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We study the reconstruction of the missing thermal and mechanical fields on an inaccessible part of the
boundary for two-dimensional linear isotropic thermoelastic materials from over-prescribed noisy (Cau-
chy) data on the remaining accessible boundary. This problem is solved with the method of fundamental
solutions (MFS) together with the method of particular solutions (MPS) via the MFS-based particular
solution for two-dimensional problems in uncoupled thermoelasticity developed in Marin and
Karageorghis (2012a, 2013). The stabilisation/regularization of this inverse problem is achieved by using
the Tikhonov regularization method (Tikhonov and Arsenin, 1986), whilst the optimal value of the
regularization parameter is selected by employing Hansen’s L-curve method (Hansen, 1998).
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1. Introduction

Numerous stress analysis problems in engineering deal with
structures which are simultaneously subject to thermal and
mechanical loadings, i.e. thermoelastic loadings. This type of prob-
lems is encountered whenever a solid is subject to heating condi-
tions that give rise to a temperature distribution throughout its
volume. This temperature distribution produces thermal expan-
sions in the object under consideration. In an isotropic material,
at a uniform reference temperature, a small uniform increase in
the temperature field can produce a pure volumetric expansion,
provided that the solid body is not constrained against such a
movement. This phenomenon can be expressed in terms of the
so-called thermal strain, which is related to the difference between
the temperature of the solid and the reference temperature
through the coefficient of thermal expansion. It is important to
mention that such a thermal expansion may also occur with no
stresses present in the solid body, see e.g. Aliabadi (2002).

Mathematical problems of isotropic thermoelasticity have been
the subject of numerous studies using various numerical methods
such as the boundary element method (BEM) (Cheng et al., 2001;
Henry and Banerjee, 1988; Kamiya et al., 1994; Rizzo and Shippy,
1977, 1979; Sladek and Sladek, 1983, 1984), the dual reciprocity
BEM (DRBEM) (Partridge et al., 1992), the finite element method
(FEM) (Dennis and Dulikravich, 1998, 1999), the moving least-
squares method combined with the local boundary integral method
(Sladek et al., 2001), etc. In the case of direct problems in
thermoelasticity, the thermo-mechanical equilibrium equations
have to be solved in a known geometry subject to known material
constants, prescribed heat sources and/or body forces, and appro-
priate initial and boundary conditions for the temperature, normal
heat flux, displacement and traction vectors. If at least one of the
aforementioned conditions is unknown or incomplete then one
needs to solve an inverse problem. A classical example of an inverse
problem is the Cauchy problem in which the geometry of the solu-
tion domain, the thermo-mechanical material constants and the
heat sources and body forces are all known, while both Dirichlet
and Neumann conditions are prescribed on a part of the boundary
and no information is provided on the remaining boundary. It is
well known that Cauchy problems are generally ill-posed (Hadam-
ard, 1923), in the sense that the existence, uniqueness and stability
of their solutions are not always guaranteed. Consequently, a spe-
cial numerical treatment of these problems is required.

The method of fundamental solutions (MFS) is a meshless
boundary collocation method which is applicable to boundary va-
lue problems for which a fundamental solution of the operator in
the governing equation is known. In spite of this restriction, the
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MFS has become very popular primarily because of the ease with
which it can be implemented, in particular for the solution of prob-
lems in complex geometries. Since its introduction as a numerical
method (Mathon and Johnston, 1977), it has been successfully ap-
plied to a large variety of physical problems, an account of which
may be found in the survey papers by Fairweather and Karageorg-
his (1998); Fairweather et al. (2003); Golberg and Chen (1999);
and Karageorghis et al. (2011). It is important to mention that
the MFS belongs to the family of so-called Trefftz methods (Trefftz,
1926; Kita and Kamiya, 1995). Such methods have been used in
several studies for the numerical solution of inverse problems re-
lated to solids subject to thermal or mechanical loads, see e.g.
Ciałkowski and Fra�ckowiak (2002); Wróblewski and Zieliński
(2006); Ciałkowski et al. (2007a,b); Karaś and Zieliński (2008);
Liu (2008a,b); Ciałkowski and Grysa (2010); Karageorghis et al.
(in press), etc.

Moreover, the MFS in conjunction with various regularization
methods such as the Tikhonov regularization method and singular
value decomposition, has been used increasingly over the last dec-
ade for the numerical solution of inverse problems. For example,
the Cauchy problem associated with the heat conduction equation
(Dong et al., 2007; Hon and Wei, 2004, 2005; Marin, 2008; Wei
et al., 2007), linear elasticity (Marin, 2005a; Marin and Lesnic,
2004), steady-state heat conduction in functionally graded materi-
als (Marin, 2005b), Helmholtz-type equations (Jin and Zheng,
2006; Marin, 2005c; Marin and Lesnic, 2005a), Stokes problems
(Chen et al., 2005), the biharmonic equation (Marin and Lesnic,
2005b), etc. have all been successfully solved by the MFS. For a sur-
vey of applications of the MFS to inverse problems, we refer the
reader to Karageorghis et al. (2011).

The MFS, in conjunction with the method of particular solutions
(MPS) and the dual reciprocity method, was applied to direct prob-
lems in three-dimensional isotropic linear thermoelasticity in
Karageorghis and Smyrlis (2007) and Tsai (2009), respectively. A
comprehensive study of the application of the MFS–MPS to direct
two-dimensional isotropic linear thermoelasticity problems was
provided, apparently for the first time, in Marin and Karageorghis
(2012a, 2013), while some preliminary results of this work may
be found in Marin and Karageorghis (2012a).

In this study we investigate the numerical reconstruction of
the unknown boundary thermoelastic fields on part of the
boundary of the domain occupied by a two-dimensional isotro-
pic linear thermoelastic solid from the knowledge of over-speci-
fied data on the remaining boundary (i.e. the Cauchy problem in
planar isotropic linear thermoelasticity). This is achieved by
combining the MFS–MPS algorithm developed in Marin and
Karageorghis (2012a, 2013) with the Tikhonov regularization
method (Tikhonov and Arsenin, 1986). The paper is organised
as follows: In Section 2 we formulate mathematically the Cauchy
problem under investigation. The proposed Tikhonov regulariza-
tion algorithm is described in Section 3, while the MFS–MPS
approach is presented in Section 4. The accuracy, convergence
and stability of the proposed method are validated by analysing
four numerical examples in Section 5. Finally, some conclusions
are presented in Section 6.

2. Mathematical formulation

We consider an isotropic solid in a domain X � R2, bounded by
a curve @X. The solid is characterised by the following material
constants: the thermal conductivity, j, the coefficient of linear
thermal expansion, aT, Poisson’s ratio, m, and the shear modulus, G.

In isotropic linear thermoelasticity, the strain tensor,
� ¼ �ij

� �
16i;j62, is related to the stress tensor, r ¼ rij

� �
16i;j62, by

means of the constitutive law of isotropic linear thermoelasticity
(Nowacki, 1986), namely
�ðxÞ ¼ 1
2G

rðxÞ � m
1þ m

tr rðxÞð Þ I
� �

þ aT TðxÞ I;

x 2 X ¼ X [ @X; ð1Þ

where I ¼ dij
� �

16i;j62; m is the equivalent Poisson’s ratio (m ¼ m for a
plane strain state and m ¼ m=ð1þ mÞ for a plane stress state) and aT

is the equivalent coefficient of linear expansion (aT ¼ aT and
aT ¼ aT ð1þ mÞ=ð1þ 2mÞ for the plane strain and plane stress states,
respectively). From (1) it follows that the shear strains are not af-
fected by the temperature as the free thermal expansion does not
produce any angular distortion in an isotropic material. Also, (1)
may be written as

rðxÞ ¼ 2G �ðxÞ þ m
1� 2m

tr �ðxÞð ÞI
� �

� cTðxÞ I; x 2 X; ð2Þ

where the constant c is related to the shear modulus, G, equivalent
Poisson’s ratio, m, and equivalent coefficient of linear expansion, aT,
via the following formula

c ¼ 2GaTð1þ mÞ=ð1� 2mÞ: ð3Þ

The kinematic relation

�ðxÞ ¼ 1
2
ruðxÞ þ ruðxÞT
� �

; x 2 X; ð4Þ

combined with (2) yields

rðxÞ ¼ G ruðxÞ þruðxÞT
� �

þ 2m
1� 2m

r � uðxÞð ÞI
� �

� cTðxÞ I; x 2 X:

ð5Þ

By assuming the absence of body forces, the equilibrium equations
of two-dimensional isotropic linear uncoupled thermoelasticity in
terms of the displacement vector and the temperature (also known
as the Navier–Lamé system of two-dimensional isotropic linear
uncoupled thermoelasticity), become

�r � rðxÞ � LuðxÞ þ crTðxÞ ¼ 0; x 2 X; ð6Þ

where L ¼ L1;L2ð ÞT is the partial differential operator associated
with the Navier–Lamé system of isotropic linear elasticity, i.e.

LuðxÞ � �G r � ruðxÞ þ ruðxÞT
� �

þ 2m
1� 2m

r r � uðxÞð Þ
� �

; x 2 X:

ð7Þ

In the absence of heat sources, the governing heat conduction equa-
tion for two-dimensional steady-state isotropic linear uncoupled
thermoelasticity becomes

�r � jrTðxÞð Þ ¼ 0; x 2 X: ð8Þ

Further, we let nðxÞ be the outward unit normal vector to @X; qðxÞ
be the normal heat flux at a point x 2 @X defined by

qðxÞ � � jrTðxÞð Þ � nðxÞ; x 2 @X ð9Þ

and tðxÞ be the traction vector at x 2 @X given by

tðxÞ � rðxÞnðxÞ; x 2 @X: ð10Þ

In the direct (forward) formulation of the two-dimensional
uncoupled thermoelasticity problem, the temperature and normal
heat flux are prescribed on the boundaries CT and Cq, respectively,
where CT [ Cq ¼ @X and CT \ Cq ¼£, while the displacement and
traction vectors are given on the boundaries Cu and Ct, respec-
tively, where Cu [ Ct ¼ @X and Cu \ Ct ¼£. However, in many
practical situations, only a part of the boundary, say
C1 :¼ CT ¼ Cq ¼ Cu ¼ Ct � @X, is accessible for measurements,
while the remaining boundary, C2 ¼ @X n C1, is inaccessible and
hence no measurements are available on it. In the sequel, we
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assume that the temperature and normal heat flux, as well as the
displacement and traction vectors can be measured on C1 � @X,
while the remaining boundary, C2, is inaccessible and no boundary
data are available on it. This problem is a Cauchy problem and con-
sists of Eqs. (6) and (8), and the thermal and mechanical boundary
conditions

TðxÞ ¼ eTðxÞ and qðxÞ ¼ eqðxÞ; x 2 C1 ð11aÞ

and

uðxÞ ¼ euðxÞ and tðxÞ ¼ etðxÞ; x 2 C1; ð11bÞ

respectively, where eT; eq; eu and et are given. The Cauchy problem (6),
(8) and (11) is considerably more difficult to solve both analytically
and numerically than direct problems since its solution does not sat-
isfy the general conditions of well-posedness, see e.g. Hadamard
(1923).

3. Solution algorithm

We consider the solution of the inverse Cauchy problem given by
Eqs. (6), (8) and (11), using a combined MFS–MPS approach as orig-
inally proposed by Marin and Karageorghis (2012a, 2013), together
with the Tikhonov regularization method (Tikhonov and Arsenin,
1986). The Cauchy problem for the heat conduction equation given
by Eqs. (8) and (11b) is first solved by applying the MFS in conjunc-
tion with the Tikhonov regularization method. Next, we derive a par-
ticular solution of the equilibrium equations of (6) according to the
method developed by Marin and Karageorghis (2012a, 2013). Final-
ly, we apply the MFS to the resulting Cauchy problem corresponding
to the homogeneous equilibrium equations for a two-dimensional
isotropic linear elastic material and solve this inverse problem using
the Tikhonov regularization method.

The numerical procedure described above may be summarised
as follows:

Step 1. Solve the thermal Cauchy problem (8) and (11a) with the
Tikhonov regularization method to determine the
unknown boundary temperature TjC2

and flux qjC2
, as well

as the temperature distribution in the domain TjX.
Step 2. Solve the mechanical Cauchy problem (6) and (11b):
Step 2.1. Determine a particular solution uðPÞ of the non-homoge-

neous equilibrium equation (6) in X, as well as the cor-
responding particular strain tensor
�ðPÞðxÞ ¼ 1
2
ruðPÞðxÞ þ ruðPÞðxÞT
� �

; x 2 X; ð12aÞ
stress tensor
rðPÞðxÞ ¼ 2G �ðPÞðxÞ þ m
1� 2m

tr �ðPÞðxÞ
� 	

I
� �

; x 2 X ð12bÞ
and traction vector
tðPÞðxÞ ¼ rðPÞðxÞnðxÞ; x 2 @X: ð12cÞ
It should be noted that uðPÞ depends on the solution of the thermal
Cauchy problem (8) and (11a); consequently, the same remark
holds for �ðPÞ;rðPÞ and tðPÞ.
Step 2.2. Solve the Cauchy problem corresponding to the homo-

geneous equilibrium equations, i.e.
LuðHÞðxÞ ¼ 0; x 2 X; ð13aÞ

uðHÞðxÞ ¼ euðxÞ � uðPÞðxÞ; x 2 C1; ð13bÞ

tðHÞðxÞ ¼ etðxÞ � tðPÞðxÞ � cTðxÞnðxÞ
� �

; x 2 C1; ð13cÞ
using the Tikhonov regularization method to determine
uðHÞjC2

; tðHÞjC2
and uðHÞjX.
Step 2.3. On applying the superposition principle, determine the
unknown boundary displacement ujC2

¼ uðHÞjC2
þ uðPÞjC2

and boundary traction tjC2
¼ tðHÞjC2

þ tðPÞ � cTn
� 	

jC2
, as

well as the mechanical fields inside the domain, namely
ujX ¼ uðHÞjX þ uðPÞjX; �jX ¼ �ðHÞjX þ �ðPÞjX and rjX ¼ rðHÞjX
þ rðPÞ � cT I
� 	

jX.

The proposed algorithm relies on the existence of a particular
solution of the non-homogeneous equilibrium equation (6) which
is justified by the following result, see e.g. Marin and Karageorghis
(2012a, 2013):

Proposition 1. Let X � R2 be a domain occupied by an isotropic solid
characterised by the constant thermal conductivity, j, the coefficient
of linear thermal expansion, aT, Poisson’s ratio, m, and the shear
modulus, G, respectively, and let c be given by Eq. (3).

Then for any set XK ¼ xðkÞ

 �K

k¼1 � R2 nX; K 2 Zþ, the tempera-
ture field
TðPÞðxÞ ¼
XK

k¼1

Tk log kx� xðkÞk; x 2 X; ð14aÞ
where Tk 2 R; 1 6 k 6 K, and the displacement vector� 


uðPÞðxÞ ¼ c

4G
1� 2m
1� m

XK

k¼1

Tk x� xðkÞ
� 	

log kx� xðkÞk; x 2 X;

ð14bÞ
represent a particular solution TðPÞ;uðPÞ
� �

2 C1 X
� �� �3

of the govern-

ing equations of two-dimensional isotropic linear thermoelasticity (6)
and (8).

As a direct consequence of Proposition 1, the expressions for the
corresponding particular strain tensor, �ðPÞ, stress tensor rðPÞ, and
traction vector tðPÞ, are obtained by substituting the particular dis-
placement vector given by (14b) into Eqs. (12a)–(12c), respectively, i.e.

�ðPÞðxÞ¼ c
4G

1�2m
1�m

� 
XK

k¼1

Tk logkx�xðkÞkIþ x�xðkÞ

kx�xðkÞk�
x�xðkÞ

kx�xðkÞk

� �
; x2X;

ð15aÞ

rðPÞðxÞ ¼ c
2

1� 2m
1� m

� 
XK

k¼1

Tk
1

1� 2m
log kx� xðkÞk þ m
� 	

I
�

þ x� xðkÞ

kx� xðkÞk �
x� xðkÞ

kx� xðkÞk

�
; x 2 X ð15bÞ

and

tðPÞðxÞ ¼ c
2

1� 2m
1� m

� 
XK

k¼1

Tk
1

1� 2m
log kx� xðkÞk þ m
� 	

nðxÞ
�

þ
x� xðkÞ
� 	

� nðxÞ
kx� xðkÞk2 x� xðkÞ

� 	#
; x 2 @X: ð15cÞ

Clearly, as explained in Marin and Karageorghis (2013), analytical
solutions can be easily constructed from Proposition 1. This is
achieved by simply setting K 2 Zþ and choosing a set of points
XK ¼ xðkÞ


 �K
k¼1 � R2 nX, as well as constants Tk 2 R; 1 6 k 6 K. The

corresponding analytical solution of the governing equations (6)
and (8) is given by Eqs. (14a) and (14b), respectively.

4. The method of fundamental solutions

Step 1. The fundamental solution of the heat balance equation
(8) for two-dimensional steady-state heat conduction in an isotro-
pic homogeneous medium (Fairweather and Karageorghis, 1998) is

Fðx; nÞ ¼ � 1
2pj

log kx� nk; x 2 X; ð16Þ
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where x ¼ ðx1;x2Þ is a collocation point and n ¼ ðn1; n2Þ 2 R2 nX is a
singularity or source point. In the MFS, the temperature is approx-
imated by a linear combination of fundamental solutions with re-
spect to NL

s singularities, nðnÞ

 �NL

s

n¼1, in the form

TðxÞ � TNL
s
ðcð1Þ; n; xÞ ¼

XNL
s

n¼1

cð1Þn F x; nðnÞ
� 	

; x 2 X; ð17Þ
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qðxÞ � qNL
s
ðcð1Þ; n; xÞ ¼ �

XNL
s

n¼1

cð1Þn jrxF x; nðnÞ
� 	

� nðxÞ
� �

; x 2 @X:

ð18Þ
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Next, we select NL
c MFS collocation points, xðnÞ


 �NL
c

n¼1, on the bound-
ary C1 and collocate the Cauchy thermal boundary conditions (11a)
to obtain the following system of linear equations for the unknown
coefficients cð1Þ 2 RNL

s :

Að11Þ cð1Þ ¼ fð1Þ; ð19Þ

where Að11Þ 2 R2NL
c�NL

s is the corresponding MFS matrix whose ele-
ments are calculated from Eqs. (17) and (18), respectively, while
fð1Þ 2 R2NL

c contains the corresponding discretised Cauchy data
(11a).

Step 2.1. The MFS approximation for the particular solution to
the non-homogeneous equilibrium equations (6) in R2 is (Marin
and Karageorghis, 2012a, 2013)

uðPÞðyÞ � uðPÞ
NL

s
ðcð1Þ; n; yÞ ¼ � c

8pjG
1� 2m
1� m

� 
XNL
s

n¼1

cð1Þn

� y � nðnÞ
� 	

log ky � nðnÞk; y 2 R2 n [
NL

s

n¼1
nðnÞ

 �

; ð20Þ

and hence the corresponding approximation for the particular trac-
tion vector on the boundary @X is obtained as

tðPÞðyÞ � tðPÞ
NL

s
ðcð1Þ; n; yÞ ¼ � c

4pj
1� 2m
1� m

� 
XNL
s

n¼1

cð1Þn

� 1
1� 2m

log ky � nðnÞk þ m
� 	

nðyÞ þ ðy � nðnÞÞ � nðyÞ
ky � nðnÞk2 ðy � nðnÞÞ

" #
; y 2 @X:

ð21Þ

Consequently, the term tðPÞ � cTn
� 	

is approximated on @X by
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
/2

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

u1

Analytical
pT = p  = 1%
pT = p  = 3%
pT = p  = 5%

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
/2

-1.0

-0.5

0.0

0.5

1.0

t 1/
10

10

Analytical
pT = p  = 1%
pT = p  = 3%
pT = p  = 5%

Fig. 3. The analytical and numerical displacements (a) u1jC2
and (b) u2jC2
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Example 1.
tðPÞðyÞ � cTðyÞnðyÞ � tðPÞ
NL

s
ðcð1Þ; n; yÞ � cTNL

s
ðyÞnðyÞ

¼ c
4pj

1� 2m
1� m

� 

�
XNL

s

n¼1

cð1Þn log ky � nðnÞk � m
1� 2m

� 

nðyÞ

�

þ
y � nðnÞ
� 	

� nðyÞ
ky � nðnÞk2 y � nðnÞ

� 	#
; y 2 @X: ð22Þ

Note that once the coefficients, cð1Þ 2 RNL
s , corresponding to the ther-

mal Cauchy problem (8) and (11a) are retrieved by solving Eq. (19)
with the Tikhonov regularization method, the particular solutions
for the boundary displacement and traction vectors on C1 are ex-
pressed from Eqs. (20) and (21), respectively.

Step 2.2. The fundamental solution matrix U ¼ Uij
� �

16i;j62, for
the displacement vector in the Navier-Lamé system is given by
Aliabadi (2002)

Uijðy;gÞ ¼
1

8pGð1� mÞ �ð3�4mÞ logky� gkdij þ
yi �gi

kx� gk
yj �gj

kx� gk

� �
;

y 2X; i; j¼ 1;2; ð23Þ

where y ¼ ðy1;y2Þ 2 X is a collocation point and
g ¼ ðg1;g2Þ 2 R2 nX is a singularity. By differentiating Eq. (23) with
respect to yk; k ¼ 1;2, one obtains the derivatives of the fundamen-
tal solution for the displacement vector, denoted by @yk

Uijðy;gÞ,
where @yk

� @=@yk. The fundamental solution matrix T ¼
Tij
� �

16i;j62, for the traction vector in the case of two-dimensional iso-
tropic linear elasticity is then obtained by combining Eq. (23) with
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
/2

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

u2

Analytical
pT = p  = 1%
pT = p  = 3%
pT = p  = 5%

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
/2

-1.0

-0.5

0.0

0.5

1.0

t 2/
10

10

Analytical
pT = p  = 1%
pT = p  = 3%
pT = p  = 5%

c) t1jC2
and (d) t2jC2

, obtained using various levels of noise added in TjC1
and ujC1

, for



3392 L. Marin, A. Karageorghis / International Journal of Solids and Structures 50 (2013) 3387–3398
the definition of the traction vector and Hooke’s constitutive law of
isotropic linear elasticity (Aliabadi, 2002), namely

T1kðy;gÞ¼
2G

1�2m
ð1�mÞ@y1

U1kðy;gÞþm@y2
U2kðy;gÞ

� �
n1ðyÞ

þG @y2
U1kðy;gÞþ@y1

U2kðy;gÞ
� �

n2ðyÞ; y2 @X; k¼1;2;
ð24aÞ

and

T2kðy;gÞ ¼ G @y2
U1kðy;gÞ þ @y1

U2kðy;gÞ
� �

n1ðyÞ

þ 2G
1� 2m

m@y1
U1kðy;gÞ þ ð1� mÞ@y2

U2kðy;gÞ
� �

n2ðyÞ;

y 2 @X; k ¼ 1;2: ð24bÞ

As for the thermal Cauchy problem, we consider NE
s singulari-

ties, gðnÞ

 �NE

s

n¼1, and approximate the displacement vector, uðHÞ, asso-
ciated with the homogeneous equilibrium equation (13a) in the
solution domain by a linear combination of the displacement fun-
damental solutions (23) with respect to these singularities, i.e.

uðHÞðyÞ � uðHÞ
NE

s
ðcð2Þ;g; yÞ ¼

XNE
s

n¼1

Uðy;gðnÞÞcð2Þn ; y 2 X; ð25Þ

where cð2Þn ¼ cð2Þn;1; c
ð2Þ
n;2

h iT

2 R2; n ¼ 1; . . . ;NE
s ; cð2Þ ¼ cð2Þ1

� �T

; cð2Þ2

� �T

. . . ;

�
cð2Þ

NE
s

� �T

	T 2 R2NE
s and g 2 R2NE

s is a vector containing the coordinates

of the singularities gðnÞ

 �NE

s

n¼1. In a similar manner, the traction vec-

tor, tðHÞ, associated with the homogeneous equilibrium equation
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Fig. 4. The RMS errors (a) Erru and (b) Errt , as functions of the regularization parameter,
in TjC1
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, for the mechanical Cauchy problem associated with Example 1.
(13a) is approximated by a linear combination of the traction fun-
damental solutions (24a) and (24b), namely

tðHÞðyÞ � tðHÞ
NE

s
ðcð2Þ;g; yÞ ¼

XNE
s

n¼1

Tðy;gðnÞÞcð2Þn ; y 2 @X: ð26Þ

By collocating the boundary conditions (13b) and (13c) at the points

yðnÞ

 �NE

c

n¼1 on the boundary C1, one obtains the following system of

linear equations for the unknown coefficients cð2Þ 2 R2NE
s :

Að22Þ cð2Þ ¼ fð2Þ � Að21Þ cð1Þ; ð27Þ

where Að22Þ 2 R4NE
c�2NE

s is the corresponding MFS matrix whose ele-
ments are calculated from Eqs. (25) and (26), respectively,
fð2Þ 2 R4NE

c is the right-hand side vector containing the correspond-
ing discretised Cauchy data (11b) and the elements of the matrix
Að21Þ 2 R4NE

c�NL
s are determined from those of the MFS matrices that

approximate uðPÞðyðnÞÞ and tðPÞ � cTn
� 	

ðyðnÞÞ; n ¼ 1; . . . ;NE
c , accord-

ing to Eqs. (13a), (13b), (20) and (22).
Step 2.3. Having determined the coefficients cð2Þ 2 R2NE

s , the
approximations of the boundary displacement, ujCt

, and traction
vectors, tjCu

, are obtained from the superposition principle and
Eqs. (20), (22), (25) and (26).

4.1. Tikhonov regularization method

In order to uniquely determine the solutions cð1Þ 2 RNL
s and

cð2Þ 2 R2NE
s , the corresponding numbers of boundary collocation
10-15 10-10 10-5 100

Regularization parameter, (2)

10-2

10-1

100

101

102

103

104

R
M

S 
er

ro
r, 

E

pT = p  = 1%
pT = p  = 3%
pT = p  = 5%

(b) Example 1: Errt

0.1 0.5 1.0
 || (22) (2)  - (2)||2

pT = p  = 1%
pT = p  = 3%
pT = p  = 5%

1: L-curves

kð2Þ , and (c) the corresponding L-curves, obtained using various levels of noise added



L. Marin, A. Karageorghis / International Journal of Solids and Structures 50 (2013) 3387–3398 3393
points and singularities must satisfy the inequalities NL
s 6 2NL

c and
NE

s 6 2NE
c , respectively. These ill-conditioned systems cannot be

solved by direct methods, such as the least-squares method, since
such an approach would produce a highly unstable solution in the
case of noisy Cauchy data on C1. Therefore, systems (19) and (27)
are solved, in a stable manner, by employing the Tikhonov regular-
ization method (Tikhonov and Arsenin, 1986).

The Tikhonov regularized solution, cð1Þ
kð1Þ

, of system (19) is sought
as the minimum of the Tikhonov regularization functional given by

Fð1Þ
kð1Þ
ð�Þ : RNL

s�!½0;1Þ;

Fð1Þ
kð1Þ

cð1Þ
� 	

¼ kAð11Þ cð1Þ � fð1Þk2 þ kð1Þkcð1Þk2
; ð28Þ

where kð1Þ > 0 is a regularization parameter to be prescribed. For-
mally, cð1Þ

kð1Þ
is retrieved by solving the normal equation

Að11Þ
� �T

Að11Þ þ kð1Þ INL
s

� �
cð1Þ ¼ Að11Þ

� �T

fð1Þ; ð29aÞ

namely

cð1Þ
kð1Þ
¼ Að11Þ
� �y

fð1Þ;

Að11Þ
� �y

� Að11Þ
� �T

Að11Þ þ kð1Þ INL
s

� ��1

Að11Þ
� �T

: ð29bÞ

Analogously, the Tikhonov regularized solution, cð2Þ
kð2Þ

, of system
(27) is obtained by solving the corresponding normal equation

Að22Þ
� �T

Að22Þ þ kð2Þ I2NE
s

� �
cð2Þ ¼ Að22Þ

� �T

fð2Þ � Að21Þ cð1Þ
kð1Þ

h i
; ð30aÞ
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measðC1Þ=measð@XÞ ¼ 3=4, various levels of noise added in TjC1
and ujC1

, for Example 2
namely

cð2Þ
kð2Þ
¼ Að22Þ
� �y

fð2Þ � Að21Þ cð1Þ
kð1Þ

h i
;

Að22Þ
� �y

� Að22Þ
� �T

Að22Þ þ kð2Þ I2NE
s

� ��1

Að22Þ
� �T

; ð30bÞ

where kð2Þ > 0 is a regularization parameter to be prescribed.
The optimal values kð1Þopt and kð2Þopt of the regularization parameters

kð1Þ > 0 and kð2Þ > 0, respectively, are chosen according to Hansen’s
L-curve criterion (Hansen, 1998).

5. Numerical results

We next apply the algorithm described in Section 3 in conjunc-
tion with the regularizing MFS–MPS presented in Section 4 to four
test problems. More specifically, we solve the inverse problem gov-
erned by the partial differential equations (6) and (8), and subject
to the Cauchy boundary conditions (11a) and (11b), for an isotropic
linear thermoelastic material (copper alloy) characterised by
the material constants G ¼ 4:80� 1010 N=m2; m ¼ 0:34; j ¼
4:01 W m�1 K�1 and aT ¼ 16:5� 10�6 
C�1.

Example 1. We consider the annular domain
X ¼ x 2 R2 jRint < kxk < Rout


 �
, where Rint ¼ 1:0 and Rout ¼ 2:0,

which is bounded by the inner and outer boundaries
Cint ¼ x 2 R2 j kxk ¼ Rint


 �
and Cout ¼ x 2 R2 j kxk ¼ Rout


 �
, respec-

tively. We also assume that the thermoelastic fields associated
with the Example 1 correspond to constant inner and outer
temperatures, Tint ¼ 1 
C and Tout ¼ 2 
C, as well as constant inner
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and outer radial pressures, rint ¼ 1:0� 1010 N=m2 and
rout ¼ 2:0� 1010 N2, respectively, which describe a plane strain
state. The analytical solution of this problem is:
TðanÞðxÞ ¼ Tout
log xk k Rint=ð Þ
log Rout Rint=ð Þ þ Tint

log Rout xk k=ð Þ
log Rout Rint=ð Þ ; x 2 X; ð31aÞ

qðanÞðxÞ ¼ �k
Tout � Tint

log Rout Rint=ð Þ
x � nðxÞ

xk k2 ; x 2 @X; ð31bÞ

uðanÞðxÞ ¼ c
2

1� 2m
1� m

� 

Tout � Tint

log Rout Rint=ð Þ log kxk þ V
1� m
1þ m

� 
�
�W

1

kxk2

#
x

2G
; x 2 X; ð31cÞ

tðanÞðxÞ ¼
�rout nðxÞ; x 2 Cout � x 2 @X j kxk ¼ Routf g;
�rint nðxÞ; x 2 Cint � x 2 @X j kxk ¼ Rintf g;

�
ð31dÞ

where
V � �rðHÞout R2
out � rðHÞint R2

int

R2
out � R2

int

; W �
rðHÞout � rðHÞint

� �
R2

out R2
int

R2
out � R2

int

; ð32aÞ

rðHÞout � rout � cTout þ
c
2

Tout � Tint

log Rout Rint=ð Þ
1

1� m
log Rout þ 1

� 

ð32bÞ

and
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Fig. 6. The analytical and numerical (a) temperatures TjC2
, (b) normal heat fl

measðC1Þ=measð@XÞ ¼ 1=2, various levels of noise added in TjC1
and ujC1

, for Example 2
rðHÞint � rint � cTint þ
c
2

Tout � Tint

log Rout Rint=ð Þ
1

1� m
log Rint þ 1

� 

: ð32cÞ

Here C1 ¼ Cout and we mention that some preliminary results for
Example 1 have been presented in Marin and Karageorghis (2012b).
Example 2. We consider the unit disk X ¼ x 2 R2 j kxk



< Rg;R ¼ 1:0, and the analytical solution (plane strain state) given
by Eqs. (14a), (14b) and (15a)–(15c), where K ¼ 1;xð1Þ ¼ ð2:0;1:0Þ
and T1 ¼ 100 
C. Here, we consider C1 ¼ x 2 R2 j kxk ¼ R; h 2



½0; h0Þg, where h ¼ hðxÞ is the radial angular polar coordinate asso-
ciated with the point x 2 R2 and h0 2 p=2;p;3p=2f g.
Example 3. We consider the same geometry as in Example 2, with
the analytical solution (plane strain state) given by Eqs. (14a),
(14b) and (15a)–(15c), where K ¼ 2; xð1Þ ¼ ð2:5;2:5Þ; xð2Þ ¼
ð1:0;�4:0Þ; T1 ¼ 100 
C and T2 ¼ 50 
C. Here C1 ¼ x 2 R2 j kxk ¼



R; h 2 ½0; h0Þg and h0 ¼ 3p=2.
Example 4. We consider the square X ¼ ð�1;1Þ � ð�1;1Þ, with the
analytical solution (plane strain state) given by Eqs. (14a), (14b)
and (15a)–(15c), where K ¼ 1; xð1Þ ¼ ð2:5;2:5Þ and T1 ¼ 100 
C.
Here, we consider C1 ¼ ð�1;1Þ � �1f g [ 1f g � ½�1;1	.

In all four examples, we have taken NL
c ¼ NE

c ¼ N uniformly
distributed collocation points on C1, as well as NL

s ¼ NE
s ¼M

uniformly distributed singularities associated with both the over-
and under-specified boundaries C1 and C2, respectively, which are
preassigned and kept fixed throughout the solution process (i.e. the
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so-called static MFS approach has been employed) on a pseudo-
boundary @ eX of a similar shape to that of @X such that
dist @ eX; @X� �

is a fixed constant, see e.g. Gorzelańczyk and
Kołodziej (2008). According to the notations used in Section 4,
the corresponding MFS parameters have been set as follows:

(i) Example 1: N ¼ 56 on C1; Mout ¼ 56 and Mint ¼ 28 oneCout ¼ x 2 R2 j kxk ¼ Rout þ d1

 �

andeCint ¼ x 2 R2 j kxk ¼ Rint � d2

 �

, respectively, such that
M ¼Mout þMint, where @ eX ¼ eCout [ eCint; d1 ¼ 1:0 and
d2 ¼ 0:3.

(ii) Examples 2 and 3: M ¼ 48 on @ eX ¼ x 2 R2 j kxk ¼ R þ d

 �

,
where d ¼ 0:5 and N ¼ k M=4ð Þ on C1 for h0 ¼ k p=2ð Þ with
k 2 1;2;3f g.

(iii) Example 4: M ¼ 56 on @ eX ¼ �ð1þ dÞ; ð1þ dÞ½ 	�
�ð1þ dÞf g [ �ð1þ dÞf g � �ð1þ dÞ; ð1þ dÞ½ 	, where d ¼ 1:0

and N ¼ 3 M=4ð Þ on C1.

We consider the Cauchy problem given by Eqs. (6), (8) and (11)
with the over- and under specified boundaries C1 and
C2 ¼ @X n C1, respectively, and perturbed boundary temperature
and displacements on C1. More precisely, the boundary tempera-
ture TjC1

¼ TðanÞjC1
and displacements ujjC1

¼ uðanÞ
j jC1

; j ¼ 1;2, on
the over-specified boundary have been perturbed aseTejC1

¼ TjC1
þ dT; dT ¼ G05DDFð0;rTÞ;

rT ¼ max
C1

jTj � pT=100ð Þ ð33aÞ

and
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Fig. 7. The analytical and numerical (a) temperatures TjC2
, (b) normal heat fl

measðC1Þ=measð@XÞ ¼ 1=4, various levels of noise added in TjC1
and ujC1

, for Example 2
eue
j jC1
¼ ujjC1

þ duj; duj ¼ G05DDFð0;ruj
Þ;

ruj
¼ max

C1

jujj � pu=100ð Þ; j ¼ 1;2; ð33bÞ

respectively. Here dT and duj are Gaussian random variables with
mean zero and standard deviations rT and ruj

, respectively, gener-
ated by the NAG subroutine G05DDF (Numerical Algorithms Group
Library Mark 21, 2007), while pT and pu are the percentages of addi-
tive noise included in the input boundary temperature TjC1

and dis-
placements ujjC1

; j ¼ 1;2, respectively, in order to simulate the
inherent measurement errors. It should be mentioned that, for the
inverse problems with noisy boundary data considered herein, the
accuracy of the numerical results was found to be quite insensitive
with respect to the location of the pseudo-boundary.

Figs. 1(a) and (b) present the numerical results for the temper-
ature and normal heat flux, respectively, on the under-specified
boundary C2, obtained by solving the thermal Cauchy problem (6)
and (11a), for Example 1, using the proposed Tikhonov regulari-
zation method, Hansen’s L-curve criterion and
pT ¼ pu ¼ 1%;3%;5%, in comparison with their corresponding
analytical values. The numerical solutions for the temperature
and normal heat flux on C2 are stable approximations of their
corresponding exact solutions, free of unbounded and rapid
oscillations, and they converge to the exact solutions as the level
of noise decreases.

In order to assess the accuracy and convergence of the proposed
MFS–MPS approach, for any real-valued function f : C2�!R and
any set of points xðnÞ


 �N2

n¼1
� C2, we define the corresponding root

mean square (RMS) error of f on C2 and the relative RMS error of f on
C2 by
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RMSC2 ðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

XN2

n¼1

f xðnÞð Þ2
vuut ð34aÞ

and

Ef ¼
RMSC2 ðf ðnumÞ � f Þ

RMSC2 ðf Þ
; ð34bÞ
respectively, where f ðnumÞðxÞ denotes an approximate numerical va-
lue for f ðxÞ;x 2 C2.

The corresponding relative RMS errors (34b) for the boundary
temperature and normal heat flux on C2 are presented in Figs. 2(a)
and (b), respectively. For each level of noise added to the
prescribed boundary temperature TjC1

and displacements
ujjC1

; j ¼ 1;2, the numerical results for the normal heat flux on
C2 are, as expected, more inaccurate than those retrieved for the
corresponding boundary temperature, i.e. ET < Eq for all
pT ¼ pu 2 1%;3%;5%f g. Moreover, Figs. 2(a) and (b) also show
the convergence of the reconstructed boundary temperature and
normal heat flux on C2 to their corresponding exact values as the
level of noise decreases. The L-curves associated with the Tikhonov
regularized solution c

ð1Þ
kð1Þ

of system (19), obtained for Example 1
with pT ¼ pu 2 1%;3%;5%f g, are shown in Fig. 2(c). By comparing
Figs. 2(a)–(c), one can conclude that Hansen’s L-curve criterion
provides an excellent estimation of the minimum attained by the
relative RMS errors ET and Eq and hence this criterion is a suitable
tool for the selection of the optimal regularization parameter kð1Þopt.
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Fig. 8. The analytical and numerical (a) temperatures TjC2
, (b) normal heat fluxes qjC2

, (
added in TjC1

and ujC1
, for Example 3.
Stable and convergent numerical results have also been
obtained for the displacement and traction vectors on the under-
specified boundary C2 for Example 1 for pT ¼ pu ¼ 1%;3%;5%.
These boundary data reconstructions for u1jC2

;u2jC2
; t1jC2

and t2jC2

are presented in Figs. 3(a)–(d), respectively, together with their
corresponding exact values. The relative RMS error (34b) of the
boundary displacement and traction vectors on C2, as well as the L-
curves associated with the Tikhonov regularized solution, cð2Þ

kð2Þ
, of

system (27), are shown in Figs. 4(a)–(c), respectively.
Similar conclusions regarding the convergence, stability and

accuracy of the proposed method can be drawn if one considers the
Cauchy problem (6), (8) and (11) with perturbed temperatures and
displacements on C1 in the simply connected domain represented
by the unit disk of Example 2. Figs. 5–7 present the analytical and
numerical results for the boundary temperature, normal heat flux,
x2-component of the displacement vector and x1-component of the
traction vector data on C2, retrieved in three situations, namely for
measðC1Þ=measð@XÞ 2 3=4;1=2;1=4f g. Although the numerical
results retrieved for both the thermal and the mechanical fields
on C2 are convergent and stable with respect to decreasing the
amount of noise added to the Cauchy data in all cases analysed for
Example 2, prescribing noisy boundary data on a small accessible
boundary (i.e. for measðC1Þ=measð@XÞ ¼ 1=4 or, equivalently,
measðC1Þ=measðC2Þ < 1) yields inaccurate numerical results espe-
cially for the displacement and traction vectors, see Figs. 7(a)–(d).

Finally, we analyse the numerical results obtained using the
proposed algorithm for a more complicated analytical solution in a
simply connected domain with a smooth boundary as given by
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Fig. 9. The analytical and numerical (a) temperatures TjC2
, (b) normal heat fluxes qjC2

, (c) displacements u1jC2
and (d) tractions t1jC2

, obtained using various levels of noise
added in TjC1

and ujC1
, for Example 4.
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Example 3, as well as in a simply connected domain with a
piecewise smooth boundary such as the square considered in
Example 4. The analytical and numerical results for the unknown
thermal and mechanical boundary data, obtained using the
proposed method, Hansen’s L-curve criterion and
pT ¼ pu ¼ 1%;3%;5%, for Examples 3 and 4, are presented in
Figs. 8 and 9, respectively.

Overall, from the four examples investigated, we can conclude
that the proposed method provides accurate, convergent and
stable numerical approximations with respect to decreasing the
level of noise added to the Cauchy data, for the unknown thermal
and mechanical data.
6. Conclusions

In this work, we applied the MFS in conjunction with the MPS
for the numerical solution of the inverse Cauchy problem in two-
dimensional linear isotropic thermoelasticity. The key idea in this
approach is the construction of a particular solution of the non-
homogeneous equations of equilibrium which only depends on
the MFS approximation of the boundary value problem for the heat
conduction equation. The inverse problem was regularized/stabi-
lised via the Tikhonov regularization method (Tikhonov and Arse-
nin, 1986), while the optimal value of the regularization parameter
was selected by employing Hansen’s L-curve criterion (Hansen,
1998). The accuracy, convergence and stability properties of the
proposed MFS–MPS–Tikhonov regularization method were investi-
gated by considering four numerical examples in simply and dou-
bly connected domains with either a smooth or a piecewise
smooth boundary. Future work is related to the development of
fast MFS–MPS algorithms for inverse problems in two-dimensional
isotropic thermoelasticity (Karageorghis and Marin, 2013), as well
as the application of the proposed MFS–MPS procedure for the sta-
ble numerical solution of inverse boundary value problems in
three-dimensional isotropic thermoelasticity.
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