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a b s t r a c t

The structure of band-gaps in actuated fiber-reinforced dielectric elastomer composites with square lat-
tice is studied. The constitutive behaviors of the phases are characterized by an augmented Gent strain
energy density function, to account for the strain-hardening of the elastomer. The finite static deforma-
tion of the composite is calculated when subjected to an electric bias field along the fibers. The anti-plane
mode of small electroelastic waves propagating in the material deformed configuration is determined by
means of a proper adjustment of the plane-wave expansion method. The resultant eigenvalue problem
supplies the dispersion relation from which bands of prohibited frequencies are determined.

The band structures of exemplary composites with circular fibers are evaluated for various values of the
bias electric field. The dependency on the properties and volume fractions of the phases, and most impor-
tantly the bias electric field is explored. It is revealed how enhancing the intensity of the electrostatic
field widens the bands and shifts them toward higher frequencies. These results suggest the use of dielec-
tric elastomer composites as control mechanisms for electroelastic wave propagation by properly tuning
the electrostatic excitation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Wave propagation in periodic elastic composites, also known as
phononic crystals (Kushwaha et al., 1993), received much attention
in the last decades, e.g., the works of Sigalas and Economou (1992),
Kushwaha et al. (1994), Tanaka and Tamura (1998) and Gei et al.
(2004), to name a few. The interest is mainly in virtue of the fasci-
nating band gaps (BGs) phenomenon observed in these structures
(Kushwaha et al., 1994). The appearance of these ranges of fre-
quencies at which elastic waves cannot propagate enables applica-
tions such as isolators, noise suppressors, filters, and more. The
interest has been extended to periodic piezoelectric structures
(Hou et al., 2004; Qian et al., 2008a; Wang et al., 2009, 2010; Hu
et al., 2012), in pursuit of improving their implementations in
transducers, sensors and medical ultrasonic imaging, to name a
few.

A novel family of soft smart materials known as dielectric elasto-
mers (DEs) (Pelrine et al., 2000a), offers a new transmission med-
ium for both electric and elastic waves (Dorfmann and Ogden,
2010). The motivation for using DEs stems from their ability to sus-
tain strains of more than 200% (Pelrine et al., 2000b) and having
their mechanical and electrical properties modified in response
to an electric stimulation. This offers an almost unexplored
ll rights reserved.
potential for manipulating electroelastic waves by tuning the ap-
plied bias fields. To the best of the author’s knowledge, this type
of control mechanism was first proposed by Gei et al. (2011)
who considered small flexural wave propagation along a periodi-
cally piecewise actuated DE plate, though considering only the
elastic fields and governing equations of the perturbed problem.
Later on Shmuel et al. (2012) investigated the propagation of incre-
mental electroelastic waves in an actuated layer by solving the
coupled electric and elastic equations, showing how the propaga-
tion velocity strongly depends on the electric excitation.

These results led Shmuel et al. (2012) to use DEs as the constit-
uents of an electrostatically actuated periodic laminate subjected
to incremental shear motions. The evaluation of the pertinent band
structure demonstrated how by controlling the electrostatic bias
field desired frequencies can be filtered out. Continuing along this
path, in this paper the study is extended to a two-dimensional sys-
tem by investigating the band structure for the anti-plane mode of
electroelastic waves propagating in finitely strained circular fiber-
reinforced composites with square lattice. As the forthcoming re-
sults demonstrate, undesired frequencies can be actively filtered out
by properly tuning the bias electric field.

The paper is composed in the following manner. Following the
works of Dorfmann and Ogden (2005), deBotton et al. (2007), Suo
et al. (2008), Dorfmann and Ogden (2010), Tian et al. (2012),
Castañeda et al. (2012) and Shmuel et al. (2012), Section 2 revisits
the required dynamical theory of DE composites. The response of
DE composites with square arrays of fibers of arbitrary cross-section
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to an electric field along the fibers is calculated in Section 3. The
behaviors of the composite phases are assumed to be governed by
the incompressible dielectric Gent model (DG). The Gent model (Gent,
1996) composing the elastic part of the augmented strain energy
density function was derived in aim to capture the strain-stiffening
observed in polymers (Arruda and Boyce, 1993). The anti-plane mo-
tion of incremental electroelastic waves superimposed on the de-
formed configuration of the composite is determined next. To this
end, a proper extension of the plane-wave expansion (PWE) method
(Kushwaha et al., 1993) to the case of finitely deformed DE compos-
ites is formulated. A numerical study of the band structure is per-
formed in Section 4 for an exemplary properties of a composite
with circular fibers to investigate the dependency on the phases
properties and volume fractions. Most importantly, the variation
of the band diagram as function of the bias electric field is demon-
strated. The main conclusions and observations are summarized in
Section 5.

2. Dynamics of dielectric elastomer composites

Let X0 � R3 denote the volume region of a heterogeneous body
made out of N perfectly bonded different homogeneous electro-
elastic phases, with @X0 being the external boundary of the body
with the surrounding vacuum. The volume region XðrÞ0 ðr ¼ 1;
2; . . . ;NÞ of each phase has its boundary @XðrÞ0 . The mapping of a
material point X from the reference configuration of the body to
a point x in its current configuration X with boundary @X is
v : X0 �I! R3; x ¼ v X; tð Þ, and assumed to be continuous and
twice-differentiable. The notation of v ¼ v;t ; a ¼ v;tt and
F ¼ rXv � ›v

›X for the corresponding velocity, acceleration, and
deformation gradient is employed, respectively. Let dX; dA; dV
and qL denote the referential line, area, volume elements and mass
density in the neighborhood of X, respectively. These are trans-
formed to their deformed counterparts via dx ¼ FdX; NdA ¼
1
J FTnda; dv ¼ JdV and q ¼ qL=J, where J � det Fð Þ > 0, N is the unit
normal to the referential area element, and n is its counterpart in
the current configuration. The right and left Cauchy-Green strain
tensors are C ¼ FTF and b ¼ FFT, respectively.

The electric field e in the deformed configuration is commonly de-
rived as the gradient of a scalar electrostatic potential field. The rela-
tion between the electric displacement field d and e in free space is
dH ¼ �0eH, where �0 is vacuum permittivity. Herein and in the sequel
a star superscript notation denotes fields outside the material. In
dielectric bodies an adequate constitutive relation is required.

The equations of motion are

r � r ¼ qa; ð1Þ

where r is the ‘total’ stress tensor (Dorfmann and Ogden, 2005), sym-
metric on account of the balance of angular momentum, and consisting
of both mechanical and electrical contributions. The total stress relates
the traction t to a deformed area element with a unit normal n by

rn ¼ t: ð2Þ

For the ideal dielectrics (no free body charge), and by considering a
quasi-electrostatic approximation, the electric governing equations
read

r � d ¼ 0; r� e ¼ 0; ð3Þ

for Gauss law and Faraday law, respectively. The Maxwell stress rH

outside the body is given in terms of the outer electric field eH

rH ¼ �0 eH � eH � 1
2

eH � eH
� �

I
� �

; ð4Þ

where I is the identity tensor. The following jump conditions take
place across the outer boundary
r� rH
� �

n ¼ tm; e� eH
� �

� n ¼ 0; d� dH

� �
� n ¼ �we; ð5Þ

where we is the surface charge density, and tm is a prescribed mechan-
ical traction. The traction t is postulated as a sum of the prescribed
mechanical traction tm and an electric traction te resulting from the
Maxwell stress, such that te ¼ rHn. Across an internal charge-free
boundary between two phases m and f the jump conditions read

srtn ¼ 0; sdt � n ¼ 0; set� n ¼ 0; ð6Þ

where s � t � �ð Þ mð Þ � �ð Þ fð Þ denotes the jump of fields between the
two phases.

The ‘total’ first Piola–Kirchhoff stress, Lagrangian electric dis-
placement and electric field, respectively, are

P ¼ JrF-T; D ¼ JF�1d; E ¼ FTe; ð7Þ

satisfying the Lagrangian form of the governing Eqs. (1) and (3)

rX � P ¼ qLa; rX � D ¼ 0; rX � E ¼ 0; ð8Þ

with the referential jump conditions across @X0

P� PH
� �

N ¼ tM; D� DH
� �

�N ¼ �wE; E� EH
� �

� N ¼ 0; ð9Þ

where tMdA ¼ tmda and wEdA ¼ weda. Eq. (6) transforms to

sPtN ¼ 0; sDt �N ¼ 0; sEt� N ¼ 0: ð10Þ

Adopting the formulation of Dorfmann and Ogden (2005), the
total first Piola–Kirchhoff stress and the Lagrangian electric field
are derived from an augmented energy density function W, with
the independent variables F and D, such that

P ¼ @W
@F

; E ¼ @W
@D

: ð11Þ

For incompressible materials the kinematic constraint suggests the
use of a Lagrange multiplier p0, such that the first of (11) obtains the
form

P ¼ @W
@F
� p0F-T: ð12Þ

Note that p0 can only be determined from the boundary conditions
together with the equations of motion.

Following Dorfmann and Ogden (2010), an infinitesimal time-
dependent elastic and electric displacements _x ¼ _v X; tð Þ and
_D X; tð Þ are superimposed next on the static deformed configuration
X vð Þ. Henceforth superposed dot is employed to denote incremen-
tal quantities. The push-forwards of increments in the total first
Piola–Kirchhoff stress, the Lagrangian electric displacement and
electric fields, respectively, are

R ¼ 1
J

_PFT ; �d ¼ 1
J

F _D; �e ¼ F�T _E; ð13Þ

and satisfy the incremental governing equations

r � R ¼ q _x;tt ; r � �d ¼ 0; r� �e ¼ 0: ð14Þ

The incremental kinematic constraint of incompressible materials is

tr hð Þ ¼ 0; ð15Þ

where h ¼ r _x is the displacement gradient. When linearizing in the
increments, the following incremental constitutive relations are
derived

R ¼ Chþ p0hT � _p0IþB�d; ð16Þ

�e ¼BThþA�d; ð17Þ

where BTh
� �

k ¼Bijkhij. The constitutive tensors A; B and C are
the push-forwards of the referential reciprocal dielectric tensor
A0, electroelastic coupling tensor B0, and elasticity tensor C0
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A0ab ¼
@2W

@Da@Db
; B0iab ¼

@2W
@Fia@Db

; C0iakb ¼
@2W

@Fia@Fkb
; ð18Þ

such that

Aij ¼ JF�1
ai A0abF�1

bj ; Bijk ¼ FjaB0iabF�1
bk ; Cijkl ¼

1
J

FjaC0iakbFlb:

ð19Þ
3. Anti-plane motion of finitely deformed DE fiber composites

Consider an infinite periodic lattice of square arrays of length A
in the x1; x3ð Þ plane. The arrays are composed of infinitely long DE
fibers along the x2 direction with arbitrary cross-section embedded
in a different DE matrix (Fig. 1a). In the sequel quantities associated
with the fiber phase are denoted with a superscript f, and quantities
associated with the matrix phase are denoted with a superscript m.

The phases behaviors are characterized by the DG model

W pð Þ
DG I1; I5eð Þ ¼ �l pð ÞJ pð Þ

m

2
ln 1� I1 � 3

J pð Þ
m

 !
þ 1

2� pð Þ I5e; p ¼ m; f ; ð20Þ

where I1 ¼ tr Cð Þ; I5e ¼ D � CD; l pð Þ denote the phases shear moduli,
and � pð Þ ¼ �0�

pð Þ
r denote the dielectric constants, with � pð Þ

r being the
phases relative dielectric constant. The dimensionless locking
parameter Jm (Gent, 1996) corresponds to the strain-stiffening
exhibited in elastomers. This lock-up effect is a result of the finite
extensibility of the polymer chains. Making use of Eq. (11), the total
stress evolving in each phase is

r pð Þ ¼ l pð Þ

1� I pð Þ
1 �3

J pð Þ
m

b pð Þ þ 1
� pð Þ d pð Þ � d pð Þ � p pð Þ

0 I; ð21Þ

where the electric displacement field is related to the electric field
via

d pð Þ ¼ � pð Þe pð Þ: ð22Þ

The composite is assumed to be free of prescribed mechanical trac-
tions, while an electric field e2 is applied in the x2 direction along
the fibers. From a practical viewpoint, the actuation is executed
by applying a voltage drop between two compliant coated elec-
trodes on the top and bottom faces at ‘infinity’.

In each phase the following uni-modular (on account of incom-
pressibility) diagonal deformation gradients are assumed

F½ 	 pð Þ ¼ diag k pð Þ
1 ; ðk pð Þ

1 k pð Þ
3 Þ

�1
; k pð Þ

3

h i
: ð23Þ

The perfect bonding between the phases dictates that the stretch
ratios in the matrix and the fibers are identical in the x2 direction,
i.e.,
(a) (b)

Fig. 1. Square lattice fiber-reinforced composite (a) in the reference configuration and (b)
The corresponding first irreducible Brillouin zone.
k mð Þ
1 k mð Þ

3

� ��1
¼ k fð Þ

1 k fð Þ
3

� ��1
: ð24Þ

In virtue of the symmetry of the problem in the x1 � x3 plane the
pertinent stretch ratios within each phase are same

k pð Þ
1 ¼ k pð Þ

3 : ð25Þ

Utilizing Eq. (23) together with Eqs. (24) and (25) implies that the
resultant configuration of each phase agrees with the homogeneous
deformation gradient

F½ 	 mð Þ ¼ F½ 	 fð Þ ¼ diag k; k�2; k
� 	

: ð26Þ

When specialized to the considered problem, the in-plane stress
components emanating from Eq. (21) are

r pð Þ
11 ¼ r pð Þ

33 ¼ l pð Þ k2

1� 2k2þk�4�3
J pð Þ
m

� p pð Þ
0 ;

r pð Þ
22 ¼ l pð Þ k�4

1� 2k2þk�4�3
J pð Þ
m

þ � pð Þe2
2 � p pð Þ

0 ; ð27Þ

where e mð Þ
2 ¼ e fð Þ

2 ¼ e2. The fact that the composite is free to expand
in the x1; x3ð Þ plane yields

r pð Þ
11 ¼ r pð Þ

33 ¼ 0; ð28Þ

leading to the following expression for the pressure of each phase

p pð Þ
0 ¼ l pð Þ k2

1� 2k2þk�4�3
J pð Þ
m

: ð29Þ

The remaining boundary condition in the x2 direction translates to

v mð Þr mð Þ
22 þ v fð Þr fð Þ

22 ¼ 0; ð30Þ

where v mð Þ and v fð Þ ¼ 1� v mð Þ are the volume fractions of the matrix
and fiber phase, respectively. Eq. (29) together with Eq. (30) yields a
relation between the resultant in-plane stretch ratio k, and the ap-
plied electric field. Assuming J mð Þ

m ¼ J fð Þ
m � JB, the relation can be writ-

ten in a simple implicit form

k2 � k�4

1� 2k2þk�4�3
JB

¼
��
�l

e2
2; ð31Þ

where �ð�Þ ¼ v ðf Þð�Þðf Þ þ v ðmÞð�ÞðmÞ

When specialized to the DG model (20) and deformation gradi-
ents (26), the components of A pð Þ;B pð Þ and C pð Þ are
(c)

in the deformed configuration, subjected to an electric field parallel to the fibers. (c)
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A
pð Þ

11 ¼A
pð Þ

22 ¼A
pð Þ

33 ¼
1
� pð Þ ; ð32Þ

B
pð Þ

121 ¼ B
pð Þ

211 ¼ B
pð Þ

323 ¼ B
pð Þ

233 ¼
1
2
B

pð Þ
222 ¼ e2; ð33Þ

C
pð Þ

1111 ¼ C
pð Þ

2121 ¼ C
pð Þ

2323 ¼ C
pð Þ

1313 ¼ C
pð Þ

3333 ¼ l pð Þ k2

1� 2k2þk�4�3
J pð Þ
m

; ð34Þ

C
pð Þ

1212 ¼ C
pð Þ

2222 ¼ C
pð Þ

3232 ¼ l pð Þ k�4

1� 2k2þk�4�3
J pð Þ
m

þ � pð Þe2
2; ð35Þ

The propagation in the x1; x3ð Þ plane of electroelastic waves super-
imposed on the aforementioned finite deformation is addressed
next. I restrict attention to the anti-plane mode, in which the elastic
displacements are in the x2 direction. Let _x2 x1; x3; tð Þ and u x1; x3; tð Þ
denote, respectively, the incremental displacement and the incre-
mental electric potential, such that �eðx1; x3; tÞ ¼ �ruðx1; x3; tÞ.
These fields are to satisfy the incremental equations of motion
(14a) along with Gauss Eq. (14b) and and the incompressibility con-
straint (15). The resulting non-trivial equations are

R21;1 x; tð Þ þ R23;3 x; tð Þ ¼ q xð Þ _x2;tt; ð36Þ
�d1;1 x; tð Þ þ �d3;3 x; tð Þ ¼ 0; ð37Þ

where it is understood that the spatial dependency is only via the x1

and x3 components, in view of the symmetry of the problem in the
x2 direction. In terms of _x2 x1; x3; tð Þ and u x1; x3; tð Þ, Eqs. (36) and
(37) are put in the form

rT � ~l xð ÞrT _x2 � d2 xð ÞrTuð Þ ¼ q xð Þ _x2;tt; ð38Þ

rT � �d2 xð ÞrT _x2 � � xð ÞrTuð Þ ¼ 0; ð39Þ

where ~l xð Þ ¼ l x1; x3ð Þ k2

1�2k2þk�4�3
Jm x1 ;x3ð Þ

� � x1; x3ð Þe2
2;rT �ð Þ ¼ i1 �ð Þ;1 þ i3 �ð Þ;3

is the in-plane gradient operator, and i1 and i3 are unit vectors in
the x1 and x3 directions, respectively. To solve Eqs. (38) and (39),
a proper extension of the PWE method (Kushwaha et al., 1994) is
employed. The quantities ~l; d2; � and q are expanded in two-
dimensional Fourier series in virtue of their in-plane periodicity,
such that

f xð Þ ¼
X

G

f Gð Þ exp iG � xð Þ; f ¼ ~l;d2; �;q; ð40Þ

where f Gð Þf g are the Fourier coefficients, and the summation is car-
ried over the infinite two-dimensional reciprocal lattice vectors Gf g.
Since the considered Bravais lattice is square of period a ¼ kA, its re-
ciprocal lattice is also square with the reciprocal lattice vectors
G ¼ G1i1 þ G3i3 ¼ 2p

a n1i1 þ 2p
a n3i3, where n1 and n3 are integers.

The Fourier coefficients are given by the inversion of the Fourier
transform

f Gð Þ ¼ 1
a2

Z Z
acell

f xð Þ exp �iG � xð Þda; ð41Þ

where acell is the area of the unit cell. Eq. (41) can be written in
terms of the average and difference of the quantities f fð Þ and f mð Þ

as (Kushwaha et al., 1993)

f Gð Þ ¼
f fð Þv fð Þ þ 1� v fð Þ� �

f mð Þ � �f; G ¼ 0;

f fð Þ � f mð Þ
� �

F Gð Þ � DfF Gð Þ; G – 0;

8<: ð42Þ

F Gð Þ ¼ 1
a2

Z Z
a fð Þ

exp �iG � xð Þda; ð43Þ

where a fð Þ is the area of the fiber phase.
According to the Bloch theorem (Kittel, 2005), the incremental
displacement and the incremental electric potential fields must
satisfy

_x2 x; tð Þ ¼
X

G

_x2 Gð Þ exp i Gþ kð Þ � x� ixt½ 	; ð44Þ

u x; tð Þ ¼
X

G

u Gð Þ exp i Gþ kð Þ � x� ixt½ 	; ð45Þ

where x is the angular frequency, and k ¼ k1i1 þ k3i3 is the Bloch
wave vector restricted to the irreducible first Brillouin zone repre-
senting the smallest region where wave propagation is unique. Sub-
stitution of Eqs. (42), (44) and (45) in Eqs. (36) and (37) yieldsX
G;G0

~l Gð Þ _x2 G0
� �

� d2 Gð Þu G0
� �� �

Gþ G0 þ k
� �

� G0 þ k
� �

exp i Gþ G0 þ k
� �

� x� ixt
� 	

¼ x2
X
G;G0

q Gð Þ _x2 G0
� �

exp i Gþ G0 þ k
� �

� x� ixt
� 	

; ð46Þ

X
G;G0
�d2 Gð Þ _x2 G0

� �
� � Gð Þu G0

� �� �
Gþ G0 þ k
� �

� G0 þ k
� �

exp i Gþ G0 þ k
� �

� x� ixt
� 	

¼ 0: ð47Þ

Eqs. (46) and (47) are multiplied by exp �iG00 � x
� �

, and integrated
over the unit-cell. As a consequence of the orthogonality property
of Fourier series only terms satisfying Gþ G0 þ k ¼ G00 do not vanish.
Thus, we remain with only summation over G0 in the formX

G0
~l G� G0
� �

_x2 G0
� �

� d2 G� G0
� �

u G0
� �� �

Gþ kð Þ � G0 þ k
� �

¼ x2
X

G0
q G� G0
� �

_x2 G0
� �

; ð48Þ

X
G0
�d2 G� G0

� �
_x2 G0
� �

� � G� G0
� �

u G0
� �� �

Gþ kð Þ � G0 þ k
� �

¼ 0:

ð49Þ

A truncation to a finite number of plane waves N is carried out for
implementational purposes. In the sequel I set N ¼ 169, which corre-
sponds to the values�6 6 n1;n3 6 6. In matrix notation one can write

Q 1;1ð ÞQ 1;2ð Þ

Q 2;1ð ÞQ 2;2ð Þ

 !
_x2 G0
� �

u G0
� �" #

¼ x2 R 0
0 0


 �
_x2 G0
� �
0

" #
; ð50Þ

where Q 1;1ð Þ; Q 1;2ð Þ; Q 2;1ð Þ; Q 2;2ð Þ and R are N � N matrices given in
the appendix. In pursuit of formulating an eigenvalue problem

with respect to _x2 G0
� �

I employ the relation u G0
� �

¼ � Q 2;2ð Þ
� ��1

Q 2;1ð Þ _x2 G0
� �

, obtainable from Eq. (50). Substitution back and multi-

plication by R�1 from the left yields

eQ _x2 G0
� �

¼ x2R _x2 G0
� �

; ð51Þ

where eQ ¼ R�1 Q 1;1ð Þ � Q 1;2ð Þ Q 2;2ð Þ
� ��1

Q 2;1ð Þ
� �

. The band structure is

built by solving Eq. (51) for x as function of the reduced wave vec-
tor k in the periphery of the irreducible first Brillouin zone. As in-
ferred by Kushwaha et al. (1994) and Vasseur et al. (1994), the
pertinent BGs extend throughout the whole zone. For the square
lattice its periphery is defined by the lines connecting the points
C ¼ 0;0ð Þ; X ¼ p=a;0ð Þ and M ¼ p=a;p=að Þ, as illustrated in
Fig. 1c. I recall that the band structures herein correspond to the
anti-plane mode. Accordingly, the emanating BGs are not complete.
i.e., they depend in the propagation mode. The study of complete
BGs is of major importance and will be considered in future works.



(a) (b) (c) (d)

Fig. 2. Band structure of circular fiber-reinforced DG composite subjected to the normalized electric bias fields (a) ê ¼ 0, (b) ê ¼ 1, (c) ê ¼ 2 and (d) ê ¼ 3. The normalized
frequencies x̂ are plotted as functions of the reduced wave vector k along CXNC. The composite properties are q mð Þ ¼ q fð Þ ¼ 1000 kg

m3

� �
; l mð Þ ¼ 2000 KPað Þ; � mð Þ

r ¼ 3, and
J mð Þ

m ¼ J fð Þ
m ¼ 10 at the values a ¼ 10; b ¼ 10 and v ðmÞ ¼ 0:5.
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4. Numerical investigation of the band structure

The goal is to explore the dependency of the band structure on
the properties and volume fractions of the phases, and most impor-
tantly on the bias electric field. To this end, I consider an exemplary
composite whose matrix properties are

q mð Þ ¼ 1000 kg
m3

� �
; l mð Þ ¼ 2000 KPað Þ; � mð Þ

r ¼ 3; J mð Þ
m ¼ 10;

ð52Þ

and evaluate the band structure for representative values of the vol-
ume fractions v pð Þ, shear contrast a ¼ l fð Þ=l mð Þ, permittivity con-
trast b ¼ � fð Þ

r =� mð Þ
r , and the electric bias field e2. In all of the

following examples I assume that q fð Þ ¼ q mð Þ and J fð Þ
m ¼ J mð Þ

m . Note
that Jm ¼ 10 corresponds to a maximal uniaxial stretch ratio of
3.5. In what follows I find it convenient to use the normalized quan-
tities c mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l mð Þ=q mð Þ

p
and x̂ ¼ xA=2pc mð Þ, where c mð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l mð Þ=q mð Þ

p
.

Further, I restrict attention to fibers with circular section of referen-
tial radius R, for which the structure function F Gð Þ equals

F Gð Þ ¼ 2v fð Þ J1 Grð Þ
Gr

; v fð Þ ¼ pr2

a2 ; ð53Þ

where r ¼ kR, and J1 is the Bessel function of the first kind of order
1.

The main result is demonstrated in Fig. 2, which shows the nor-
malized frequencies x̂ as functions of the reduced wave vector k
along CXMC when the composite is subjected to various normal-
ized electric bias fields ê at the fixed values a ¼ 10; b ¼ 10 and
v mð Þ ¼ 0:5. Figs. 2a–d correspond to the normalized bias electric
(a) (b)

Fig. 3. Widths of first (continuous curves) and second (dashed curves) BGs of circular fib
values q mð Þ ¼ q fð Þ ¼ 1000 kg

m3

� �
; l mð Þ ¼ 2000 KPað Þ; � mð Þ

r ¼ 3, and J mð Þ
m ¼ J fð Þ

m ¼ 10 as funct
volume fraction v ðmÞ.
fields ê ¼ 0; 1; 2 and 3, respectively. These values result, respec-
tively, in the in-plane stretch ratios k ¼ 1; 1:2; 1:71 and 2:04. The
gray regions in the plots indicate the first and second BGs appear-
ing. The effect of the bias electric field is evident: as ê is enhanced,
the BGs are shifted toward higher frequency range and their widths are
enlarged. For instance, at the reference configuration, i.e., ê ¼ 0, the
widths of the first and second BGs are Dx̂ ¼ 0:068 and 0.141, hav-
ing their medians at x̂ ¼ 0:97 and 1.367, respectively. When the
composite is subjected to the normalized electric bias field ê ¼ 3,
the width of the first and second BGs increase to Dx̂ ¼ 0:1 and
0.21, with medians at x̂ ¼ 1:43 and 2.03, respectively. Thus, by
electrostatically actuating the composite the widths of the first
and second BGs are increased by a factor of 1.47. The medians
are shifted by a similar factor.

Fig. 3 shows the widths of first (continuous curves) and second
(dashed curves) BGs as functions of the contrast of the phases
properties and volume fractions when applying a normalized elec-
tric bias field ê ¼ 2. Fig. 3a displays the widths as functions of the
shear contrast a at the fixed values of the permittivity contrast
b ¼ 10 and matrix volume fraction v mð Þ ¼ 0:5. Fig. 3b displays the
widths as functions of the permittivity contrast b at the fixed val-
ues of the shear contrast a ¼ 10 and matrix volume fraction
v mð Þ ¼ 0:5. It is observed how when the contrasts are enhanced,
the widths are enlarged monotonically. The shear contrast plays
a more significant role in enlargement of the bands. Fig. 3c displays
the widths as functions of the matrix volume fraction v mð Þ at the
fixed values of the shear and permittivity contrast a ¼ b ¼ 10.
The first gap opens at v mð Þ ¼ 0:4, reaches a maximum at the vicinity
of v mð Þ ¼ 0:45, and closes at v mð Þ ¼ 0:7. The second gap undergoes a
(c)

er-reinforced DG composite subjected to a normalized electric bias field ê ¼ 2, at the
ions of (a) the shear contrast a, (b) the permittivity contrast b, and (c) the matrix



(a) (b) (c)

Fig. 4. Band structure of circular fiber-reinforced DG composite subjected to the normalized electric bias field ê ¼ 2, for q mð Þ ¼ q fð Þ1000 kg
m3

� �
; l mð Þ ¼ 2000 KPað Þ; � mð Þ

r ¼ 3,
and J mð Þ

m ¼ J fð Þ
m ¼ 10 at the values (a) a ¼ 10; b ¼ 20; v ðmÞ ¼ 0:5 (b) a ¼ 20;b ¼ 10; v ðmÞ ¼ 0:5, and (c) a ¼ b ¼ 10; v ðmÞ ¼ 0:55. The normalized frequencies x̂ are plotted as

functions of the reduced wave vector k along CXNC. The regions of the first and second pertinent BGs are indicated by diagonal lines, where the the gray regions correspond to
the first and second BGs associated with a composite characterized by a ¼ b ¼ 10 and v ðmÞ ¼ 0:5 (Fig. 2c).
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similar trend, though it opens at a smaller concentration of the ma-
trix volume fraction, namely v mð Þ ¼ 0:335. These trends are in rem-
iniscent of Qian et al. (2008b) observations in the context of
piezoelectric phononic crystals. Fig. 4 displays the normalized fre-
quencies x̂ as functions of the reduced wave vector k along CXMC
for exemplary values of a; b and v mð Þ to illustrate how their varia-
tions shifts the bands, when the composite is subjected to ê ¼ 2.
Values of a ¼ 20; b ¼ 10 and v mð Þ ¼ 0:5 are chosen in Fig. 4a,
a ¼ 10; b ¼ 20 and v mð Þ ¼ 0:5 in Fig. 4b, and a ¼ b ¼ 10 and
v mð Þ ¼ 0:55 in Fig. 4c. The regions of the first and second pertinent
BGs are indicated by diagonal lines. For comparison, the gray re-
gions correspond to the first and second BGs associated with a
composite characterized by a ¼ b ¼ 10 and v mð Þ ¼ 0:5 (Fig. 2c). It
is observed how increasing the shear contrast in Fig. 4a shifts the
bands toward lower frequencies. Conversely, when the permittiv-
ity contrast is increased in Fig. 4b the bands are shifted toward
higher frequencies. When the concentration of the matrix phase
is increased the gaps are moved toward lower frequencies.

5. Concluding remarks

In pursuit of active waveguides/isolators, the band structure of
square lattice DE composites with circular fibers is studied, in vir-
tue of the practical importance of this geometry. In particular, the
feasibility of controlling these BGs by means of a suitable electro-
static excitation of the composite is examined.

Toward this end, the deformed configuration of a DE matrix
reinforced with DE fibers of arbitrary cross-section is determined
when applying an electric field parallel to the fibers. The constitu-
tive behaviors of the phases are assumed to be governed by the
incompressible dielectric Gent model, oriented to capture the
strain-stiffening in polymers. The instantaneous electromechanical
properties of the phases are calculated in terms of the bias electric
field and resultant in-plane stretch ratio.

The anti-plane mode of small electroelastic waves propagating
on top of the finite static deformation is addressed next. To treat
the mathematical difficulty stemming from the structure heteroge-
neity and the coupling between the electric and elastic fields, a
proper adjustment of the plane-wave expansion method is formu-
lated. The end result is given in terms of a standard eigenvalue
problem for the incremental elastic displacement, from which
the dispersion relation is obtained.

Numerical investigation of the band structure is conducted for
exemplary composites with circular fibers and various values of
the bias electric field. It is showed how increasing the shear and
permittivity contrasts results in wider bands. The influence of the
matrix volume fraction is explored, revealing how the first and sec-
ond BGs are maximal when the concentration of the matrix is a bit
less than the fibers. Most importantly, evaluation of the frequency
spectrum demonstrates how enhancing the intensity of the bias elec-
tric field widens the bands as well as shifts them toward higher fre-
quencies. These findings suggest the use of DE composites as
control mechanisms for electroelastic wave propagation.
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Appendix A

The components of the matrices Q 1;1ð Þ; Q 1;2ð Þ; Q 2;1ð Þ; Q 2;2ð Þ and R
are

Q 1;1ð Þ
G;G0 ¼ ~l G� G0

� �
Gþ kð Þ � G0 þ k

� �
; ð54Þ

Q 1;2ð Þ
G;G0 ¼ �d2 G� G0

� �
G0 Gþ kð Þ � G0 þ k

� �
; ð55Þ

Q 2;1ð Þ
G;G0 ¼ Q 1;2ð Þ

G;G0 ; ð56Þ

Q 2;2ð Þ
G;G0 ¼ �� G� G0

� �
Gþ kð Þ � G0 þ k

� �
; ð57Þ

RG;G0 ¼ q G� G0
� �

: ð58Þ
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