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1. Introduction

Layered columns arise in a wide range of applications. Slender
columns made of composite materials are widely used in aero-
space engineering, civil engineering, shipbuilding, and in other
branches of industry because of their high load-carrying capacity
and convenient strength-to-weight ratio. The behaviour of these
structures largely depends on the type of the connection between
the layers.

Since absolutely stiff connection between the layers can hardly
be realized in practice, an inter-layer slip develops. If the slip has a
sufficient magnitude, it significantly affects the mechanical behav-
iour of the composite system. Consequently, the inter-layer slip
has to be taken into consideration in what is called partial interac-
tion analysis of composite structures. Accordingly, there are many
published papers in which composite beams and beam-columns
are analysed analytically and numerically, see e.g., Ayoub (2005),
Cas et al. (2004a,b, 2007), Dall'Asta and Zona (2004), Gara et al.
(2006), Schnabl et al. (2007a,b), Ranzi et al. (2003), and Ranzi
and Zona (2007). An extensive literature review on linear and
non-linear analysis of layered structures is given by Leon and Viest
(1998) and Schnabl et al. (2007b).
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The strength of straight layered columns depends to a great ex-
tent on their buckling resistance and cohesion between the layers.
It is therefore of practical importance to employ analytical formu-
lations of such a problem. There have been relatively few analytical
investigations of this problem and to date only a few exact slip-
buckling models of composite columns have been developed. Ras-
sam and Goodman (1970) derived a simplified governing equations
for buckling behaviour of layered wood columns with both equal
and unequal layer thicknesses. Buckling parameter for a wide
range of geometric and physical parameters of a three layered
wood column is presented in design charts. Subsequently, an ana-
lytical solution of buckling problem is derived by Girhammar and
Gopu (1993). Their solution is based on the so-called “modified
second-order theory” and approximate buckling length coeffi-
cients. As it is well known, the above-mentioned theory neglects
the influence of extensional strains on buckling loads of Euler col-
umns. An extension and generalization of the latter theory is pre-
sented in Girhammar and Pan (2007), where exact buckling
length coefficients are used. Recent papers by Xu and Wu
(2007a,b,c) have presented an interesting approach to the solution
of slip-buckling and vibration problem of composite beam-col-
umns when shear deformation is taken into account. If shear defor-
mation is neglected, the equations for buckling load obtained by
Xu and Wu (2007a,b,c) are the same as presented in Girhammar
and Pan (2007).

The goal of this paper is the exact formulation of slip-buckling
problem of geometrically perfect two-layer composite columns.
As a result, exact analytical solutions are derived. However, in
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contrast to other researchers (Girhammar and Gopu, 1993; Gir-
hammar and Pan, 2007; Xu and Wu, 20073a,b,c), a linearized stabil-
ity theory is employed (Keller, 1970). Therefore, a solution of slip-
buckling problem is obtained without simplification of the govern-
ing equations. The critical buckling forces are determined from the
solution of a linear eigenvalue problem, i.e., det K = 0 (see, Planinc
and Saje, 1999).

In the numerical examples critical buckling loads are compared
to those of Girhammar and Pan (2007). Afterwards, the exact solu-
tion is used to investigate the effect of the inter-layer slip on the
buckling of a two-layer column for various boundary conditions.
A preliminary parametric study is conducted, by which an influ-
ence of different geometric and material parameters on buckling
forces of geometrically perfect two-layer composite column is
investigated.

2. Analytical model — model description
2.1. Assumptions

A formulation of the planar Euler-Bernoulli two-layer compos-
ite column used in this paper is based on the following assump-
tions: (1) the column is geometrically perfect and straight; (2)
the axial load is loaded eccentrically at a distance e from the refer-
ence axis; (3) material is linear elastic; (4) displacements, strains
and rotations are finite (each of the layers satisfies the assumptions
of geometrically exact Reissner beam theory); (5) the effect of
shear deformations is negligible; (6) strains vary linearly over each
layer, e.i. the ”Bernoulli hypothesis” is assumed; (7) the layers are
continuously connected and the slip modulus of the connection is
constant; (8) shapes of the cross-sections are symmetric with re-
spect to the plane of deformation and remain unchanged in the
form and size during deformation; (9) friction between the layers
is not considered. An additional assumption (10) is that an inter-
layer tangential slip can occur at the interface between the layers,
but no transverse separation (uplift) between them is possible.

2.2. Governing equations

We consider an initially straight, planar, two-layer composite
column of undeformed length L. Layers as shown in Fig. 1 are
marked by letters a and b. The column is placed in the (X,Z) plane
of spatial Cartesian coordinate system with coordinates (X,Y,Z)
and unit base vectors Ex, Ey and E; = Ex x Ey. The undeformed
reference axis of the layered column is common to both layers
and is defined as an intersection of the (X, Z)-plane and their con-
tact plane. It is parametrized by the undeformed arc-length x. Local
coordinate system (x,y,z) is assumed to coincide initially with spa-
tial coordinates, and then it follows the deformation of the column.
Thus, xX*=x'=x=X,y"=y’=y=Y, and z2=2z=z=7Z7 in the
undeformed configuration. The geometrically perfect composite col-
umn is subjected to a conservative compressive axial force P cen-
trally located at both ends in such way that homogeneous strain
and stress state at primary configuration of the column is achieved.
For further details an interested reader is referred to e.g., Schnabl
et al. (2007a,b).

2.2.1. Kinematic equations

The deformed configurations of the reference axes of layers a
and b are defined by vector-valued functions (see Fig. 1)
Rg = XaEX + YaEy +ZaEz = (Xﬂ + Ua)Ex +yaEy + WaEz7

1
Rb = X"Ex + Y Ey + Z°E; = (X" + u’)Ex + Y’ Ey + WEy, M

where superscripts a and b denote that quantities are related to
layer a and b, respectively. Functions u® and w® denote the compo-
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Fig. 1. Geometry and notation for a straight geometrically perfect two-layer
composite column.

nents of the displacement vector of layer a at the reference axis
with respect to the base vectors Ex and E;. Similarly, functions u?
and w’ are related to layer b. The geometrical components
u®,w, ub, and w? of the vector-valued functions RS and R} are re-
lated to the deformation variables with the equations derived by
Reissner (1972):

layer a:

1+u”—(1+4¢)cose’ =0,

W + (14 &%) sing® =0, (2)
(Pa/ - o7

layer b:

1+u” —(1+&)cose? =0,

WY 4+ (1+ &%) sing? =0, (3)
o — kP =0.

Here, the prime (') denotes the derivative with respect to x. In (2)
and (3) the deformation variables ¢ and ¢ are the extensional
strains of the reference axes of layers a and b;x? and «” are the
pseudocurvatures (Vratanar and Saje, 1999); whereas ¢® and ¢"
are the rotations of layers’ reference axes.

2.2.2. Equilibrium equations

The composite column is subjected to a force P at both ends.
Furthermore, each layer of the two-layer composite column is sub-
jected to interlayer contact tractions measured per unit of layer’s
undeformed length which are defined by

p° = DXEx + P3Ez,

(4)
pb = p?(Ex —+ ngZ
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Internal forces and interlayer
tractions in local coordinate
system (11,f)

Internal forces and interlayer
tractions in global coordinate
system (X, Z)

Fig. 2. Interlayer contact tractions and generalized equilibrium internal forces and moments with respect to the fixed global and rotated local coordinate system.

In order to write constitutive equations in usually used coordi-
nate systwm, it is suitable to express the (X,Z) components of the
interlayer contact tractions with the tangential and normal compo-
nents of the interlayer tractions p¢,p?, p%, and p’ (see Fig. 2):

P& = pf cos ¢ + py sin ¢,
Py = —p§ sin ¢ + pfi cos ¢,
pg’( = p? cos (,ob + pg sin <pb,
pg = 7p't’ sin ¢ +p,l?l cos ¢’

(5)

Using (4) and (5), the eqyilibrium equations of each layer are, see
e.g. Reissner (1972) and Cas et al. (2007):
layer a:

RY + % = R, + D¢ cos ¢® + P& sin ¢® = 0,

R7 +p§ =Ry — psin " + pjcos ¢® =0, (6)

My — (1 +¢)Q" +mf§ =0,

layer b:

RY +P§ = Ry + P} cos ¢® + ppsing® = 0,

Ry + D} =Ry — psing® + p}cos ¢ = 0, (7)

MY — (1400 +mb =0,

where

N = R, cos ¢® — Ry sin ¢,

Q" = Ry sin ¢ + Ry cos ¢°,

M® = M,

NP = RE cos " — R sin ¢”,

o = Rﬁ’( sin ¢ + Rg cos ¢°,
b b

Mb =M.

RS, RS, RS, RS, MY, and MY in (6)-(8) represent the generalized equi-

librium internal forces and moments of a cross-section of layers a
and b with respect to the fixed coordinate basis. On the other hand,

N Q% NP and @ represent the equilibrium axial and shear inter-
nal forces of the layers’ cross-sections with respect to the rotated lo-
cal coordinate system. Functions M® and M? are the equilibrium
bending moments.

2.2.3. Constitutive equations

To relate the equilibrium internal forces A, @, A%, and @° and
equilibrium internal moments M“ and M?” to a material model, the
following set of equations which assure the balance of equilibrium
and constitutive cross-sectional forces and bending moments of
the composite column have been introduced. Due to the assump-
tion that the transverse shear deformations are neglected, the con-
stitutive equations of a two-layer composite column are
N = NEx, e k") =N~ [ ¢%(D")dA" =0,

AT

M — MO, 6, k%) = M — / 264 (D) dA” = 0,
NP — A (x, ) = A — / o2(D")dA’ — 0,
M = ME(x, 1) = M — /Ab 262(D")dA* = 0.

The constitutive functions A&, M2, A2, and M introduced in
(9) are dependent only on deformation variables &%, k9, ¢®, and P
and are subordinated to the adopted linear elastic constitutive
model defined by stress-strain relations

oc(D%) = E°D* = E*(e" + 2°x%), (10)
o2(D?) = EPD” = E" (b + 2°k?),

where ¢% and o2 are the longitudinal normal stresses of layers a and
b; D°, D’ are the mechanical extensional strains in longitudinal direc-
tion in layers a and b; and E°, E” are elastic moduli of layers a and b.

By introducing (10) into (9) the well-known constitutive equa-
tions of linear elastic columns can be rewritten as
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N E”/ﬂ(s” A = N — €% e — o = 0,

MO _E° Aaz"(s“+za;c“)dAa = M* - (5" — Cpx" =0, an
NP —E /Ab(gb + 20 dAY = NP — b b — b =0,

Mb B /Ab 2P+ A = MO — Gy — Chpr? = 0,

in which material and geometric constants are marked by

c4,,C%,...,Cb; eg, C% =E'A", where A® denotes the cross-sec-
tional area of layer g, see e.g. KryZanowski et al. (2008) and Rodman
et al. (2008).

Moreover, the contact constitutive law must also be introduced.
In the presented analysis the linear constitutive law of bond slip
between the layers is assumed:

P{ (%) = H(A(X)) = KA(X). (12)

In the above equation constant K determines the inter-layer-slip
modulus.

Remark 1. Considering strain and stress state at primary config-
uration as homogeneous (i.e., @ =& =¢ and «? =’ =0) and
denoting by e an eccentricity of axial load P from the reference axis
(see, Fig. 1), the following two constitutive equations are obtained
from (11), for two-layer composite column, respectively

—P=N' N = Clet G = (G + Ch)e
—Pe=M"+ M" = C5,e4 Chie = (C3 + Co))e.

These equations represent a system of two equtions for two un-
known functions e and &. The solution for e is

b
e— G+ Gy
o
Ciy + G
Since C%,,C%,C%,, and C5,, depend on geometric and material param-
eters, the point of application of P of two-layer composite column
coincides with the centre of gravity of equivalent fully composite

column only when layers have the same material properties, i.e.,
E=E.

2.2.4. Constraining equations

Once the layers are connected, the upper layer b is constrained
to follow the deformation of the lower layer a and vice versa. As al-
ready stated, the layers can slip along each other but their trans-
verse separation (uplift) or penetration is not allowed. This fact is
expressed by a kinematic-constraint requirement

Ri(x') = Ry(x), (13)

where x and x* are coordinates of two distinct particles of layers a
and b in the undeformed configuration which are in the deformed
configuration in contact and thus their vector-valued functions
RB(x) and R%(x*) coincide (see, Fig. 1). Eq. (13) can be written equiv-
alently in componential form as
* (g% b
X +ul(x") =x+u’(x), (14)
wi(x*) = wh(x).
The relative displacement (slip) that occurs between the two par-
ticles of layers a and b which are in contact in the undeformed con-
figuration is denoted by A and is defined as the difference of their
deformed arc-lengths s¢ and s?, see e.g. Cas et al. (2004a,b). Then,

AW+¢W:M®+ﬂ@HM@:M®ﬁ[W@—¥©Mé
(15)

By differentiating (14), adding the results with (2) and (3), the
following relations by which the rotations and pseudocurvatures
of layers are constrained to each other are obtained as

P (x") = ¢"(x), (16)
apyey 1)
K (x )m =1 (x). (17)

Remark 2. The relation (16) is exact, and may be obtained by the
following derivation. Differentiation of (14) with respect to x gives
du?(x*)\ dx* dub(x

<1+ d)g* )>a:]+ d)5)7
dw(x*) dx*  dwP(x)

dx  dx dx
Applaying Eqgs. (2) and (3), and rearranging, the following relations
result

(1 +£”(X*))cosqo”(x*)(g; = (1+£(x)) cos p®(x),
X

= (1+ & (x)) sin p?(x).

d
A (4% : [ (4
(1 +&*(x*)) sin 9 (x*) i
By mutual division of these equations, the relation (16) is derived
explicitly as

tan °(x") = tan ¢ (x) — ¢ (x") = ¢"(x).

In addition to the above presented constraining equations, the
equilibrium of the interlayer contact tractions of the particles in
contact is expressed in vector-valued function form as

X +p"x) =0, (18)
and by substituting (4) and (5) to (18) in componential form as
D% + ph = pcos ¢ + plsin ¢ + pP cos ¢ + pbsinp® = 0,
p% + pb = —p%sin ¢° + p®cos ¢ — pl sin ¢” 4 pb cos ¢” = 0.

(19)

A complete set of non-linear governing equations of two-layer
composite beam Egs. (2)-(19) consists of 32 equations for 32 un-
known functions  uf,ub,we,wP, o9, P &% & k9, kP RS, Ry, RS, RY,

b *
M, My, N NP, Q% @0, M®, MO, p§, bk, p%, pb, ¢, p?, p%, pb, A, and, x".

2.3. Linearized equations

In order to investigate the stability of boundary value problem,
non-linear equations which govern the behaviour of that problem
have to be introduced. The non-linear stability problems are con-
siderably more difficult to solve than linear problems. Therefore,
approximation methods should be used. One of the most applica-
ble methods for stability analysis of non-linear systems is what
we call linearized theory of stability or linear theory of stability. It
is founded on the fact that the bifurcation (critical) points of the
non-linear system coincide with the critical points of its equivalent
linearized system (Keller, 1970). The application of the linearized
stability theory, regarding the existence and uniqueness of the
solution of Reissner’s elastica, is presented by Flajs et al. (2003).

The linearized theory of stability is based upon the variation of a
functional F, which will here be made in the sense of the contin-
uous linear Gateaux operator or directional derivative, defined as
follows (Hartmann, 1985)

F(x + adx) — F(x)

5F (x,0%) — lim Z X F20X) Z F(x) _ d

2
lim ; i 1:0}-()‘ + adx), (20)

where the x and éx represent the generalized displacement field
and its increment, respectively, and « is an arbitrary small scalar
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parameter. 5 (x, éx) is also called linearization or linear approxi-
mation of dF at x. Accordingly, it is convenient for Egs. (2)-(19)
to be re-written in compact form as F = {}'1,}'17...,}'32}T, and
their arguments as x = {u®, u’, w%,w? ..., p% pb A x}'.

After the linearization of the governing Eqs. (2)-(19) has been
completed, linearized equations are evaluated at an arbitrary con-
figuration of the two-layer composite column. In order to apply lin-
earized equations to the two-layer composite column buckling
problem, these equations have to be evaluated at the primary con-
figuration of the column. The fundamental or primary configura-
tion of the column is an arbitrary deformed configuration in
which the composite column remains straight. In this case, the pri-
mary configuration is defined as

£a:£b:_ 1
Cl,+C
K =x"=0,
u =" =u'(0) — — X
L+

w* =w? =0,
¢"=¢"=0,
X =X,
A=0,
R)H(_Nﬂ_,ciqlp (21)

C?1+Ct1’1
RE=N"=— G

b

Cq]+C11
RE— Q' —0,
Ro=0' =0,
M‘;/:Ma _ C;l

a b ’

G+

ont G
b

Cl‘111+C]1
Pk =p{ =0,
px=p; =0,
pz=py=0 22
p;=p, =

Finally, the linearized system of equilibrium Egs. (2)-(19) when
written at the primary configuration (21) of the composite column
is easily derived in the following form
0F1 =du” — ¢ =0,
0F, = ou” — 8¢ =0,
0F3 =0 +(1+¢)dp=0,
0F4 =069 — ok =0,

6Fs = 0RY — p, =0,

6Fs = ORY 4 6p, =0,

6F7 = 6R, =0,

5Fs = OM,, + RyoW — (1 + ¢)6R; = 0, (23)
0Fq = oRy — C{,6&" — C4,0Kx = 0,

0F10 = ORY —
0F 11 = OMy — C3,06% — Ch, 0
0F 13 = 0A — du® + oub =0,
0F13 = 0p, — KOA =0,

0F14 = 0X" + ou® — ox — ou’ = 0,

Ch 06" — 01 = 0,
—(C3, 4+ Cb,)éK = 0,

where
1
-—— P,
G+
W = oW = swP,

5p = d¢" = ¢,
Sk = oK% = oib, (24)
Ry = P,

OR; = ORS + ORY,

oMy = oMS + oMY,

op, = op{ = op;.-

Eq. (23) constitute a linear system of 14 algebraic-differential equa-
tions of the first order with constant coefficients for 14 unknown
functions of x:ou®,sub,ow, e, 5, 6¢®, Sic, RS, 6R%, 5Rz, SMy, 5p,, SA,
and éx* along with the corresponding natural and essential bound-
ary conditions which may be written in the following general form,
see e.g. Cas et al. (2004b):
x=0:

sY0RY(0) + s3ou’(0) = 0,
sIOR%(0) + s9oub(0) = 0, 25)
s20Rz(0) + s2ow(0) = 0,

$96My (0) + s35¢(0) = 0,

x=1L:

SEORS (L) + ssou(L)
SLORY (L) + shoub(L)
SEORz(L) 4 skow(L) =
sESMy(L) + skdo(L) = 0,

)

0
> (26)
0

)

where s; € {0, 1} are parameters that determine different combina-
tions of boundary conditions of the two-layer composite column.
The superscript “0” and “L” of s indentifies its value at x = 0 and
X = L, respectively.

2.4. Analytical solution for critical buckling load

Due to the simple form of Eq. (23) and boundary conditions (25)
and (26) a critical buckling load can be determined analytically.
After the systematic elimination of the primary unknowns, the
set of linearized equations (23) is reduced to a system of three
higher-order linear homogeneous ordinary differential equations
with constant coefficients for unknown functions éw, éu?, and JA,
which uniquely describe an arbitrary deformed configuration of
the linearized column

Aow" +Bow" + CoA =0,

Dou® + Esw” — KA =0, (27)
F(6u® — 6A") + Gow"” + KA =0,
where
1 c,ce et
A:* C _-12%21 . 12 217
1+s< 2o c, )
B= RX7

¢,
1 11

D=Cj,
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Cla
E= 1+
F=¢b,,
,
G_—I—H. (28)

The aforementioned system of differential equations (27) may
further be simplified and as a result only a fifth-order non-homo-
geneous linear differential equation with constant coefficients for
unknown 6w is derived

How' +1ow" + Jow' =S¢y, (29)

where C; is an unknown integration constant and H,I,],S are con-
stants defined from

FA
H:?,
ABF — CEF + ACG — A(A+ F)K
I= AC :
KB (30)
J=—F(F+1),
KF

The corresponding general solution of (29) is the superposition
of the complementary solution éwy(x) which is the general solu-
tion of the associated homogeneous equations and the particular
solution éwp(x) satisfying Eq. (29)

ow(x) = owy(X) + owp(X). (31)

The homogeneous solution of (29) is obtained by solving the
corresponding characteristic polynomial of Eq. (29), which is de-
rived if ow in (29) is replaced by e™. Division of the derived equa-
tion by e™ gives, see e.g. Coddington and Levinson, 1955

HP +IP +Jr=0. (32)

The solution of (32) is investigated parametrically for different
geometric and material parameters and as a result three real
(21 = 0, 4 and /3) and two complex roots (is = fi, . = —pi) are ob-
tained. According to the superposition principle, the solution of the
corresponding homogeneous equation to (29) is therefore

(5WH(X) = (C; sin px + C, cos ﬁX + Cs ei2x +Cq e’ + Cs. (33)

On the other hand, a particular solution is obtained by the meth-
od of undetermined coefficients and is in this simple case given as

Swp(X) = Ce%c. (34)
Consequently, the general solution of (29) is
. , ; S
dw(x) = Cq sin Bx + Co cos fx + C3e"2* + Cqe”* + Cs5 + Cij. (35)

Using the 51, of (23) and substituting (35) into the last two
equations of (27) we obtain the solution for éu® and J5A as
(Mp? — N) cos pix (N — Mp?)sin px
+C;

B B
(M2 + N)eh* (M2% + N)es*

- +Cq

A2 }v3

1 CsNx + Cg (S']ﬂ+gx2> +C7x + Cs, (36)

oul(x) = Cq

+C3

OA(x) = C1 B(R — Pp%) cos fx — Ca B(R — PB?) sin X + C3 2o (P2
+ R)e™* + C473(P2 + R)e™ + Cs, (37)

where

CE + AK KB K
M=—p— N=—a@ %=
(38)
po_A g__B
c c

When éw, éu?, and SA are known functions of x, the remaining quan-
tities of the column Ju’, s, (SR;J(,&Rf(, SRz, 6My, and 6x* and thus the
general solution of the system of Eq. (23) can easily be obtained.
In order to properly consider the boundary conditions (25), (26),
it is suitable to express 5¢,5R§’(,6R§75Rz,6My with (35)-(37) and
their derivatives. Finally, the unknown integration constants
C1,C3,C3, C4,Cs,Cs,C7, and Cg are determined from the boundary
conditions (25), (26). Applying (35)-(37) to (23) and (25), (26)
and rearranging the following system of eight homogeneous linear
algebraic equations for eight unknown constants is obtained. These
equations can be expressed in a matrix form as

Ke =0, (39)

where K and ¢ denote a tangent matrix of the current equilibrium
state on the fundamental path and a vector of unknown constants,
respectively. A non-trivial solution of (39) is obtained only if deter-
minant of the system matrix K is zero, see e.g. Planinc and Saje
(1999)

det K = 0. (40)

The condition (40) represents a linear eigenvalue problem and
its solution, i.e. the lowest eigenvalue corresponds to the smallest
critical buckling load, P, of the column. The explicit form of matrix
K and the analytical solution for the lowest buckling load, P, can
easiliy be determined but are unfortunately too cumbersome to be
presented as closed-form expressions. This general stability crite-
rion applies to all kinds of boundary conditions which are embed-
ded in the general boundary conditions given in (25) and (26). The
critical buckling loads for geometrically perfect two-layer compos-
ite columns with various forms of boundary conditions will be pre-
sented in the next section. For further details on determination of
critical points and their classification an interested reader is re-
ferred to Planinc and Saje (1999).

3. Numerical examples

Numerical examples will demonstrate the applicability of the
presented exact analytical model to predict critical buckling loads
for various composite columns with partial interaction between
the layers. Thus, the analytical model presented in the paper will
be numerically evaluated through the analysis of two examples:
(i) a comparison of the analytical results with existing results in
the literature; (ii) a preliminary parametric analysis of the affect
of various parameters on critical buckling loads of geometrically
perfect two-layer composite column.

3.1. Exact critical buckling loads and comparison with existing results
in the literature

This example presents a comparison of the analytical results
for critical buckling loads of geometrically perfect two-layer
composite columns with interlayer slip with existing buckling
loads in the literature, proposed by Girhammar and Gopu
(1993), Girhammar and Pan (2007), Xu and Wu (2007a,c), and
Cas et al. (2007).

In order to compare critical buckling loads of the presented ana-
lytical model to the above-mentioned buckling models, the critical
buckling loads of two-layer timber columns with different types of
end conditions have been evaluated. Four kinds of two-layer Euler
column end conditions: clamped-free column (C-F), clamped-
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Fig. 3. Original and deflected (buckled) configurations of classical Euler columns for
different end conditions.

clamped column (C-C), clamped-pinned column (C-P) and pinned-
pinned column (P-P) have been considered, see Fig. 3.

In accordance to the boundary conditions (25) and (26) the clas-
sical boundary conditions of two-layer Euler columns and the cor-
responding non-zero values of parameters s; and effective length
coefficient, y, are summarized in Table 1.

The results for critical buckling loads of the presented analytical
model are compared to those obtained with what is called “modi-
fied second-order theory” which has been proposed by Girhammar
and Gopu (1993), Girhammar and Pan (2007), Xu and Wu
(2007a,c), and to those obtained numerically by Cas et al. (2007).

Hence, a simple but indicative example of the two-layer column
with different kinds of column end conditions is considered. The
mechanical and geometric properties of the two-layer composite
column are characterized by the following parameters: elastic
moduli of layers a and b,E* = E’ = 800 kN/cm?; interlayer-slip
modulus K € [107"° kN/cm? < K < 10" kN/cm?]; length of the col-
umn L =500 cm; layer heights h® = h” =10 cm; and widths
b® = b” = 20 cm.

Table 1
Classical two-layer column boundary conditions and effective length factors f; of
Euler columns.

Classical cases Non-zero values of s; Effective length coefficient

C-F 9=s=s2=s)=1 Be=2
si=sk=st=st=1
c-C 9=s§=s2=s2=1 B =0.5
sh=sh=st=st=1
C-P 9=s8=s2=s0=1 pr = 0.699
sh=sk=sk=st=1
P-P §=s§=s2=s9=1 pr=1
si=sk=sk=st=1
C=clamped (fixed); F=free; P=pinned
20 -
15
10
= 5
)
-5
—10
—15

-3 -2 -1

log K

Fig. 4. Comparison of critical buckling loads of geometrically perfect two-layer
composite column for different analytical models, end conditions, and different Ks.

Critical buckling loads as a function of K and different end con-
ditions have been computed by the presented analytical model and
compared to the results of Girhammar and Pan (2007). In Fig. 4, a
relative error which is defined as

&%) = Per — P

cr
P, x 100, (41)
is shown as a function of K for different end conditions where P},
represents a critical buckling load obtained with the formula pro-
posed by Girhammar and Gopu (1993), Girhammar and Pan
(2007), Xu and Wu (2007a,c).

Positive errors indicate that formula derived by Girhammar and
Pan (2007) underestimates the critical buckling loads of geometri-
cally perfect two-layer composite columns. It is also interesting to
note that the discrepancy between the exact buckling loads and
buckling loads obtained by the “modified second-order theory” is
interlayer-slip modulus and boundary conditions dependent. Of
the values shown in Fig. 4, the maximum discrepancy is for the
pinned-pinned column (P-P) and is about 18.5%, while for the
clamped-free column (C-F) it is negligible. It is also apparent from
Fig. 4 that critical force, P, in C-C column case obtained by Gir-
hammar and Pan (2007) is as much as approximately 14.5% higher
than the exact ones. Thus, in the C-C column case the buckling load
calculated by Girhammar and Pan (2007), is rather conservative.
On the other hand, the exact critical buckling loads are practically
identical with the numerically obtained critical loads, see Cas et al.
(2007).

The critical buckling loads of two-layer pinned-pinned compos-
ite column are presented in detail in Table 2.

As anticipated, there is a general trend showing that critical
buckling load, P, of two-layer pinned-pinned column decreases
by decreasing the inter-layer stiffness K. The discrepancy is the
largest for values of inter-layer slip modulus K which usually exists
in actual practice. Hence, a large effect of inter-layer slip is evident
especially when actual buckling loads of two-layer composite col-
umn are compared with the one for an equivalent solid column,
obtained by e.g. Flajs et al. (2003). Note also that in the limiting
case when there is absolutely stiff connection (A = 0;K — oo) or
there exists no connection between the layers (A = A,,,#0;
K — 0), the exact buckling loads of geometrically perfect two-layer
composite columns converge perfectly to the analytical buckling
loads of the corresponding solid column. In these special cases only
minor disagreement is observed between the critical buckling
loads obtained by the present method and the analytical buckling
loads obtained by Girhammar and Gopu (1993), Girhammar and
Pan (2007), Xu and Wu (2007a,c).

From this example we can confirm (see Fig. 4) that partial inter-
action between the layers has a considerable influence on critical
buckling loads of geometrically perfect two-layer composite
columns.

3.2. Preliminary parametric analysis of the affect of various
parameters on critical buckling loads of geometrically perfect two-
layer composite column

This section presents a preliminary parametric study performed
on a geometrically perfect two-layer composite column subjected
to a concentrated compressive axial force P, see Fig. 3, with the
aim to investigate the influence of boundary conditions, material
and geometric parameters, such as inter-layer slip modulus K,
depth-to-depth ratios ha/hb, column slenderness 4, etc., on critical
buckling loads of the geometrically perfect two-layer composite
column.

The critical buckling loads have been calculated for different
kinds of boundary conditions, different values of parameters K, /,
and h“/hb. The results are presented in Figs. 5 and 6.
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Table 2

Comparison of buckling loads of pinned-pinned two-layer composite column with different models and different Ks.

P [kN]

K [kN/cm?] Girhammar and Gopu (1993) Present & (%) Cas et al. (2007)"
1071° 105.2757803 1053104375 0.0329 1053104374
10°° 105.2767803 105.3134393 0.0331 =

1073 105.3757486 105.6099848 0.2218 105.615

1072 106.2726240 108.2487730 1.8256 -

10! 114.9688693 130.0907979 11.624 130.117

1 181.2273375 217.1489159 16.542 217.190

10! 345.2976517 355.6165146 2.9017 355.617

10? 411.4338134 412.4908988 0.2563 412.530

10° 420.1087924 420.6795391 0.1357 -

10° 421.0931467 421.6487510 0.1317 421.617

10'"° 421.1031210 421.6587338 0.1317 421.6587339"

" Girhammar and Pan (2007), Xu and Wu (2007a,c).
“ Numerical solution.
™ Flajs et al. (2003)(Analytical solution for K = 0, c0).

In Fig. 5 the critical buckling load, P, of the geometrically perfect
two-layer composite columns with partial inter-layer connection
between the layers is calculated for various inter-layer slip moduli
K and for different column slenderness 2 which is defined as

i BeL\/b"h® + b° R

\/b” I 2dz+ b [0 22dz

(42)

where g; represents the effective length coefficient of Euler col-
umns with stiff connection between the layers. Effective length
coefficients, S, are given in Table 1 for different types of end condi-
tions along with schematic illustrations of the buckling modes in
Fig. 3. Variation in column slenderness has been achieved by con-
sidering a range of column lengths.

In Fig. 5 it can be observed that by decreasing the column slen-
derness, /, and increasing the inter-layer slip modulus, K, the crit-
ical buckling load, P, increases in all cases of boundary conditions.
The influence of K on critical buckling loads is considerable and is
the biggest in the P-P column case where the difference between
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critical buckling loads P, for A= 60 ranges between 215.0 and
861.7 kN. It is interesting to note that the multiplication factor
by which P, changes with K does not depend on column slender-
ness. Furthermore, the results shown in Fig. 5 indicate that critical
buckling loads depend on boundary conditions. Consequently, for
K =10 kN/cm? and L = 800 cm a critical force P, is in the C-F case
151.02 kN, in the P-P case 519.29 kN, in the C-P case 821.09 kN
and finally in the C-C case 1220.7 kN.

A preliminary parametric study has also been conducted to
asses the effect of depth-to-depth ratios h" /hb and K on critical
buckling loads of geometrically perfect layered composite col-
umns. For this purpose, critical forces have been calculated for var-
ious h“/hb,Ks and different end conditions. When treating various
structural stability problems it is often useful to express the buck-
ling load, P, in the form of the Euler formula with a suitable mod-
ification of the column length. Thus, the critical load of a layered
geometrically perfect composite column with interlayer slip may
be expressed in terms of the classical Euler formula for solid col-
umn as

10000 e
---------- K=0.00001
- — -K=5
8000 . CK=10
———— K=25
6000
A B\ L N N | s
=,
54000
2000 |
0
0 140
10000 gz e
[osdl ] e K=0.00001
{ - —-K=5
8000: - 1 Hlssiciamss K=10
: s K=25
6000 | ! 1 {====K=50
E . ............... K: 100
e i — K'=100000
0;54000: | f i
2000
0| [ e

0 20 40 '6{]’"}\ 80 100 120 140

Fig. 5. Illustrations of critical buckling load, P, for different Ks, 4, and different types of end conditions. These diagrams are applicable for this specific example only.
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Fig. 6. lllustrations of critical effective length parameter, ., for different Ks, h°/h”, and different types of end conditions. These diagrams are applicable for this specific

example only.

(), "
(Bol)? )

in which (EJ); is the flexural rigidity of the corresponding solid col-
umn and B, denotes the critical effective length parameter of the
geometrically perfect two-layer composite column which depends
entirely on the particular buckling mode, inter-layer contact stiff-
ness K, and depth-to-depth ratio h° /hb and should not be confused
with the effective length coefficient p; that gives the distance be-
tween the points of inflection in a solid column. The effective length
coefficient g, is obtained by a comparison of the critical force P,
calculated with the presented exact model and the Euler critical
force, P, for a solid column

P
ﬂcr = \/P::;ﬁE (44)

The critical effective length coefficient, 3., against the depth-to-
depth ratio, h®/h”, is shown in Fig. 6 for different Ks and different
end conditions. In all four kinds of end conditions, the parametric
study reveals that minimum critical forces and maximum critical
effective length coeffecients are obtained when layers have
approximately equal depths, i.e., h“/hb ~ 1.In Fig. 6 it is also shown
that g, is higher for smaller values of K and can be in case of fully
flexible connection (K = 10> kN/cm?) as much as about two times
higher than in the case of absolutely stiff connection between the
layers. Conseuentlly, the corresponding critical forces can be four
times smaller in comparison with the critical forces of the geomet-
rical and material equivalent solid column. The effect of the h®/h”
ratio on the B, becomes much less pronounced for higher values of
K. This effect becomes negligible in the case of the absolutely stiff
connection where B, equals B;. Similarly, this effect may also be
neglected for composite columns where the depth of one layer is
very small compared to the depth of the other one. For example,
for h“/hb =3 and K =1 kN/cm?, the effective length parameter,
B is in the C-F column case 2.248, in the C-C column case
0.716, in the C-P column case 0.960, and in the P-P column case
1.206, while for h“/h” =19 and K =1 kN/cm?, the B.,[C—F] =
2.018;8,,[C—C]=0.528;p.,[C—P]=0.728; and ., [P—P]=1.018.

a =

Partial interaction between the layers has a considerable
influence on critical buckling load of geometrically perfect
two-layer composite column and hence should be taken into
consideration when composite columns with inter-layer slip
are analysed.

4. Conclusions

A mathematical model for slip-buckling has been proposed
and its analytical solution has been found for the analysis of
layered and geometrically perfect composite columns with in-
ter-layer slip between the layers. The analytical study has been
carried out for evaluating exact critical forces and comparing
them to those in the literature. Particular emphasis has been gi-
ven to the influence of interface compliance on decreasing the
bifurcation loads. For this purpose, a preliminary parametric
study has been performed by which the influence of various
material and geometric parameters on buckling forces have
been investigated. A detailed parametric analysis by which the
influence of various non-dimensional parameters on buckling
forces of geometrically perfect composite columns will be the
topic of the future analysis. Based on the analytical results
and the preliminary parametric study undertaken the following
conclusions are drawn:

(1) The present formulation of slip-buckling problem is applica-
ble for the geometrically perfect composite columns only, it
is relatively easy to comprehend and agrees well with the
classical results for Euler columns.

(2) Since the solution of slip-buckling problem has been
obtained without simplification of the governing equations,
the results for buckling forces can be considered more accu-
rate than those proposed by other researchers, e.g. Girham-
mar and Pan (2007), Xu and Wu (2007a), and others, who
used what is called modified second-order theory in which
the influnece of extensional strains on buckling loads in
not explicitly incorporated.
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(3) The discrepancy between the exact buckling loads and buck-
ling loads obtained by the “modified second-order theory”
depends on interlayer-slip modulus and boundary condi-
tions. The maximum discrepancy is for the pinned-pinned
column (P-P), and is about 18.5%, whereas for the
clamped-free column (C-F), it is negligible. A critical force,
P.:, obtained by Girhammar and Pan (2007) can be in C-C
column case about 14.5% higher than the exact one. In the
C-C column case the buckling load calculated by Girhammar
and Pan (2007) is rather conservative.

The preliminary parametric study has confirmed that
reduced stiffness between the layers can promote buckling
which can lead to a drastic reduction of bifurcation load.
Thus, partial interaction between the layers should be taken
into consideration when composite columns with inter-
layer slip are considered.

By decreasing the column slenderness, 2, and increasing the
inter-layer slip modulus, K, the critical buckling load, P,
increases in all cases of boundary conditions. The influence
of K on critical buckling loads is considerable, and is the big-
gest in P-P column case. The ratios between P, for
K =10 kN/cm? and K — oo are 3.67, 3.16, 2.44, and 1.86
for C-F, P-P, C-P, and C-C cases, respectively.

In all four kinds of boundary conditions, the minimum crit-
ical forces or maximum effective length parameters are
obtained when the layers have approximately equal depths,
ie. h“/h” ~ 1. B, is higher for smaller values of K and can be,
in the case of fully flexible connection (K = 10~> kN/cm?), as
much as about two times higher than in the case of abso-
lutely stiff connection. The corresponding critical forces
can be four times smaller in comparison with the critical
forces of the equivalent solid column. The effect of the
h®/h® ratio on the B, becomes much less pronounced for
higher values of K. This effect becomes negligible in the case
of the absolutely stiff connection where g, equals ;. The
effect may be neglected for composite columns where the
depth on one layer is very small compared to the depth of
the other one.
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