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The purpose of the work is to extend the use of non-conventional tests and full field measurements to the
identification of an anisotropic damage law. A Digital Image Correlation technique based on a finite ele-
ment discretization is used to extract planar displacement fields. The reconditioned Equilibrium Gap
Method is then used to retrieve a damage law that accounts for shear softening, a specific form suited
to the present application. The identification is shown to reduce to a linear system. The example of a biax-
ial shear test performed on a cruciform specimen is considered. The approach is first qualified by using
displacement fields resulting from a non-linear computation with a known damage law. A good agree-
ment is observed between the prescribed and identified laws for distinct parameter settings, even when
significant noise is added to the displacement fields. The reconstructed displacement fields coincide per-
fectly with the measurements. The complete scheme is finally tested considering images taken during an
experiment performed on a carbon/carbon composite. The identified damage pattern and the correspond-
ing damage values are similar to post-processed maps using classically identified parameters. The recon-
structed displacement field accounts for 95% of the fluctuations observed in the measurements.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials usually exhibit complex, namely, aniso-
tropic and non-linear behaviors. Ceramic Matrix Composites
(CMCs) in particular behave in very distinct ways depending on
the loading direction with respect to the fiber directions and
whether they are subjected to tension or compression. Many mod-
els developed in the framework of Continuum Damage Mechanics
have been proposed to cope with structural computation needs
(Voyiadjis et al., 1998). The damage variables, representing the rel-
ative loss of modulus are introduced at distinct scales. Burr et al.
(1998), for instance, introduce damage variables at the constituent
(micro)scale. Matrix cracking is assumed to be induced by the ap-
plied load, namely, damage is driven by the maximum principal
strain. Conversely, fiber breakage and interface debonding are re-
lated to the fiber directions. Other models proposed for instance
by Ladevèze (1995) or Chaboche and Maire (2002) also account
for loading-induced anisotropy but introduce damage variables at
the ply (meso)scale. In all cases, the macroscopic behavior of a lam-
inate would result from a homogenization process.
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In the specific case of CMCs, a major issue is the lack of available
material and stacking sequences. The above-mentioned models
introduce a large set of parameters related to the state and growth
laws. A classical identification procedure thus requires numerous
elementary tests. In addition, some parameters, e.g., related to cou-
plings between different damage variables, require complex load-
ing paths and are hardly identified. A validation based on tensile
tests is also very restrictive in the sense that it may hide the limits
of applicability of the model.

In the past, full field measurements were essentially seen as a
complementary means of comparison between experiments and
FE simulations (Rastogi, 2000). Modern computation means, multi-
axial tests and full field measurements offer the opportunity to test
and compare different modelings, but also to identify mechanical
parameters (Geers et al., 1999; Avril et al., 2008). One of the main
challenges now concerns the design of the experiment. One key is-
sue is to select geometry and an associated loading leading to rel-
evant levels of damage in a large part of the specimen.
Computations are essential at this stage. For natural or synthetic
anisotropic and heterogeneous materials, this method offers a un-
ique access to parameters of a constitutive law at a given scale. The
wealth of data resulting from kinematic fields of the tested speci-
men under non-proportional and multi-axial loadings can then
be exploited as an entry to inverse methods.

Chalal et al. (2004) proposed to use the framework of the
so-called Virtual Fields Method (or VFM; Grédiac, 2004) to analyze
composites. A unidirectional composite loaded in shear was

mailto:jean-noel.perie@lmt.ens-cachan.fr
mailto:hugo.leclerc@ lmt.ens-cachan.fr
mailto:hugo.leclerc@ lmt.ens-cachan.fr
mailto:stephane.roux@lmt.ens-cachan.fr
mailto:francois. hild@lmt.ens-cachan.fr
mailto:francois. hild@lmt.ens-cachan.fr
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


J.N. Périé et al. / International Journal of Solids and Structures 46 (2009) 2388–2396 2389
described using a linear increase of damage with strain. An alterna-
tive approach, based on a new Digital Image Correlation scheme
(Q4-DIC; Besnard et al., 2006) and on the Equilibrium Gap Method
(EGM; Claire et al., 2002, 2004), the so-called Digital Image
Mechanical Identification procedure (DIMI; Roux and Hild, 2008),
allows one to retrieve an isotropic damage law directly from pic-
tures acquired during a single biaxial test performed on a flat cru-
ciform specimen. In the following, it is proposed to extend this
work to an anisotropic damage case.

The first part of the paper details the identification procedure. A
two-step approach is proposed to go from digital images to an
anisotropic damage law. First, the basis of the Q4-DIC technique
is briefly introduced and used for retrieving in-plane displacement
fields. Then it is shown how the DIMI framework can be general-
ized when considering an anisotropic damage law. The second part
of the paper presents some results of such an approach applied to a
biaxial test. A flat cruciform specimen made of [±45�] woven plies
is subjected to a shear test. Non-linear simulations are first used to
check the ability of the method to identify a given damage law. The
method is then applied to the corresponding experimental test
performed on a 2.5D C/C composite.

2. Digital image mechanical identification

2.1. From images to displacement fields

Among full field measurement techniques (Rastogi, 2000), Dig-
ital Image Correlation (DIC) is fast emerging because of its versatil-
ity and simplicity of use. It consists in evaluating displacement
fields corresponding to a series of (white light) pictures taken at
distinct stages of loading. If the natural texture of the material is
not sufficient for tracking accurately the displacements, a random
speckle is usually sprayed onto the surface. Two gray level images f
and g (f stands for the reference picture and g that corresponding to
the deformed stage) are related through the local passive advection
of the texture by a displacement field u:

gðxÞ ¼ f ðxþ uðxÞÞ ð1Þ

The problem consists in identifying the best displacement field by
minimizing the correlation residual

R
u2 dx over the whole region

of interest, where

uðxÞ ¼ jf ðxþ uðxÞÞ � gðxÞj ð2Þ

The minimization of u is intrinsically a non-linear and ill-posed
problem. For these reasons, a weak form is preferred by adopting
a general discretization scheme

uðxÞ ¼
X
n2N

unwnðxÞ ¼ ½wðxÞ�fug ð3Þ

where wn are the vector shape functions, and un their associated de-
grees of freedom. In a matrix–vector format, ½w� is a row vector con-
taining the values of the shape functions wn, and fug the column
vector of the degrees of freedom. After integration over the domain
X, the global residual is defined as

U ¼
Z Z

X
f ðxþ ½wðxÞ�fugÞ � gðxÞj j2 dx ð4Þ

At this level of generality, one may choose to decompose the dis-
placement field on a ‘‘mechanically meaningful” basis. When no
simple behavior is expected, one may use a ‘‘simple” Finite Element
kinematic basis (Sun et al., 2005). Here, classical bilinear shape
functions associated with quadrilateral 4-node elements (or Q4)
(Besnard et al., 2006) are chosen. It is referred to as Q4 Digital Image
Correlation (or Q4-DIC). The measured displacement fields are next
used as inputs for an independent damage law identification proce-
dure, based on the same kinematic description.
2.2. From displacement fields to an anisotropic damage law

2.2.1. Constitutive law and state variables
The material is assumed to be initially homogeneous. Indices

(1,2) refer to the ply coordinate system (i.e., material frame) here
coinciding with the fiber directions. With these notations,
E1 and E2 denote initial Young’s moduli (in the fiber directions),
G12 the initial shear modulus, and m12 one of the Poisson’s ratio.
The angle between this frame and that of the camera coordinate
system ðx; yÞ is denoted by h (Fig. 1). It is first assumed that damage
is mainly dictated by the fiber orientation. The damage model con-
sidered herein derives from an approach originally introduced by
Ladevèze and Le Dantec (1992). In the following, only one damage
variable d12 is considered and describes a gradual degradation of
the shear modulus. Many [0,90] carbon epoxy woven composites,
as a first-order approximation, and at a certain scale, behave in a
such a way (Gao et al., 1999). A continuum thermodynamics
framework is used (Germain et al., 1983). Gibbs’ free enthalpy den-
sity U of woven plies reads

U ¼ 1
2

r2
11

E1
� 2

m12

E1
r11r22 þ

r2
22

E2
þ r2

12

G12 1� d12ð Þ

� �
ð5Þ

From the state potential U, the state laws are derived, and in partic-
ular the driving force, Yd12 or energy release rate density associated
with the damage variable d12

Yd12
¼ oU

od12
¼ 1

2
r2

12

G12ð1� d12Þ2
ð6Þ

The driving force Yd12 may be expressed in terms of the (indirectly
measured) strains

Yd12
¼ 2G12�2

12

This force simply depends on elastic parameters and on kinematic
quantities. In the sequel, the growth law for d12 will be assumed
to be controlled solely by its associated thermodynamic force Yd12 .
Let us note that when three damage variables are introduced (to ac-
count for fiber breakage), other expressions for the driving force of
the damage variable d12 are proposed, e.g., by Hochard et al. (2007).
For the sake of simplicity, the following short-hand notations are
used in the sequel d12 ¼ d and Yd12 ¼ Y . An equivalent strain
�eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y=2G12

p
¼ j�12j is also defined. This quantity is written in

the camera frame ðx; yÞ as

�eq ¼
1
2
ð�yy � �xxÞ sinð2hÞ þ �xy cosð2hÞ

���� ���� ð7Þ

Last, one has to identify the parameters of the damage law relating
the damage variable d and the maximum over the elapsed time of
the equivalent strain �eq.

2.2.2. Identification of a damage law
The EGM is followed herein (Claire et al., 2002, 2004). It consists

in minimizing the force residuals associated with a mismatch of lo-
cal elastic properties from element to element. It is written in a
weak form by using a Finite Element discretization as the minimi-
zation of kfresk2

ffresg ¼ ½KðfdgÞ�fumeasg � ffg ð8Þ

where ffresg is the residual vector associated with measured dis-
placement fields fumeasg and ffg applied nodal forces. Unlike classi-
cal FE problems, the aim is to determine the damage fields fdg from
known (i.e., measured) displacement fields fumeasg (e.g., by Digital
Image Correlation) and the nodal force vector {f} assumed to vanish
since only interior nodes are considered. To be consistent with the
measured displacements, Q4 elements are used again. The damage
variable d is assumed to be element-wise uniform. In the case of



ROI

Fibers

FyFy

Fx

Mate
ria

l fr
am

e 1

Camera frame

2

x

y

θ

Fig. 1. Schematic of the virtual test (a), reference mesh used and damage map obtained at the last load level plotted over the deformed (�10) mesh (b).
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anisotropic damage, the elementary stiffness matrix Kel is no longer
linear in d (as was the case of an isotropic damage description, Roux
and Hild, 2008) but rather affine

Kel
ij ¼ M0

ij �M1
ijd ð9Þ

where ½M0� and ½M1� are matrices dependent upon the initial elastic
parameters (of the undamaged element). These elastic constants
may also be identified using full field measurements (Lecompte
et al., 2007; Roux and Hild, 2008). This point will not be developed
herein. To simplify the expressions, an element-wise decomposition
of the stiffness matrix is introduced Mn

ij ¼
P

eMn
ije (for n = 0 or 1),

where the sum runs over all elements e. The corresponding contri-
bution of element e to the nodal force at the internal node j is
Ln

je ¼
P

iM
n
ijeui (n = 0 or 1). The problem is expressed by introducing

indices for nodes and elements. The idea is to avoid misunderstand-
ings that could be linked to the use of classical FE notations and to
explain how the method is implemented. The problem is then
equivalent to minimizing the quadratic norm Eg of the ‘‘equilibrium
gap”

Eg ¼
X

i

X
e

L0
ie � L1

iede

� � !2

ð10Þ

The solution to such problem would provide a map of shear modu-
lus contrasts for each loading step (Claire et al., 2004). The difficulty
is to identify a damage growth law, and to link the maps obtained at
different loading steps. In the following it is assumed that all the
maps result from the same damage law. By enforcing that damage
grows according to the same expression everywhere in the region
of interest, the damage law thus minimizes the equilibrium gap.
The regularization of the problem consists in using, at the very
beginning of the procedure, a specific decomposition H of the dam-
age law (i.e., a kind of ‘‘poor man” Laplace transform)

d ¼ H c�eq ;Ck
� 	

¼
X

k

Ckuk
c�eq
� 	

ð11Þ

where Ck > 0 8k, and with

uk
c�eq
� 	

¼ 1� exp �
c�eq

�k

 !
and c�eq ¼max

0<s<t
ð�eqðsÞÞ ð12Þ

The parameters �k are preset in order to select the space in which
the damage function is searched for. Only �k values in the range
of the experimentally observed equivalent strains are considered.
The choice usually made is to set a fixed ratio of 2 between two con-
secutive values. It corresponds to a good compromise between the
conditioning of the system and the number of degrees of freedom
used to describe the damage function.
The objective function Eg depends quadratically on the coeffi-
cients Ck defining the damage law for the given set of characteristic
strains �k

EgðCkÞ ¼
X

i

X
e

L0
ie � L1

ieH c�e
eq ;Ck

� �� � !2

ð13Þ

The above system is not well conditioned because the ½Mn�matrices
correspond within the chosen discretization scheme to second-or-
der differential operators acting on the displacement field in the
continuum limit. Because the displacement field is obtained exper-
imentally, it is inevitably prone to noise and hence the above for-
mulation may suffer from a high sensitivity to this noise, in
particular at short wavelengths.

In order to enhance the robustness, it is proposed to introduce
the operator S such that ½S�fLg ¼ fumeasg, where S solves an elastic
problem, namely, the medium is assumed to be undamaged.
Experimentally determined displacements are applied on the
edges as Dirichlet boundary conditions and the body forces fLg
are prescribed. The ‘‘reconditioned” equilibrium gap objective
function fEg is proposed as given by the following expression

fEg ðCkÞ ¼
X

i

X
j

Sij

X
e

L0
je � L1

je

X
k

Ckuk
c�e

eq

� � ! !2

¼
X

i

ui �
X

k

Ck

X
j

Sij

X
e

L1
ieuk

c�e
eq

� � !2

ð14Þ

which is read as the quadratic norm of a nodal vector homogeneous
to a displacement field. Note that the minimization is to be carried
out under the constraint Ck > 0 8k. In practice, the inverse operator
S is not computed, but rather the ‘‘vector” ½S�fLukg, which is ob-
tained as the solution of an elastic problem for the undamaged so-
lid. In this problem, the material is assumed to be homogeneous,
displacements measured on the edges are applied as boundary con-
ditions and body forces are prescribed. A remarkable feature of this
procedure is that the identification of the entire (non-linear) dam-
age evolution law is reduced to the resolution of a few linear sys-
tems (in practice, only one ore two iterations are needed), with
typically few degrees of freedom Ck. This results in particular from
the use of a specific decomposition of the damage law [Eq. (11)] and
from the choice of the norm (10).

3. Validation with synthetic data

The chosen configuration is a biaxial test on a flat [±45�] cruci-
form specimen. The sample is subjected to tension with respect to
y and to compression with respect to x (Fig. 1). It implies an intense
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shear strain in the ply coordinate system (Périé et al., 2002). In the
following, the focus will be on the identification of the damage part
of a model and thus inelastic effects (e.g., related to frictional slid-
ing) are not described. In this first part, the identification proce-
dure is evaluated by using simulated data. The displacement field
then results from a non-linear FE computation performed with a
known damage law. The latter is first used directly and, in a second
stage, corrupted with white noise.

The simulations have been performed with an in-house finite
element code (Leclerc, 2008). A plane stress state is assumed. The
whole cruciform specimen is meshed (Fig. 1). The central part of
the specimen is uniformly meshed by using 17� 17 Q4 elements
to be consistent with the measured kinematic field. The displace-
ments computed with this mesh are used as input data for the
identification procedure. The arms and the material surrounding
the region of interest are meshed by using T3 elements. The angle
between the local material coordinate system and the camera
coordinate system is set to 45�. The in-plane elastic parameters
are such that E1 ¼ 35 GPa, E2 ¼ 30 GPa, G12 ¼ 7 GPa and m12 ¼ 0:1.

The chosen damage law is decomposed onto the basis described
in the previous section. The parameters are �k ¼ 5� 10�3�
½1;2;4;8� and Ck ¼ ½0:5; 0:3;0:15;0:05�. The resulting growth law
d12 versus �k is shown in Fig. 2. A non-local approach is used to lim-
it numerical localization effects induced by strain softening. In
practice, a mean force Y is computed in a given characteristic vol-
ume. In some particular cases (e.g., woven composites, Hochard
et al., 2007), the size of this volume may be related to a material
characteristic length. In the present case and for the sake of sim-
plicity, Y is simply computed over each element. The loading con-
sists in a uniform displacement prescribed at the end of the arms.
For both loading directions, normal displacements at the ends of
the arms are increased symmetrically step by step, while tangen-
tial displacements are forced to 0. The relative displacement be-
tween the ends of the two perpendicular directions has the same
magnitude but an opposite sign.

Fifteen displacement fields and associated damage fields are
computed for equal increments of the relative displacement of
the grips. As expected, a moderately heterogeneous damage map
is obtained at each loading step. The damage map obtained at
the last stage of loading is plotted underneath the deformed mesh
(Fig. 1). Due to stress (and strain) concentrations, the in-ply multi-
axial stresses and the smaller surface of the T3 elements, the mean
equivalent strain is higher in the elements that surround the fillet
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Fig. 2. Prescribed and identified damage laws with different �k parameters (no data
are available in the gray shaded zone).
radii than in the rest of the specimen. However, one notes that the
associated concentration of damage does not drastically limit the
higher damage level that is obtained in the virtual ‘‘Region Of
Interest (ROI).” With the chosen damage law, a maximum relative
displacement of 0.6% between the ends of opposite arms leads to a
damage level greater than 0.7 in that region.

To assess the quality of the identification, it is first proposed to
compare the reconstructed displacement field (using the identified
damage field) to the reference data, i.e., the ‘‘measured” displace-
ment field. A residual R is defined as the ratio of the standard devi-
ation (denoted by v(�)) of the difference between the measured
and reconstructed displacement fields, normalized by the standard
deviation of the measured displacement field:

R ¼ vðureconstructed � umeasÞ
vðumeasÞ

ð15Þ

The smaller the residual R, the better the result. In the following, this
quantity is reported for the last load level. Different trial functions
are tested. First, the trial function of the imposed law is used, i.e.,
�k ¼ 5� 10�3 � ½1; 2; 4; 8�. The identified parameters are Ck ¼
½0:49;0:28;0:19;0:03�. Although the numerical values of the Ck coef-
ficients are different from the imposed ones, ðCk ¼
½0:5;0:3;0:15;0:05�Þ, it is seen in Fig. 2 that the identified and pre-
scribed damage laws with the chosen equivalent strain are undistin-
guishable over the range of strains covered by the simulated
experiment. This excellent agreement is confirmed by the residual
at the last loading step, R � 3:1� 10�4.

Different parameters of the trial functions have then been
tested to check the sensitivity of the method to the damage decom-
position (Fig. 2). For example, identifications achieved with
�k ¼ 3� 10�3 � ½1; 2; 4; 8� and �k ¼ 7� 10�3 � ½1; 2; 4; 8� give,
respectively, Ck ¼ ½0:01;0:56;0:19;0:24� and Ck ¼ ½0:88;0;0;0:12�.
In both cases, the agreement is very good. For larger values of �k

the results are less accurate (respectively R ¼ 3:1� 10�4 at the last
loading level and R ¼ 15:8� 10�4 at the seventh loading level).
Parameters �k that do not follow a geometric sequence have also
been tested. As an example, the result for �k ¼ 3�
10�3 � ½1; 2; 3; 4�, amounts to Ck ¼ ½0:16;0:25;0:0;0:59�, and is
also shown in Fig. 2. Again the result is excellent (R ¼ 5:2� 10�4

at the last loading level). For all the presented identification cases,
a relative difference of less than 0.16% is measured between com-
puted and identified displacement fields. Moreover, the identified
shear damage maps are almost identical to the computed ones.
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Fig. 3. Prescribed and identified damage laws using 100� 8 noisy displacement
fields with a 20% noise level.
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The noise robustness of the proposed method is now addressed.
One adds a white noise with a given standard deviation on the 15
computed displacement fields. In practice, this standard deviation
is set to a fraction of the standard deviation of the first computed
displacement field. Two noise levels are considered, namely, 20%
and 40%. This corresponds to realistic levels observed on measured
displacement fields (because of the low amplitude of the displace-
ments at the first loading level). To achieve the identification, one
first uses only every other displacement field (i.e., 8 steps), and
then all levels. For each study, identifications are performed by
using 100 random selections of noise.

First, the influence of the number of displacement fields used is
illustrated for a given level of noise. With 20% noise, the identified
damage laws based on 100 displacement fields are shown in Fig. 3
for 8 levels and Fig. 4 for 15 levels. When using all 15 displacement
fields, the observed discrepancies decrease slightly in the range of
computed damage (up to 0.65). Second, the influence of the noise
level is compared when all available data are used. Identified dam-
age laws corresponding to 20% and 40% are given in Figs. 4 and 5.
As expected, the discrepancies are larger for higher values of noise.
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Fig. 4. Prescribed and identified damage laws using 100� 15 noisy displacement
fields with a 20% noise level.
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Fig. 5. Prescribed and identified damage laws using 100� 15 noisy displacement
fields with a 40% noise level.
These differences are also revealed by plotting the corresponding
relative mean error (Fig. 6) and relative standard deviation maps
(Fig. 7) for both noise levels. However, even for 40% noise, a reason-
able agreement is observed between the mean damage per ele-
ment and the identified result with uncorrupted data. For the
highest values of damage, the relative mean error is less than 5%
and the relative standard deviation less than 3%. In terms of dis-
placements, the residual R does not exceed 3� 10�2, even for
40% noise. An example of comparison between the last recon-
structed and measured displacement fields for such a noise level
is shown in Fig. 8 ðR ¼ 2:4� 10�2Þ. This analysis indicates that
the procedure displays good stability/robustness properties.

In order to quantify the improvements linked to the identified
model, one proposes to compare the results to a simple reference
computation. One may for instance simulate the displacement fields
ureconstructedðd ¼ 0Þ for the undamaged solid (homogeneous orthotro-
pic elastic body). On the edges of the ROI, the measured displace-
ments are prescribed as (Dirichlet) boundary conditions. The
internal displacements are computed and compared with their mea-
sured counterparts (Fig. 9). In this case, the displacement differences
no longer show random patterns (indicating clearly that the model-
ing should be improved) and the corresponding residual is much
higher ðR ¼ 11:4� 10�2Þ. Another measure Q is then proposed

Q ¼ kureconstructed � umeask2

kureconstructedðd ¼ 0Þ � umeask2
ð16Þ
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Here again, the smaller the quantity Q, the better the result. The er-
ror indicator Q is much less than unity ðQ ¼ 20:8� 10�2Þ, indicating
a significant improvement.

4. Analysis with experimental data

In this last part, the experiment performed on a so-called 2.5D
C/C composite is presented. This woven material has a non-linear
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Fig. 8. Comparison between measured and reconstructed displacem
behavior when subjected to shear or tension with respect to the fi-
ber direction. The test has been carried out on the multiaxial ma-
chine ASTRÉE. A flat cruciform specimen, considered as a [±45�]
laminate, is subjected to a shear test. Tabs glued on the (100-mm
large) arms allow for a transmission of the load to the gauge sec-
tion (Fig. 10). Due to the specimen thickness (i.e., 10 mm), a plane
stress state is assumed. This test was designed by means of FE
computations to induce a high value of shear damage in the central
part of the specimen. Loading and unloading cycles are exploited.
The detail of the loading path and of the experimental setup are gi-
ven in (Périé et al., 2002). In the present case, 11 pairs of pictures
are used. The latter are subsequently used to identify the parame-
ters of the proposed damage law.

Digital images of the surface (1016 � 1008-pixel resolution, 8-
bit depth) are shot at various steps of loading (Fig. 10(b) and (c)).
The pictures are analyzed by using the Q4-DIC algorithm. The ele-
ment size is set to 32 pixels (�3 mm). When using the first image
as the reference, the displacement fields results not only from
damage but also from inelastic related effects. As it is usually made
when a classical identification procedure (based on tensile tests) is
followed, one uses the 11 loading/unloading cycles. The hysteretic
effects are neglected and the unloading is considered with a frozen
state of damage. The first picture is taken at the maximum shear
loading and the second one at the following unloaded state in
terms of resultant in each arm (Fig. 10(c)). The entries of the
EGM correspond to the difference between the displacement fields
measured between the reference image and these two pictures.
The elastic parameters are identified using a classical procedure
based on tensile tests (Périé et al., 2002).

The damage field within the ROI was also computed by using a
damage post-processor (Périé et al., 2002). The non-linear param-
eters were identified using the same tensile tests. The woven ply
is then modeled as a [0,90] laminate made of unidirectional plies.
The shear damage of each ply is reported (Fig. 12). One notes a very
good agreement between these post-processed damage maps and
those determined by following the present procedure (Fig. 12).
Fig. 13 shows a comparison between the measured and recon-
structed displacement fields for the last loading step. The corre-
sponding residual is here estimated to be R ¼ 5� 10�2, higher
than for the artificial cases that were deprived of noise, but still
quite low. As proposed earlier, one can also compute the displace-
ment fields corresponding to an undamaged state (Dirichlet
boundary conditions applied on a homogeneous and orthotropic
elastic body) and compare it to the measurements (Fig. 14). The
residual then amounts to more than R ¼ 7:8� 10�2. The improve-
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Fig. 9. Comparison for the last loading level between measured and computed displacements resulting from a homogeneous elastic problem with measured Dirichlet
boundary conditions.
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ment linked to the damage modeling is confirmed by the value of Q
ðQ ¼ 70:6� 10�2Þ. It is to be underlined that the present approach
allows one to identify a damage law with higher levels of damage
(Fig. 11) then those observed during classical tensile tests (Périé
et al., 2002) (typically less than 0.5).

5. Summary and perspectives

A new way of identifying anisotropic damage laws using
images taken during a mechanical test was presented. The pro-
posed approach is based on recent developments of two (inverse)
methods, namely, finite element Digital Image Correlation and
identification based on the Equilibrium Gap Method. The first
one allows one to retrieve full-field (FE formatted) displacement
fields from images during the loading history. The second one
consists in solving an FE problem for which the data are mea-
sured displacements and the unknowns the parameters of the
chosen trial damage law. The performance of the method was
first evaluated using displacement fields resulting from FE non-
linear computations. A biaxial test on a cruciform specimen made
of an orthotropic material was simulated. The results of the pro-
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cedure, in terms of identified law and of displacement fields, are
excellent and only weakly sensitive to the basis of chosen trial
functions and to noise. The presented results are deemed very
encouraging.

The procedure was then applied to analyze a real biaxial test
performed on a woven composite. In that case, it is possible to
identify in a reliable way the damage pattern quite similar to the
one obtained by post-processing the measurements with a classi-
cally identified damage model. The damage values are also compa-
rable. The reconstructed displacement field is also very close to the
measured one.

This work corresponds to the first step toward the identification
of more general constitutive laws when considering anisotropic
materials. Future developments will include coupled anisotropic
damage and inelasticity, which are important for a full account
of the behavior of many composite materials.
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