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Abstract

The growth of carbon onions is simulated using continuum mechanical shell

models. With this models it is shown that, if a carbon onion has grown to

a critical size, the formation of an additional layer leads to the occurrence

of a structural instability. This instability inhibits further growth of car-

bon onions and, thus, can be a reason for the limited size of such particles.

The loss of stability is mainly evoked by van der Waals interactions between

misfitting neighboring layers leading to self-equilibrating stress states in the

layers due to mutual accommodation. The influence of the curvature in-

duced surface energy and its consequential stress state is investigated and

found to be rather negligible. Furthermore, it is shown that the nonlinear

character of the van der Waals interactions has to be considered to obtain
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maximum layer numbers comparable to experimental observations. The pro-

posed model gives insight into mechanisms which are assumed to limit the

size of carbon onions and can serve as basis for further investigations, e.g.,

the formation of nanodiamonds in the center of carbon onions.

Keywords: carbon nanostructures, finite element modeling, shell buckling,

van der Waals interactions

1. Introduction

Carbon based nanostructures like graphene (Cadelano et al., 2009; Geim

and Novoselov, 2007; Geim, 2009; Novoselov et al., 2004; Zhang et al., 2011),

carbon nanotubes (Baughman et al., 2002; Iijima, 1991; Pantano et al., 2004;

Yakobson et al., 1996), fullerenes (Kroto et al., 1985; Tang and Huang,

1995a), and carbon onions (Banhart and Ajayan, 1996; Kroto, 1992; Ugarte,

1992, 1995) have been intensively studied within the last decades. Graphene

is the main building material of all of these carbon nanostructures (Geim

and Novoselov, 2007) and is stated to be the strongest and thinnest mater-

ial ever discovered (Geim, 2009). Nanotubes, fullerenes, and carbon onions

should inherit the exceptional mechanical, electrical and electronic properties

of graphene, due to their similar structure.

Fullerenes and carbon onions take an exceptional position among the

carbon nanostructures. Graphene and carbon nanotubes have an hexagonal

atomic arrangement, whereas fullerenes and carbon onions also contain pen-

tagonal atomic rings to form closed cell structures. Fullerenes must contain

12 pentagons to be stable (Tang and Huang, 1995a); therefore, these parti-

cles are of polyhedral shape. Polyhedral closed cell particles also occur in
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multi-layered arrangements (Blank et al., 2007; Fu et al., 2007; Kroto et al.,

1985; Zhao et al., 2007), which can be transformed to perfectly spherical

carbon onions by intense electron irradiation (Banhart and Ajayan, 1996;

Ugarte, 1992). Currently, several techniques are available to produce multi-

layered closed cell arrangements and carbon onions like electron irradiation

of graphite at elevated temperatures (≥ 300◦C) (Banhart and Ajayan, 1996;

Banhart et al., 1997b), annealing of diamond nanoparticles (Joly-Pottuz

et al., 2008; Tomita et al., 2002), high pressure transformation of single-

crystal graphite (Blank et al., 2007), using a radio frequency plasma process

(Fu et al., 2007), or synthesis by decomposition of phenolic resin (Zhao et al.,

2007). The different production techniques lead to different growing scenarios

of such multi-layered particles. Onions produced by high-pressure transfor-

mation of single-crystal graphite or from coal in a radio frequency plasma

reactor are assumed to grow from the inside to the outside (Blank et al., 2007;

Du et al., 2007). Carbon onions produced by high-temperature annealing of

nanodiamonds start their formation at the boundaries of the nanodiamond

(Kuznetsov et al., 1994; Tomita et al., 2002) and have a diameter being al-

most equal to that of the initial nanodiamond (Los et al., 2009). This growing

scenario is also proposed in (Ugarte, 1995).

The multi-layered particles have a high local electronic density and con-

sequently a high ability to absorb electromagnetic radiation. Thus, they can

be used as fillers in composites for electromagnetic shielding (Macutkevic

et al., 2009). Furthermore, carbon onions have a potential application as

additives in lubricants (Joly-Pottuz et al., 2008), as solid lubricants (Hirata

et al., 2004), or as nanoscopic pressure cells to produce nanodiamonds (Ban-
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hart and Ajayan, 1996; Banhart et al., 1997a; Redlich et al., 1998). In all

applications the size of the multi-layered particles is of substantial interest.

Carbon onions observed in experiments can consist only of a few layers

(Joly-Pottuz et al., 2008; Ugarte, 1995), be of intermediate size (Banhart

et al., 1997a; Blank et al., 2007), or consist of many layers (Wesolowski

et al., 1997; Zwanger et al., 1996) with diameters up to 50 nm. The different

sizes are probably a result of the different production techniques and, hence,

of the different growing mechanisms. In (Zwanger et al., 1996) it is shown

that the precursor material and the irradiation dose influence the size of the

particles. But, what limits the size of the particles? Is there something like a

growth limit, and if yes, what triggers this limit? To the best of the authors’

knowledge these questions are not clarified so far in the literature.

Theoretical predictions about the maximum number of layers to which

carbon onions can grow can be found in (Tang and Huang, 1995b), where

it is shown that this number can reach a big value. However, in this study

the deformations of the layers due to the van der Waals (vdW) interactions

are not considered and the layers are assumed to remain spherical during the

growth. Thus, a possible occurrence of structural instabilities, e.g., buckling

of layers, is not incorporated in the theoretical models by Tang and Huang

(1995b).

In the current paper, we propose that exactly such an occurrence of a

structural instability limits the size to which carbon onions can grow. The

instability is assumed to be evoked by the formation of an additional layer

onto an onion which has grown to its maximum layer number. Due to the

expected large number of layers the application of atomistic simulation tech-
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niques would lead to enormous computational efforts. Hence, continuum

mechanical shell models of carbon onions of various sizes are used to inves-

tigate whether or not these assumptions for a growth limit are reasonable.

Continuum mechanical shell models have shown to give reliable results

for buckling of carbon nanostructures, such as single and multi-layered car-

bon nanotubes (Pantano et al., 2004; Yakobson et al., 1996), single layer

graphene (Hartmann et al., 2013), or carbon crystallites (Todt et al., 2010).

Continuum mechanical shell models are also applicable to investigate the

mechanical properties of carbon fullerenes as shown in (Todt et al., 2013 in

press) by comparison with Monte Carlo simulations. However, using contin-

uum mechanical models of carbon onions involves some basic assumptions

about the structure of the individual layers, the vdW interactions and the

growth of carbon onions, which are addressed in the following sections.

2. Methodology

For studying the growth and, hence, a possible growth limit of carbon

onions using continuum mechanics the finite element method is employed.

The onion layers are assumed to be deformable and the vdW interactions

between the layers are taken into account. Buckling eigenvalue prediction is

used to check if the occurrence of a structural instability can be the reason for

the limited size of carbon onions. The finite element analyses are performed

with the commercial finite element program ABAQUS2. The general concept

proposed for studying the growth limit of carbon onions was already briefly

2http://www.3ds.com/products/simulia/portfolio/abaqus/overview/
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discussed by the authors in (Todt et al., 2011b), where also preliminary

results were presented.

2.1. Axisymmetric Shell Model

In many cases the observed carbon onions are almost perfectly spheri-

cal in shape (Banhart and Ajayan, 1996; Kroto, 1992; Ugarte, 1992, 1995).

Thus, the assumption of perfectly spherical onions seems to be admissible

in the finite element model. Consequently, axisymmetric models are used in

the computational analysis reducing the computational requirements signif-

icantly (see Fig. 1). In any case, the assumption of axisymmetry is justified

as long as stable, i.e., pre-buckling states are considered. The axisymmet-

ric model is used for stability considerations, too. This is because for a

single thin-walled spherical shell under a constant external pressure the low-

est and, therefore, relevant buckling eigenvalue appears with an extremely

high multiplicity, see (Drmota et al., 1987). This high multiplicity of the

eigenvalue leads to a high number of eigenfunctions being orthogonal to each

other. Among these eigenfunctions several axisymmetric ones can be found,

which have the same physical relevance as non-axisymmetric eigenfunctions.

Regardless, whether an axisymmetric or non-axisymmetric buckling mode

is considered, an imperfect shell most likely forms a single dimple in the

post-buckling regime (Drmota et al., 1987), which represents an axisymmet-

ric deformation, too. Thus, axisymmetry is also a reasonable assumption for

the buckled configuration of a single spherical shell. Complete spherical shells

filled with elastic media also show axisymmetric buckling modes if subjected

to external pressure (Sato et al., 2012). A carbon onion can be considered as

the outermost shell filled with an elastic medium formed by the layers below
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and the vdW interactions between these layers.

Each layer of the onion is denoted an index i ∈ [1, N ], with N being

the total number of layers forming the onion, see Figure 1. The layers are

modeled as thin elastic shells with a membrane stiffness C = Eh and bend-

ing stiffness D = Eh3

12(1−ν2)
, where E, ν, and h are the elastic modulus, the

Poisson’s ratio, and the layer thickness, respectively. For sake of simplicity,

standard shell elements are used in the analyses requiring the direct input of

parameter set E, ν, and h. However, the values found in literature for these

parameter set differ strongly, e.g., E = 1050 GPa, ν = 0.186, h = 0.334 nm

(Liu et al., 2007) or E = 4840 GPa, ν = 0.19, h = 0.075 nm (Pantano et al.,

2004). A more detailed list of parameter sets can be found, e.g, in (Huang

et al., 2006). Although the different parameter sets give almost the same

values for C, the obtained values for D are significantly different having a

remarkable influence on the stability behavior of onion layers. For a single,

perfectly spherical onion layer (i.e., without the supporting layers under-

neath) the critical pressure can be estimated as (Pflüger, 1975)

p∗i =
2Eh2

√

3(1 − ν2)(R
(0)
i )2

, (1)

where R
(0)
i is the radius of layer i. As can be seen from Eq. (1) the pressure p∗i

is quite sensitive to E and h. Consequently, also the occurrence of a structural

instability in a carbon onion is likely to be sensitive to these parameter sets.

Thus, a different choice of E, h, and ν will lead to different proposes on

the critical size of the onions. Parameter sets with E ≈ 1000 GPa and

h ≈ 0.34 nm strongly overestimate the bending stiffness and, hence, the

critical pressure of fullerenes, i.e., single onion layers as shown in (Todt et al.,
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2013 in press). Thus, also the critical size of the onions might be strongly

overestimated by such parameter sets. A good representation of the stiffness

properties of fullerenes and their critical pressure can be obtained with E ≈
5000 GPa and h ≈ 0.07 nm (Todt et al., 2013 in press). On account of this the

parameter set proposed in (Pantano et al., 2004) (E = 4840 GPa, ν = 0.19,

h = 0.075 nm) is used to describe the layer properties.

Although the layers are modeled as spherical shells it is assumed that their

number of atoms is equal to those of icosahedral fullerenes with the same

mean radii. According to (Tang and Huang, 1995a) the number of atoms,

n, forming fullerenes with icosahedral symmetry can be calculated using

n = 60k2 or n = 20m2, with k, m ∈ N. The radius R
(0)
i of an undeformed,

i.e, stress free layer i can than be evaluated as (Voytekhovsky, 2003)

R
(0)
i = a(0)

√
0.103374 ni − 0.424548 , (2)

where a(0) = 0.142 nm is used as carbon-carbon bond length in the unde-

formed configuration and ni is the number of atoms forming this layer.

2.2. Excess Surface Energy

In (Holec et al., 2010) it is shown that a curvature-dependent excess

surface energy is active in curved carbon nanostructures. As a consequence

of the excess surface energy the layers are subjected to surface stresses leading

to a non-zero membrane stress state in the layers.

The dependency of the excess surface energy E
(S)
i on the layer radius Ri

can be described using a power law E
(S)
i ∝ Rβ

i (Holec et al., 2010). For E
(S)
i

being expressed in J/(nm)2 an average value of β = −1.83 is evaluated for the

whole fullerene model; for more details see (Holec et al., 2010). Consequently
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Figure 1: Axisymmetric model of a carbon onion consisting of N layers.

a surface stress σ̄
(S)
i (being a membrane force per unit length) develops in the

onion layers according to the Shuttelworth equation (Fischer et al., 2008),

σ̄
(S)
i = E

(S)
i +

dE
(S)
i

dε̄
(S)
i

. (3)

The parameter ε̄
(S)
i is the in-plane strain in a small strain setting (Fischer

et al., 2008). For a first estimate usually the second term of the right hand

side of Eq. (3) can be neglected, and the relation

σ̄
(S)
i = E

(S)
i (4)

can be used. Note that in Eqs. (3) and (4) the quantities E
(S)
i and σ̄

(S)
i are

physically different but have the same unit, namely force per unit length.

In the finite element model the surface stress σ̄
(S)
i is taken into account by

applying a corresponding inwards oriented pressure pS
i = 2σ̄

(S)
i /Ri (Fischer
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et al., 2008) onto layer i, resulting with Eq. (4) in

pS
i = 2A R−2.83

i . (5)

The factor A ≈ 0.36 nN nm/(nm)0.17 is estimated form Fig. 7 in (Holec et al.,

2010). As can be seen from Eq. (5), the pressure pS
i decreases fast with

increasing layer radius Ri and, thus, is only of relevance for the innermost

layers of a carbon onion.

2.3. Van der Waals Model

For carbon onions the vdW interactions between neighboring layers must

be considered as well. From an atomistic point of view the vdW interactions

between two neighboring layers result from vdW interactions between the

atoms forming these layers. This atom-atom interactions, however, are not

applicable in continuum mechanical models, for which a pressure-distance

relation is required. Appropriate continuum vdW models for different carbon

nanostructures can be found in literature, see, e.g., (He et al., 2005; Kelly,

1981; Lu et al., 2009; Todt et al., 2011a). In (Lu et al., 2009; Todt et al.,

2011a) the curvature of the carbon nanostructures is taken into account in

the formulation of the vdW interactions. In the present study this curvature

influence on the vdW interactions is neglected for the sake of simplicity, and

pressure-distance relations derived for planar graphene are used (Kelly, 1981;

Todt et al., 2011a). With increasing layer radii the curvature effect in the

vdW interactions vanishes and, thus, for the outer layers this simplification is

admissible. Onion layers with small radii, i.e., the innermost layers, are much

stiffer and have a much higher resistance against buckling than the outermost

layers, see Eq. (1). Therefore, it seems unlikely that buckling starts at the
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center of the onion. Consequently, the simplified representation of the vdW

interactions in the inner region is assumed to be of minor influence.

The pressure-distance relations used for describing the vdW interactions

read according to (Kelly, 1981)

p(α) =
C33

6

[

(σ

α

)10

−
(σ

α

)4
]

, (6)

or (Todt et al., 2011a)

p(α) = C0

[

(σ

α

)11

−
(σ

α

)5
]

, (7)

respectively, where α is the current interlayer distance and σ is a Lennard-

Jones Parameter. The parameters C33 and C0 are compressive constants. In

(Kelly, 1981; Zhao and Spain, 1989) a value of 36.5 GPa is reported for C33,

whereas C0 is obtained as C0 = 8 ε σ π (ρ∞)2 (Todt et al., 2011a) and, thus,

depends on the atom density per unit area, ρ∞ = 38.18 atoms/nm2, and

another Lennard-Jones parameter ε. In the literature different values can be

found for σ and ε, see, e.g., σ = 0.3415 nm, ε = 0.00239 eV in (Lu et al.,

2009) and σ = 0.3345 nm, ε = 0.00319 eV in (Zhang et al., 2007). Thus, it

is unlikely that C33/6 and C0 have the same value. VdW models described

by Eqs. (6) and (7) not only differ in their compressive constants but also in

their exponents. This differences may lead to different results for the growth

limit of carbon onions as considered in the following. It should be noted that

both models give the same interlayer distance αeq = σ for which p(α) = 0.

The distance αeq is referred to as equilibrium vdW distance.

2.3.1. Linear van der Waals Model

Taking the nonlinear behavior of the vdW interactions into account is a

computationally intensive task. Thus, the vdW interactions are linearized
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Figure 2: Areas associated to nodes k and l in curved structures.

around the vdW equilibrium distance αeq for performing principle model

analyses in a first attempt. This linearization is admissible if the distances

α between neighboring layers are close to αeq and the deviations ∆α in the

interlayer distances are small. The linearized vdW interactions can be inter-

preted as some sort of elastic bedding, and linear spring elements are used

to model this bedding. The modeling procedure of the linear vdW bedding

is described for Eq. (6) only, but can be easily transferred to Eq. (7), too.

Under the above assumptions the linearized pressure-distance relation

corresponding to Eq. (6) reads

plin = k̂∆α , (8)

with k̂ = dp

dα
|α=αeq

= C33

αeq
being the linearized stiffness of the vdW bedding.

With Eq. (8) the vdW force Fkl acting on a single finite element node of the

layers can be obtained as

−Fkl = plinAkl = k̂Akl(αkl − αeq), (9)

where αkl and Akl = Ak+Al

2
are the current distance between and the area

associated to nodes k and l, respectively linked by the spring element, see
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Figure 2. The area Akl accounts for the curvature dependent difference be-

tween areas Ak and Al related to nodes k and l, respectively. The negative

sign in Eq. (9) means that forces in the springs are positive for attraction

and negative for repulsion. From Eq. (9) it follows that the stiffness , kkl, of

the spring element linking nodes k and l reads

kkl = −k̂Akl , (10)

In contrast to more advanced models (Todt et al., 2011a), this vdW model

leads to equal forces on opposite faces of neighboring layers piAi = pjAj =

plin
Ai+Aj

2
, where pi and pj are the vdW pressures acting on the layers with

areas Ai and Aj, respectively.

2.3.2. Nonlinear van der Waals Model

In more advanced simulations the nonlinear behavior of the vdW inter-

actions is taken into account. For this purpose the vdW interactions are

modeled in ABAQUS as user defined contact interface UINTER (Pantano

et al., 2004; Yao et al., 2008) for which the “contact” stresses in normal and

tangential direction have to be defined. Although, the vdW interactions are

treated as contact, the layers i and j are still separated by the interlayer

distance α. The stresses in normal direction, i.e., the “contact” pressures

on neighboring layers, can be directly defined by using either Equation (6)

or Equation (7). The shear stiffness of the vdW interface is small compared

to the normal stiffness and is neglected in the vdW model (Pantano et al.,

2004). Therefore, the tangential stresses in the interface are set to zero cor-

responding to a frictionless “contact” between the layers. To ensure proper

convergence characteristics, also the incremental, i.e., tangent interface stiff-
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ness matrix K
≈

(I) has to be implemented by the user. The matrix element

K
(I)
ij defines the change in the i-th stress component due to an infinitesimally

small perturbation of the j-th component of the array of relative displace-

ments between adjacent layers. Thus, the current component K
(I)
11 is equal

to the current stiffness of the vdW bedding in normal direction in terms of

a pressure-distance relation

K
(I)
11 =

∂p(α + ∆α)

∂∆α
. (11)

All other components of the interface stiffness matrix are set to zero, as the

vdW interface is assumed to have zero shear stiffness. Like for the linear

vdW model the vdW forces on opposite faces of neighboring layers are equal.

2.4. Simulating the growth of carbon onions

Starting with the outermost layer in the growth simulations seems to be

problematic as the size of the carbon onion at its growth limit is a priori

not known. Thus, it is assumed that in the model the carbon onion grows

layer-by-layer starting with the innermost one.

For the first, i.e., the innermost layer the C60 fullerene is used. This

layer is assigned the layer index i = 1. Further layers are deposited one

after the other. Each new layer i = N with radius R
(0)
N in the stress free

configuration is concentrically located outside onto the surface of the current

onion consisting of N − 1 layers. The pressure pS
N due to the surface stress is

applied and kept constant during the whole growth simulation. Usually, the

interlayer distance α
(0)
(N−1),N = R

(0)
N − RN−1 between layers N and N − 1 is

not equal to the vdW equilibrium distance αeq. Thus, the new layer N does

not exactly fit the onion. Due to this misfit the vdW interactions lead, in
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combination with the surface stress, to either tensile or compressive stresses

in this new layer. Additionally, the stresses in the layers underneath are

changed, too. The new equilibrium configuration of the N-layered onion is

calculated in a geometrically nonlinear analysis step and evaluated regarding

its stability by performing a buckling eigenvalue analysis. The formulation

of the eigenvalue problem depends on the type of model used for describing

the vdW interactions between adjacent layers.

Simulations with the Linear van der Waals Model

In the linear vdW model the spring elements between the layers are in-

troduced with a stress free length of α
(0)
(N−1),N . The vdW interactions due to

α
(0)
(N−1),N 6= αeq are calculated using Eq. (9) and are, like the surface stress

being active in layer N , considered as perturbation loads in the buckling

eigenvalue prediction. The corresponding eigenvalue problem reads

(

K
≈

N−1 + λ̄j
N∆K̄

≈
N

)

Φ̄
∼

j
N = 0

∼
. (12)

In Eq. (12) K
≈

N−1 is the tangent stiffness matrix of the system with N layers

including the effects of the surface stress and the vdW forces acting in the

configuration of the carbon onion with N − 1 layers. The matrix ∆K̄
≈

N

represents the contribution of the vdW interactions between layer N −1 and

N and the surface stress in layer N . The parameters λ̄j
N are the eigenvalues

and Φ̄
∼

j
N are the corresponding eigenfunctions. The smallest eigenvalue λ̄1

N is

the factor by which the contribution of the N -th layer has to be multiplied

in order to bring the onion consisting of N layers to an unstable state. Thus,

layer N cannot be added without surpassing the stability limit if λ̄1
N < 1.0.

The corresponding eigenvector Φ
∼

1
N characterizes the buckling mode of the
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N -layered carbon onion.

Simulations with the Nonlinear van der Waals Model

In the nonlinear vdW model the vdW interactions due to the difference

α
(0)
(N−1),N 6= αeq become active directly after the new layer is added. They are,

thus, not available as perturbation loads in the eigenvalue buckling predic-

tion. To overcome this problem an external pressure p
(ext)
N is applied to the

outermost layer N in the stability analysis. The pressure p
(ext)
N is defined to

be equal to the critical pressure p∗i of this layer without its supporting layers

underneath and is calculated with Eq. (1). The choice of p
(ext)
N = p∗i is not

based on any necessity but provides information about the effect of bedding

due to the inner layers.

The corresponding eigenvalue problem is then defined as

(

K
≈

N + λ̄j
N∆K̄

≈
N

)

Φ̄
∼

j
N = 0

∼
(13)

with K
≈

N being the tangent stiffness matrix of the N -layered onion in its

equilibrium state including the vdW interactions between all N layers. The

matrix ∆K̄
≈

N represents the change in the stiffness of the onion due to the

external pressure p
(ext)
N . The variables λ̄j

N and Φ̄
∼

j
N again are the eigenvalues

and the corresponding eigenvectors, respectively. For this model the smallest

eigenvalue λ̄1
N is the factor by which the pressure p

(ext)
N on the outermost

layer has to be multiplied to bring the N -layered onion to a critical state. In

contrast to the linearized model, λ̄1
N = 0 indicates that the carbon onion has

grown to its critical size, whereas λ̄1
N <= 1 means that the critical pressure of

the onion is equal to or smaller than the buckling pressure of the outermost

layer. For the linearized vdW model the eigenvalue analysis is used to check
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if another layer can be added without provoking a structural instability. For

the nonlinear model it is checked if an existing onion is still stable when its

outermost layer is subjected to an external pressure p
(ext)
N . Thus, if λ̄1

N = 0 no

external pressure is required to provoke a structural instability. This means

that the section forces, i.e., the membrane forces per unit length of section

line, introduced due to the mutual accommodation of the layers are then

sufficient to evoke buckling and, hence, the onion has grown to its critical

size.

3. Results and Discussion

3.1. Simulations with the Linear van der Waals Model

For the linear vdW model adding a further layer to the onion requires

only a single linear solution step, leading to low computational requirements.

This model is used to check if the surface stress has an influence on a possible

growth limit of carbon onions. Furthermore, the number of atoms ni forming

the new layer to be added is calculated in two different ways. (i) It is assumed

that every new layer is an icosahedral fullerene where ni = 60 i2, with i being

the layer index. (ii) The new layer belongs either to the group of ni = 60 m2

or ni = 20 k2 fullerenes (k, m ∈ N), where the fullerene with the smallest

accommodation effort is chosen. In the following (i) and (ii) are referred to

as “pure” and “mixed” configuration, respectively. The linear vdW model

used is based on Eq. (6) with σ = 0.3415 nm (Lu et al., 2009).

The obtained eigenvalues related to buckling are depicted in Fig. 3. An

eigenvalue λ̄1
N > 1.0 means that the onion is in a stable equilibrium con-

figuration. On one hand, the surface stress only has an influence on λ̄1
N if
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Figure 3: Lowest eigenvalue λ̄1
N depending on the number of layers N forming

a carbon onion for the pure (left) and mixed (right) configuration. Insets

show a magnification, when the eigenvalue drops below one, i.e., the onion

approaches its stability limit.

the onions consists of less than six layers and, on the other hand, it “stabi-

lizes” the model by preventing the solution from running into the negative

peak which represents an artifact. For N ≥ 6 the influence of the surface

stress becomes negligible. The lowest eigenvalue λ̄1
N approaches 1.0, if the

onion has grown to a size of N = Ncrit = 23 layers, for both configurations

independent of the surface stress. As can be seen from Fig. 4 only a few

outer layers buckle in an interactive way, whereas the inner layers remain

unaffected. The observed buckling mode is comparable to buckling modes

observed for complete spheres filled with elastic media (Sato et al., 2012).

This confirms the applicability of of the axisymmetric model as discussed in

Subsection 2.1.

The difference between pure and mixed configurations becomes obvious

if the section forces fi in the layers (Figure 5) and the resulting interlayer
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x
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Figure 4: Buckling mode of a carbon onion of pure configuration correspond-

ing to the lowest eigenvalue λ̄1
N = 1.0 at the growth limit Ncrit = 23 achieved

by using a linear vdW model.

distances αij (Figure 6) are considered. Instead of stresses σi stress resultants

in terms of section forces fi = σih are used since the layer thickness h is just

an effective value, see Section 2.1.

Figure 5 shows the evolution of the section forces fi in the individual

layers during the growth of the onion. In case of the pure configuration each

newly added layer k is first subjected to compressive section forces fk whether

or not the surface stress is considered. During further growth of the onion

the compressive section forces are reduced and, if sufficient layers are added,

tensile section forces develop in layer k. Thus, only the outer layers of the

onion are under compression. The influence of the formation of a new layer

on the section forces of the layers underneath vanishes towards the center. At

the growth limit N = Ncrit only the four outer layers are under compression.

Taking the surface stress into account leads to a relatively large compres-

sive section force in the innermost layer, which is reduced after the second

layer is added but does not become a tensile section force during the growth

of the onion. In this case also the second layer remains under compression

during the growing process. The influence of the surface stress on the section
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Figure 5: Section forces fi in the i-th layer of an N -layered onion for the

pure (left) and mixed (right) configuration. Negative values of fi denote

compression. For N = 23, compressive section forces in the layers are marked

with • for the case where no surface stress is considered.

forces fi vanishes fast with increasing size of the layers, and and for layers

with i > 8 the section forces are unaffected by the surface stress. Although

the surface stress introduces substantial compressive section forces in the two

innermost layers, it has no influence on the growth limit of the onion. The

pressure p∗ required to introduce buckling in a layer with radius R scales

with 1
R2 , see Eq. (1). Thus, layers in the outer region of the onion are much

more sensitive to buckling than those in the inner region. The radius of

the outermost layer R23 is about 23 times the radius of the innermost layer

R1 ≈ 0.341 nm and, therefore, the critical pressure of the innermost layer is

about 530 times higher than that of layer i = 23. Thus, the influence of the

compressive section forces in the inner layers and, hence, the surface stress

is negligible, and buckling is introduced in the outer region of the onion.

For the mixed configuration (Figure 5, right) a newly added layer is not
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Figure 6: Interlayer distances αij between layers i and j = i+1 depending on

the number of layers N for the pure (left) and mixed (right) configuration.

a priori under compression. At the stability limit 11 layers are under com-

pression, not all of them being located in the outer region of the onion. The

absolute values of the compressive and tensile section forces are generally

higher than those observed for the pure configuration.

Figure 6 shows the current interlayer distances αij after layer N has been

added and the N -layered onion has reached its new equilibrium configuration.

For the pure configuration the interlayer distance α
(0)
ij = R

(0)
j − Ri (i =

j − 1) between the newly formed layer j = N and the onion consisting

of N − 1 layers is always larger than the equilibrium distance of the vdW

interactions, αeq = 0.3415 nm. This leads to attractive vdW forces between

the (N −1)-layered onion and the new layer, introducing compressive section

forces in the new layer and tensile section forces in the N − 1 layers forming

the onion. As a consequence also the interlayer distances in the outer region

of the (N − 1)-layered onion increase, whereas the interlayer distances in

the inner region remain almost unaffected. All interlayer distances αij of an
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N -layered onion in its equilibrium state are larger than αeq, see Figure 6

(left). The interlayer distances decrease from the inner region of the onion

to the outer region, which is in contrast to experimental observations, see

e.g. Banhart (1997). However, also in Baowan et al. (2007) a decrease in

layer spacing from the inner region to the outer region of a carbon onion is

calculated using analytical continuum mechanical models. The surface stress

has an influence on the interlayer distances α1 2 and α2 3 only. The interlayer

distances in the outer region of an N -layered onion are completely unaffected

by the surface stress.

For onions of the mixed configuration (Figure 6, right) the interlayer

distances αij do not decrease continuously from the inner region to the outer

region. Generally, the formation of layers j from the series nj = 20 k2 leads

to a smaller interlayer distances αij than the formation of layers belonging

to the nj = 60 m2 series and, consequentially, to a mixture of interlayer

distances being smaller and larger than αeq. The waviness of the interlayer

distance curves and the section force curves is a consequence of this.

Although, the interlayer distances and section forces obtained for the

pure and mixed configurations are different, both configurations give quite

the same growth limit Ncrit = 23 layers. This growth limit is significantly

lower than the number of layers found in reality Banhart (1997); Banhart

et al. (1997a); Blank et al. (2007); Wesolowski et al. (1997); Zwanger et al.

(1996). The reason for the difference between experimentally observed and

simulated values of Ncrit is the simplification of the vdW interactions. The

linear vdW model is only valid for interlayer distances αij close to αeq, but

the obtained interlayer distances differ considerably from αeq, see Figure 6.
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If αij is larger than αeq the linear vdW model overestimates the stiffness of

the vdW bedding and, as a consequence, the vdW interaction forces between

the layers. Thus, the vdW induced section forces in the layers are too high.

Since the compressive section forces in the outer layers are responsible for

the occurrence of the instability, overestimating these forces introduces the

instability too early. This leads to a value Ncrit which is much lower than the

experimentally observed maximum number of layers.

Nevertheless, the linear model shows that the occurrence of a structural

instability most likely limits the size of carbon onions. The vdW interactions,

leading to self-equilibrating stress states in the layers due to mutual accom-

modation, have shown to be responsible for the loss of stability, whereas the

curvature induced surface stress plays only a minor role. Using a nonlinear

vdW model should lead to more realistic values of Ncrit.

3.2. Simulations with the Nonlinear van der Waals Model

As the vdW interactions are the driving forces behind the growth limit

of carbon onions their influence is investigated in more detail. Due to the

minor influence of the surface stress on the growth limit it is neglected in

the following. Furthermore, it seems to be of no importance if the carbon

onion belongs to the pure or mixed configuration. Thus, only onions of pure

configuration are considered.

The two different vdW models, given by Equations (6) and (7) are used to

describe the vdW interactions and are referred to as M1 and M2, respectively.

For the required Lennard-Jones parameters σ and ε two different sets, S1

(σ = 0.3415 nm and ε = 0.00239 eV (Lu et al., 2009)) and S2 (σ = 0.3345 nm

and ε = 0.00319 eV (Zhang et al., 2007)) are taken from literature. The
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Table 1: Nonlinear vdW models used in the stability analysis of carbon

onions.

Model Equation σ in nm ε in eV C33/6 in GPa C0 in GPa

M1S1 (6) 0.3415 0.00239 6.083̇ -

M2S1 (7) 0.3415 0.00239 - 4.79

M1S2 (6) 0.3345 0.00319eV 6.083̇ -

M2S2 (7) 0.3345 0.00319 - 6.26

two vdW models M1 and M2 in combination with the parameter sets S1

and S2 lead to four different vdW interfaces which are defined according to

Sec. 2.3.2. The parameters and compressive constants used in the interface

definitions are summarized in Table 1.

Figure 7 shows the results of the computational stability analysis based

on Eq. (13) for the different vdW interfaces. A value λ̄1
N ≥ 1 indicates that

the critical pressure of the onion is larger than the buckling pressure of the

outermost layer, i.e., the outermost layer is sufficiently supported by the

inner layers to prevent buckling. For a low number of layers the supporting

effect becomes larger with increasing layer numbers. After reaching a certain

number of layers, the inner layers are still supporting the outermost one, but

the effect is reduced by every layer added. The numerical analysis terminates

close before λ̄1
N = 0 is reached due to ill-condition of the algebraic system (the

matrix K
≈

N approaches a singularity) describing the boundary value problem

which arises when the next layer is added. The abort of the analysis implies

that the onion is very close to its stability limit. Thus, the critical size of the

onion can be extracted by extrapolation of the eigenvalue curves.
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Figure 7: Lowest eigenvalue λ̄1
N versus the current number of layers N form-

ing the carbon onion. The different curves correspond to the different vdW

interface models.

The vdW interface M1S1 is the nonlinear counterpart to the linear vdW

interactions used in Section 3.1. For M1S1 a growth limit of Ncrit ≈ 64 is

estimated which is much larger than the value Ncrit = 23 calculated with

the linear model. Ncrit extracted with the improved interface M1S1 is com-

parable to numbers of layers of large onions found in experiments (Banhart

et al., 1997b). The highest critical number of layers, Ncrit ≈ 72, is estimated

with the interface M2S1. The vdW interfaces M1S2 and M2S2 show simi-

lar eigenvalue curves, and both interfaces lead to Ncrit ≈ 43, although the

exponents of the vdW models M1 and M2 are different. The corresponding

buckling mode of M1S2 at the growth limit is depicted in Fig. 8. The same

buckling patterns can be observed for all vdW interfaces. The outermost

layers buckle in an interactive way, whereas the inner layers remain almost

unaffected. This corresponds to the buckling behavior observed already in

Section 3.1.
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Figure 8: Buckling mode of a carbon onion modeled with interface M1S2.

Only each second layer is displayed.
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Figure 9: Section forces fi in the i-th layer of an N -layered onion for all

vdW interfaces. Negative values of fi denote compression. Layers under

compression are marked with • for N = 3, 23 and 43.
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Figure 9 shows that, a newly added layer i = N is always under compres-

sion. Adding further layers reduces the compressive section force in layer N ,

and if sufficient layers are added a tensile section force develops. If the onion

has become large enough, adding of further layers does not lead to a further

change in the section force of layer N , anymore, and also its distance to the

layer underneath remains unaffected. The number of layers to be added until

a tensile section force develops or until the layer remains unaffected by a new

layer depends on the position of the layer in the onion. Only layers in the

outer region are subjected to compressive section forces and their number

increases with the size of the onion. This fact is illustrated in Fig. 10 for

M1S1.

Although the qualitative behavior of all models with different nonlinear

vdW interfaces is the same, their quantitative behavior is different. A higher

value of the compressive constants C33 and C0 leads to higher vdW pressures

and, therefore, to higher compressive section forces in the layers, see Figure 9.

Higher vdW pressures are also observed if a smaller vdW equilibrium distance

αeq = σ is used, as the initial interlayer distance αij between a newly added

layer and the layers underneath is always larger than αeq; compare M1S1

and M1S2 in Fig. 11. Higher values of the vdW pressures imply that higher

compressive section forces are introduced in the outer layers and, hence,

evoke the occurrence of a structural instability at lower layer numbers. If

the vdW interfaces have (almost) the same compressive constant and vdW

equilibrium interlayer distance (e.g., M1S2 and M2S2) the results of the

eigenvalue problem, the interlayer distances, and the section forces are almost

equal, too. This leads to the conclusion, that the different exponents of the

27



  

N = 3 N = 23 N = 43

x

y
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Figure 10: Number of layers under compression (black) and tension (gray)

for onions of different sizes.

vdW models M1 and M2 have only a minor influence.

The obtained maximum number of layers forming the onions is highly sen-

sitive to the vdW parameters used. Thus, the calculated growth limits have

rather a qualitative than a quantitative character. Nevertheless, the results

indicate that the occurrence of a structural instability is a possible explana-

tion for the limited size of carbon onions. The obtained results for Ncrit are

in the range of the sizes of carbon onions observed in experiments (Banhart

et al., 1997b), although much larger onions, e.g., consisting of 115 layers

(Zwanger et al., 1996), have been observed. Possibly this high layer numbers

can be achieved by allowing layers which are not a spherical representation of

icosahedral fullerenes. These single layers need not to be thermodynamically

stable if isolated, but may lead to a better accommodation of the different

layers. This possibility is neglected in the presented model.

4. Conclusion

By using an axisymmetric continuum shell model it is shown that the

occurrence of a structural instability is a possible explanation for the limited

size of carbon onions. The instability is introduced by self-equilibrating stress
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Figure 11: Interlayer distances αij between layers i and j = i + 1 depending

on the number of layers N for all vdW interfaces.
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states emerging due to accommodation of misfitting carbon layers during the

growing process. The stresses are mainly introduced by van der Waals in-

teractions between adjacent layers, whereas the influence of the curvature

induced surface stress has shown to be negligible. Under the assumption

that carbon onions grow from the inside to the outside, loss of stability is

introduced in the outer layers whereas the innermost layers remain unaf-

fected. Other growing scenarios might lead to different buckling patterns

and should be considered in further studies. To obtain reasonable results for

the growth limit the nonlinear character of the van der Waals interactions

has to be taken into account. The so obtained critical sizes of the onions are

highly sensitive to the interlayer distances and compressive constants used

in the van der Waals models and, thus, rather have a qualitative than a

quantitative character. To obtain a better representation of reality also the

assumption of the layers being icosahedral fullerenes should be abandoned in

further studies. Nevertheless, the used models clearly indicate a growth limit

of carbon onions and can serve as basis for further investigations concerning

the growth of such particles.
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Hypothesis: Size of carbon

onions is limited to N layers

by the occurence of a

structural instability.

Continuum mechanics 

model:

Adding a further layer enforcing additional 
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The number of layers forming carbon onions seems to be limited.

The occurence of a structural instabilitiy can be a reason for this limitation.

The van der Waals interactions are the main reasons for the loss of stability.

The vdW parameters used have significant influence on the stability limit.

The influence of the curvature dependent surface stress is negligible.


