ¼ l0H2
0=l ¼ H2 � 10�17 and normalized velocity of the

crack �t ¼ V2=c2
1 is found.
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Fig. 4. Dependence of k1 on nondimensional speed of movement �m, for selected magnetic fields h2
c ¼ a� 10�16.
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From Eq. (5.21), it appears that if h2
c –0 the intensity factor k1 !1when V ! V� < c2 (where V� is the velocity leading the

denominator of Eq. (5.21) to zero). If h2
c ¼ 0 the stress intensity factor k1 does not depend on the speed of a moving crack.

These conclusions show that the intensity factor essentially depends on an external magnetic field, the speed of a moving
crack and physical parameters of the problem.

Synergistic implications of the interaction of the elastic and magnetic fields on the intensity factor for different type of
law of magnetizations are displayed in Figs. 4–7.

In Fig. 4, effects of the normalized speed of moving crack �t ¼ V2=c2
1 on the normalized intensity factor k1 for various

values of normalized magnetic fields h2
c are shown. The law of magnetization is set by Eq. (2.23), i.e. a magnetosoft

material with the linear law of magnetization. The numerical results are carried out for lr ¼ 105; m ¼ 0:35. As shown
in Fig. 4, the external magnetic field (h2

c –0Þ essentially changes the value k1 in comparison with a pure elastic case
(h2

c ¼ 0Þ.
In Figs. 5 and 6, the dependence of k1 on a normalized magnetic field is given for various values of normalized speed of a

moving crack. In the numerical simulations it is assumed m ¼ 0:3. The law of magnetization is set by Eq. (2.22). Fig. 7 is set for
117.0=v

19.0=v

21.0=ν

211.0=ν

1k

H

Fig. 5. Dependence of k1 on magnetic field h2
c ¼ H2 � 10�17 for selected values of speed of movement when lr ¼ 105; br ¼ 103.

21.0=ν

211.0=ν

19.0=ν

18.0=ν

1k

H

Fig. 6. Dependence of k1 on magnetic field h2
c ¼ H2 � 10�17 for selected values of nondimensional speed of movement when lr ¼ 105; br ¼ 103.

1k

H

219.0=ν

16.0=ν

21.0=ν

214.0=ν

Fig. 7. Dependence of k1 on magnetic field h2
c ¼ H2 � 10�17 for selected values of nondimensional speed of movement when Bs ¼ 5 T;lri ¼ 5� 103.



Table 1
Dependence of k1 on dimensionless magnetic field H for parameters b ¼ 108 ;j ¼ 105 when speed of cracks movement �t ¼ 0

vðHÞ ¼ ðb=HÞarctgðjH=bÞ vðHÞ ¼ const: ¼ j

H ¼ 0 1 1
H ¼ 10 1.07 1.079
H ¼ 20 1.405 1.398
H ¼ 30 2.846 2.517
H ¼ 40 �6.553 92.25
H ¼ 50 �1.25 �2.46
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the nonlinear law of magnetization (2.21). In all cases, the normalized intensity factor k1 essentially depends on enclosed
magnetic field and the speed of a moving crack.

From the numerical simulations, it is possible to conclude that:

(a) With an increase of the magnetic field, the intensity factor k1 first decreases, passing through zero to become negative,
but then sharply increases (for V2=c2

1 ¼ �t < 0.21). Negative intensity factor is physically impossible under tensile stress
field. The crack surfaces will approach each other, and, if the compressive stress is large enough, the crack will close.
However, only circumstances in which the crack remains open are considered here. This observation implies that the
magnetic field can retard the propagation of a crack in ferromagnetic materials. Analog type of phenomena for energy
release rate was observed and discussed by Li and Kardomateas (2007) in a problem related to the investigation of
stress fields in a piezoelectromagneto-elastic anisotropic bimaterials with an interface crack.

(b) The Fig. 7 shows that for normalized velocity V2=c2
1 ¼ �t ¼ 0:219 the stress intensity factor is increases as magnetic

field increases, a tendency is opposite for other velocities. This phenomenon is due to fact that the velocity of a crack
V2=c2

1 ¼ �t ¼ 0:219 is close to the velocity of a propagation of Rayleigh waves (in discussed case the Rayleigh waves
speed is �tR ¼ 0:28). The intensity factor k1 !1 with the increase of the magnetic field for �t � �tR.

(c) An applied magnetic field makes the stress intensity factor and magnetoelastic stresses velocity dependent. A mag-
netic field can increase or it can decrease the stress intensity factor (depends on crack speed). At critical magnetic field
strengths, the stresses in the vicinity of the crack change sign. Magnetoelastic behavior of ferromagnetic body is highly
sensitive to material properties.

(d) Figs. 5–7 shows also that the intensity factor k1 essentially different for different laws of magnetization.

Note that the linear law expressed by Eq. (2.23) takes place at a rather weak magnetic field. The nonlinear laws (2.21) and
(2.22) can be used for a strong magnetic field.

Table 1 shows the dependence of the intensity factor k1 on the normalized magnetic field H ¼ 109h2
c for two different

laws of magnetizations: Dreifous form and linear law. It clearly appears that the nonlinear law of magnetization has a
strong influence on the intensity factor k1 starting from H ¼ 30. The simulations based on the linear law of magnetization and
on the nonlinear law of magnetization give the same results for the intensity factor k1 for a small magnetic field.

6. Conclusions

The equations of magnetoelasticity for magnetosoft materials with a nonlinear law of magnetization are presented. The
following two problems are considered on the basis of these equations: (1) the magnetoelastic stability of a ferromagnetic
plate-layer in a homogeneous transverse magnetic field, (2) the stress–strain state of a ferromagnetic plane with a moving
crack in a transverse magnetic field. The nonlinear law of magnetization should be taken into account when dealing with
stability problem of plates in strong external magnetic field. The nonlinear law of magnetization has a strong influence on
the magnetoelastic characteristics in the crack propagation problems.

The present model can be used in magnetoelasticity studies where soft ferromagnetic materials are used in the presence
of a strong magnetic field. Possible applications include the use of an applied magnetic field for increasing the stress intensity
factor during machining (which should assist chip formation and increase machinability), and applying a magnetic field to
lower stress intensity factors in structural components (which should effectively increase toughness).
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