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Abstract: In this work, Snell’s law of elastic waves on the moving property interface (MPI) of 

time-varying materials has been studied. First, additional constraints of the elastic wave 

propagation on MPI are proposed to ensure self-consistence of Snell’s law. Second, based on 

Huygens principle, a geometric approach is developed which can be used to geometrically 

reveal the wave propagation directions on MPI with clear geometric meanings for the 

additional constraints. Two criteria are proposed to determine the existence of reflected or 

transmitted wave on MPI. Finally, based on the two criteria, the conditions for the existence of 

reflected or transmitted waves are expressed by moving velocity of MPI and wave propagation 

velocities on both sides of MPI. Then, according to the number of reflected and transmitted 

waves as well as their polarization types, the propagation of elastic wave on MPI can be 

classified into 6 cases for SH wave incidence, 12 cases for SV wave incidence, and 15 cases for P 

wave incidence determined by moving velocity of MPI and wave propagation velocities on both 

sides of MPI. While, the traditional case of elastic wave propagation on a static material 

interface, i.e. 2 emitted waves for SH wave and 4 emitted waves for SV or P waves are special 

cases of elastic wave propagation on MPI. It is noted that for most propagation cases presented 

in this work, the propagation coefficients are unable to be solved with only the continuous 

conditions on MPI, i.e. the continuity of displacement, stress and momentum on MPI. This work 

indicates the elastic wave propagation on MPI can have multiple cases of emitted wave which 

may provide useful insights for further studying elastodynamics of time-varying materials. 
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1 Introduction 

As the rapid growing demand of intelligent materials and structures (for instance, active 

materials and structures in soft robotics (Hines et al., 2017; Rus and Tolley, 2015)), different 

types of intelligent materials have been proposed, which can simulate the sensitive and active 

behaviors of living creatures. In general, these kinds of materials have properties that can be 

controlled by external applied field, such as temperature, electric field, magnetic field, and laser. 

For example, the shear resistance of electrorheological (ER) fluid can be controlled by external 

electrical field. Here, the time-varying materials mentioned in this work are specifically 

referred to the materials exhibiting rapid time-varying properties to the external fields. 

It is of the primary importance to explore the wave propagation behaviors in time-varying 

materials to promote their applications in intelligent materials and structures (Bergamini et al., 

2014; Bogue, 2014; Jakubiak et al., 2003; Jolly et al., 1999; Wang et al., 2016; Wu et al., 2009; 

Yang and Chen, 2008; Zabow et al., 2015). Reflection and refraction of elastic waves are two 

common phenomena for elastic wave propagation on material interface with different 

properties and it seems these phenomena have been well studied for a long-time of research. 

However, elastic wave propagation in time-varying materials exhibits many new phenomena as 

indicated by previous literatures of Lurie et al.(Lurie, 2007; Lurie et al., 2009; Lurie and Weekes, 

2006), Weekes (2001, 2002, 2003a, b) and Shui et al.(Shui et al., 2017; Shui et al., 2014; Shui et 

al., 2015). For instance, a SH incident wave propagating on a static material interface has one 

reflected wave and one transmitted wave, and the propagation directions of the emitted waves 

are determined by incident angle and wave propagation velocities on both sides of the interface. 

While, in the time-varying materials, the material interface may move (Shui et al., 2017), which 

may cause two transmitted waves or no transmitted wave (the evanescent wave is also 

considered as an emitted wave). Moreover, the propagation directions of the emitted SH waves 

are not only determined by the incident angle and wave propagation velocities on both sides of 

the material interface. 

Lurie (2007) studied a special case of wave propagation in one dimensional (1-D) case of 

time-varying materials and found five cases of wave propagation on 1-D MPI (normal 

incidence), i.e. (a) only one reflected wave, (b) only one transmitted wave, (c) no reflected wave 

and two transmitted waves, (d) one reflected and one transmitted waves, and (e) one reflected 

and two transmitted waves. The criteria for the five cases were given. Such results change the 

insight of elastic wave reflection and refraction on material interface. Shui et al. (2017) further 

extended the 1-D wave propagation to a general 3-D situation, and also found five cases for SH 
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wave incidence on MPI. Besides, a classification for the five propagation cases was given in their 

work, based on which the propagation coefficients of SH wave incidence on MPI is derived. In 

principle, the classification of propagation cases is the basis for further studying of elastic wave 

propagation in time-varying materials. However, as the derivation of the velocity criteria of MPI 

for 3-D wave propagation cases is much more complicated than that of 1-D cases (Shui et al., 

2017), especially if SV and P waves are considered, up to now there still lacks the classification 

of 3-D elastic wave propagation on MPI. Indeed, a smart method should be proposed to 

consider the potential emitted waves up to seven. Therefore, in this work, we aim to study the 

Snell’s law of 3-D elastic waves on MPI to give the criteria of different propagation cases. 

The content of this work is organized as follow. In Section 2, some general descriptions of 

the Snell’s law are presented. In order to ensure self-consistence of the Snell’s law, some 

additional constraints are given. Then, based on Huygens principle, a geometric approach is 

developed in Section 3, which can significantly simplify the theoretical analysis of wave 

propagation directions on MPI. Two criteria are given to determine the existence of the 

reflected or transmitted wave on MPI. Detailed classification of propagation cases for SH waves, 

SV waves and P waves are given. Finally, conclusions are made in Section 4. 

 

2 General description 

In general, the incidence of an elastic wave on static interface formed by two homogenous 

materials generates constant number of emitted waves. For instance, there must be one 

reflected wave and one transmitted wave for SH wave incidence, or there must be two reflected 

waves and two transmitted waves for SV wave incidence. However the number of emitted 

waves for elastic wave propagation on MPI is varied depending on the moving velocity of MPI 

and wave velocities on both sides of MPI as shown in previous literatures (Lurie, 2007; Shui et 

al., 2017; Shui et al., 2014). The moving velocity of MPI has significant influence to the number 

of emitted waves. If the number of reflected and transmitted waves are unknown, many further 

discussions (e.g. the propagation coefficients) are impossible. Hence, a clear classification of 

wave propagation cases on MPI should be given. Since the reflected and transmitted directions 

are ruled by the Snell’s law, the following work is also carried out based on the Snell’s law.  

For symmetry, the incident and emitted waves propagate in the incident plane. In the 

incident plane, Shui et al. (2017) have derived the expression of the Snell’s law of elastic waves 

on MPI for isotropic linear elastic media as the following forms: 
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𝑐𝑠
′ − 𝑉 cos 𝛼(𝑇)

sin 𝛼(𝑇)
=

𝑐𝑠 − 𝑉 cos𝛼(𝑅)

sin 𝛼(𝑅)
=

𝑐𝑠 − 𝑉 cos 𝛼(𝐼)

sin 𝛼(𝐼)
                                                                                (1a) 

for SH wave incidence, 

𝑐𝑠
′ − 𝑉 cos 𝛼(𝑇)

sin 𝛼(𝑇)
=

𝑐𝑠 − 𝑉 cos𝛼(𝑅)

sin 𝛼(𝑅)
=

𝑐𝑙
′ − 𝑉 cos 𝛽(𝑇)

sin 𝛽(𝑇)
=

𝑐𝑙 − 𝑉 cos 𝛽(𝑅)

sin 𝛽(𝑅)
=

𝑐𝑠 − 𝑉 cos 𝛼(𝐼)

sin 𝛼(𝐼)
;           (1b) 

for SV wave incidence and  

𝑐𝑠
′ − 𝑉 cos 𝛼(𝑇)

sin 𝛼(𝑇)
=

𝑐𝑠 − 𝑉 cos𝛼(𝑅)

sin 𝛼(𝑅)
=

𝑐𝑙
′ − 𝑉 cos 𝛽(𝑇)

sin 𝛽(𝑇)
=

𝑐𝑙 − 𝑉 cos 𝛽(𝑅)

sin 𝛽(𝑅)
=

𝑐𝑙 − 𝑉 cos 𝛽(𝐼)

sin 𝛽(𝐼)
;            (1c) 

for P wave incidence, where 𝑉 ∈ 𝐑 is the interface moving velocity induced by material 

properties changes (Shui et al., 2017). 𝑐 is the wave propagation velocity (the subscripts “𝑙” 

and “𝑠” are used to distinguish the wave velocities of the shear and longitudinal waves, 

respectively (note that 𝑐𝑙 > 𝑐𝑠). The superscript “ ′ ” represents the transmitted wave, and the 

incident and reflected waves are without such mark). The propagation angle 𝛼 (or 𝛽) is 

defined as the angle between the propagation direction and positive 𝑥 direction of shear (or 

longitudinal) waves. The superscripts “(𝐼)”, “(𝑅)”, and “(𝑇)” are used to distinguish the incident, 

reflected and transmitted waves, respectively. 𝛼(𝐼), 𝛽(𝐼)  ∈ ,0, 𝜋 2⁄ - for symmetry. Note that the 

incident and transmission angles are defined as the same as the traditional ones, but the 

reflection angle defined here is the supplementary angle of the traditional one for convenience 

of following analysis. By letting 𝑉 = 0, Eq. (1) deduces to the traditional Snell’s law. An 

example of the symbols is illustrated in Fig. 1 by considering SH wave incidence. 

Indeed, every solution in Eq. (1) has its reciprocal solution, i.e. 𝛼(𝑅) and 𝛼̅(𝑅), 𝛼(𝑇) and 

𝛼̅(𝑇), 𝛽(𝑅) and 𝛽̅(𝑅), and 𝛽(𝑇) and 𝛽̅(𝑇) (if one solution is real, the reciprocal solution is also 

real; if one solution is complex, the reciprocal solution is its conjugation). Each pair of solution 

should satisfy (Shui et al., 2017) 

|Re(𝛼(𝑅) − 𝛼̅(𝑅))|, |Re(𝛼(𝑇) − 𝛼̅(𝑇))|, |Re(𝛽(𝑅) − 𝛽̅(𝑅))|, |Re(𝛽(𝑇) − 𝛽̅(𝑇))| ≤ 𝜋, 

and 

Re(𝛼(𝑅)), Re(𝛼̅(𝑅)), Re(𝛼(𝑇)), Re(𝛼̅(𝑇)), Re(𝛽(𝑅)), Re(𝛽̅(𝑅)), Re(𝛽(𝑇)), Re(𝛽̅(𝑇)) ∈ (−
𝜋

2
,
3

2
𝜋). 

The reciprocal solutions correspond to two conjugate waves with the same velocity and 

polarization. As the two conjugate waves satisfy the same criteria, the reciprocal solution is 

omitted for simplification of the expressions. The solution 𝛼(𝑅) = 𝛼(𝐼)  or 𝛽(𝑅) = 𝛽(𝐼) 

corresponds to the incident wave, the solutions 𝛼(𝑅) ≠ 𝛼(𝐼) and 𝛽(𝑅) ≠ 𝛽(𝐼) correspond to the 

reflected waves, and the solutions 𝛼(𝑇) and 𝛽(𝑇) correspond to the transmitted waves. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Eq. (1) can be derived from Huygens principle. In Huygens principle, the backward 

propagations are always ignored. However, as referring to the previous literature (Shui et al., 

2017), the backward propagation may exist in time-varying materials, while the forward 

propagation may disappear. Eq. (1) has several solutions (i.e. 4 solutions for SH waves, or 8 

solutions for P or SV waves), and each solution corresponds to one potential propagation 

direction. Here, it is hard to directly judge the self-consistence of the potential propagation 

directions due to the different wave phenomena in time-varying materials from that of static 

materials. Thus, additional constraints are added to Eq. (1) to ensure the self-consistence of 

Snell’s law. 

To ensure the incidence of elastic wave to MPI, an incident wave in the downstream of MPI 

should satisfy 

𝑐𝑠 cos 𝛼(𝐼) , 𝑐𝑙 cos 𝛽(𝐼) < 𝑉,                                                                                                                                (2) 

which means that MPI can catch up the incident wave, and an incident wave in the upstream of 

MPI should satisfy 

𝑐𝑠 cos 𝛼(𝐼) , 𝑐𝑙 cos 𝛽(𝐼) > 𝑉,                                                                                                                                (3) 

which means that the incident wave can catch up MPI. 

For the emitted waves, the travelling wave is considered first. Similarly, to ensure the 

elastic wave emitting from MPI, an emitted wave in the downstream of MPI should satisfy 

𝑐𝑠 cos 𝛼(𝑅) , 𝑐𝑠
′ cos 𝛼(𝑇) , 𝑐𝑙 cos 𝛽(𝑅) , 𝑐𝑙

′ cos 𝛽(𝑇) ≥ 𝑉 ≥ 0                                                                         (4a) 

or 

𝑐𝑠 cos 𝛼(𝑅) , 𝑐𝑠
′ cos 𝛼(𝑇) , 𝑐𝑙 cos 𝛽(𝑅) , 𝑐𝑙

′ cos 𝛽(𝑇) ≤ 𝑉 ≤ 0,                                                                        (4b) 

which means that MPI cannot catch up the emitted wave; and an emitted wave in the upstream 

of MPI should satisfy 

𝑐𝑠 cos 𝛼(𝑅) , 𝑐𝑠
′ cos 𝛼(𝑇) , 𝑐𝑙 cos 𝛽(𝑅) , 𝑐𝑙

′ cos 𝛽(𝑇) ≤ 𝑉 ≥ 0                                                                         (5a) 

or  

𝑐𝑠 cos 𝛼(𝑅) , 𝑐𝑠
′ cos 𝛼(𝑇) , 𝑐𝑙 cos 𝛽(𝑅) , 𝑐𝑙

′ cos 𝛽(𝑇) ≥ 𝑉 ≤ 0,                                                                        (5b) 

which means that the emitted wave cannot catch up MPI. 

Indeed, the situation of evanescent waves is simpler than that travelling waves. Shui et al. 

(2017) pointed out that the evanescent wave propagates following with MPI. Thus the relation 

between the propagation angle and MPI moving velocity 𝑉 should satisfy one equation, not 

like the inequalities of Eqs. (4) and (5) for the travelling emitted waves. Based on the 

attenuation characteristic of the evanescent wave, i.e. the amplitude of the evanescent wave 

should degenerate zero away from MPI, the reasonable solution for the evanescent wave can be 
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determined. As a result, if the propagation angle is not real, there must is one and only one 

determined evanescent wave. Thus, the self-consistence is naturally satisfied. In other words, 

for evanescent wave, we do not need constraint equations like Eqs. (4) and (5). As can be seen, 

different constraint conditions are used for travelling and evanescent waves, which is not 

convenient. Thus, we need constraint equations that can determine reasonable steepest 

descent direction of the evanescent wave and are compatible with Eqs. (4) and (5) 

simultaneously. Based on these analyses, the constraint equations are written as 

〈𝑐𝑠 cos 𝛼(𝑅)〉, 〈𝑐𝑠
′ cos 𝛼(𝑇)〉, 〈𝑐𝑙 cos 𝛽(𝑅)〉, 〈𝑐𝑙

′ cos 𝛽(𝑇)〉 ≥ 𝑉 ≥ 0,                                                             (6a) 

or 

〈𝑐𝑠 cos 𝛼(𝑅)〉, 〈𝑐𝑠
′ cos 𝛼(𝑇)〉, 〈𝑐𝑙 cos 𝛽(𝑅)〉, 〈𝑐𝑙

′ cos 𝛽(𝑇)〉 ≤ 𝑉 ≤ 0,                                                             (6b) 

when an emitted wave is in the downstream of MPI; and 

〈𝑐𝑠 cos 𝛼(𝑅)〉, 〈𝑐𝑠
′ cos 𝛼(𝑇)〉, 〈𝑐𝑙 cos 𝛽(𝑅)〉, 〈𝑐𝑙

′ cos 𝛽(𝑇)〉 ≤ 𝑉 ≥ 0,                                                             (7a) 

or  

〈𝑐𝑠 cos 𝛼(𝑅)〉, 〈𝑐𝑠
′ cos 𝛼(𝑇)〉, 〈𝑐𝑙 cos 𝛽(𝑅)〉, 〈𝑐𝑙

′ cos 𝛽(𝑇)〉 ≥ 𝑉 ≤ 0,                                                             (7b) 

when an emitted wave is in the upstream of MPI. The operator 〈∙〉 = Re(∙) + Im(∙). Eqs. (4) and 

(5) can be deduced from Eqs. (6) and (7). In deriving Eqs. (6) and (7), two direction vectors, 

.Re(cos 𝛼(𝑇)), Re(sin 𝛼(𝑇))/ and .Im(cos 𝛼(𝑇)), Im(sin 𝛼(𝑇))/ are used. Direction of the first 

vector is the propagation direction of the traveling wave component of the evanescent wave, 

and direction of the second vector is the steepest descent direction of the evanescent wave. To 

get better understanding of Eqs. (6) and (7), one can refer to Section 3.1, where the example in 

Fig. 2(f) demonstrates that the 𝑥 -component of the vectors 𝑂𝑇(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  and 𝑂𝑇̅(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  are just 

〈𝑐𝑠
′cos 𝛼(𝑇)〉 and 〈𝑐𝑠

′cos 𝛼̅(𝑇)〉, one is not less than 𝑉, and the other one is not greater than 𝑉. 

Eqs. (2) to (7) can be combined and simplified as 

(𝑐𝑠 cos 𝛼(𝐼) − 𝑉)(〈𝑐𝑠 cos 𝛼(𝑅)〉 − 𝑉) ≤ 0, (𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)),                                                                  (8a) 

(𝑐𝑠 cos 𝛼(𝐼) − 𝑉)(〈𝑐𝑙 cos 𝛽(𝑅)〉 − 𝑉) ≤ 0, (𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)),                                                                  (8b) 

(𝑐𝑙 cos 𝛽(𝐼) − 𝑉)(〈𝑐𝑠 cos 𝛼(𝑅)〉 − 𝑉) ≤ 0, (𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)),                                                                   (8c) 

(𝑐𝑙 cos 𝛽(𝐼) − 𝑉)(〈𝑐𝑙 cos 𝛽(𝑅)〉 − 𝑉) ≤ 0, (𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼));                                                                  (8d) 

and 

(𝑐𝑠 cos 𝛼(𝐼) − 𝑉)(〈𝑐𝑠
′ cos 𝛼(𝑇)〉 − 𝑉) ≥ 0, (𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)),                                                                  (9a) 

(𝑐𝑠 cos 𝛼(𝐼) − 𝑉)(〈𝑐𝑙
′ cos 𝛽(𝑇)〉 − 𝑉) ≥ 0, (𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)),                                                                  (9b) 

(𝑐𝑙 cos 𝛽(𝐼) − 𝑉)(〈𝑐𝑠
′ cos 𝛼(𝑇)〉 − 𝑉) ≥ 0, (𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)),                                                                   (9c) 
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(𝑐𝑙 cos 𝛽(𝐼) − 𝑉)(〈𝑐𝑙
′ cos 𝛽(𝑇)〉 − 𝑉) ≥ 0, (𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)).                                                                   (9d) 

Eqs. (8) and (9) give the additional constraint equations that the reflected and transmitted 

waves should satisfy. 

Combining Eqs. (1), (8) and (9), the complete Snell’s law of elastic wave propagation on 

MPI is given. It can be seen that such form of Snell’s law is still implicit and not convenient to 

distinguish the propagation cases on MPI. To directly obtain the wave propagation directions 

that satisfy the self-consistence, a geometric approach is developed in Section 3. 

 

3 Classification of wave propagation cases 

3.1 Method 

In principle, the self-consistent wave propagation directions can be obtained by directly 

solving Eqs. (1) to (3), (8) and (9), i.e. the complete Snell’s law of elastic wave propagation on 

MPI. However, only for the reflected wave with the same polarization to that of the incident 

wave, its solution can be explicitly given as 

𝛼(𝑅) = 2arctan (
𝑐𝑠 − 𝑉

𝑐𝑠 + 𝑉
cot

𝛼(𝐼)

2
) (|𝑉| < 𝑐𝑠 and 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)),                                                    (10a) 

𝛽(𝑅) = 2arctan (
𝑐𝑙 − 𝑉

𝑐𝑙 + 𝑉
cot

𝛽(𝐼)

2
) (|𝑉| < 𝑐𝑙 and 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)).                                                     (10b) 

For other propagation cases, the equations need to be numerically solved. In this work, we 

developed a geometric approach to represent the complete Snell’s law and deduce the 

classification of wave propagation cases in a more convenient and intuitional way.  

Solutions of Eq. (1) can be expressed geometrically based on Huygens principle. The 

equality of the first and last item in Eq. (1c), which describes P wave incidence and SV wave 

transmission, is demonstrated as an example 

( (𝑐𝑠
′ − 𝑉 cos 𝛼(𝑇)) sin 𝛼(𝑇)⁄ = (𝑐𝑙 − 𝑉 cos 𝛽(𝐼)) sin 𝛽(𝐼)⁄ ). The procedures of the geometric 

approach and its meanings (the geometric approach can be strictly proved to equivalence with 

those of Eqs. (1), (8) and (9)) are presented as following: 

Step 1: draw two circles with center positions at Origin point 𝑂 and radiuses of 𝑐𝑙 and 𝑐𝑠
′ , 

denoted as ⨀𝑂𝑙 and ⨀𝑂𝑠
′, respectively. ⨀𝑂𝑙 and ⨀𝑂𝑠

′ represent the two wave fronts 

with wave velocities 𝑐𝑙  and 𝑐𝑠
′  emitted from Origin point 𝑂  after a unit time, 

respectively. ⨀𝑂𝑙 is the black circle corresponding to the incident wave; ⨀𝑂𝑠
′ is the blue 

circle corresponding to emitted wave, as shown in Fig. 2(a). 

Step 2: draw a line 𝐴0𝐴 (the red line in Fig. 2(b)) through 𝐴0(𝑉, 0) and parallel to 𝑦-axis. 𝐴0𝐴 
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represents the location of MPI from the Origin point 𝑂 after a unit time.  

Step 3: draw a line segment 𝑂𝑇(𝐼) intersecting with ⨀𝑂𝑙 at 𝑇(𝐼), let the angle between 𝑂𝑇(𝐼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

and positive 𝑥 direction be the incident angle 𝛽(𝐼). The direction of 𝑂𝑇(𝐼)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents the 

propagation direction of the incident wave, see Fig. 2(c). 

Step 4: draw a tangent line of ⨀𝑂𝑙 at 𝑇(𝐼) and intersecting with line 𝐴0𝐴 at 𝐴, see Fig. 2(d). 

Step 5 (case 1): point 𝐴 is on the outer side of ⨀𝑂𝑠
′. The emitted wave is travelling wave. Draw a 

tangent line of ⨀𝑂𝑠
′ through 𝐴 and 𝑇(𝑇) (𝑇̅(𝑇)) on ⨀𝑂𝑠

′. The direction of 𝑂𝑇(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑂𝑇̅(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

represents the propagation direction of transmitted wave, and the angle between 𝑂𝑇(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

(𝑂𝑇̅(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) and positive 𝑥 direction is 𝛼(𝑇) (𝛼̅(𝑇)), see Fig. 2(e). 

Step 5 (case 2): point 𝐴 is on the inner side of ⨀𝑂𝑠
′. The emitted wave is evanescent wave. Draw 

a isometric hyperbola and let its vertexes locate at the intersections between line 𝑂𝐴 and 

⨀𝑂𝑠
′; draw a tangent line of the hyperbola passing through 𝐴 and 𝑇(𝑇) (𝑇̅(𝑇)) on the 

hyperbola. Connect points 𝑇(𝑇) and 𝑇̅(𝑇); line segment 𝑇(𝑇)𝑇̅(𝑇) intersects with line 𝑂𝐴 

at 𝐵. 𝑂𝐴⃗⃗⃗⃗  ⃗ = (𝑉, 𝑐0𝑖 csc 𝛼0𝑖 − 𝑉 cot 𝛼0𝑖), and the direction and length of 𝑂𝐴⃗⃗⃗⃗  ⃗ represent the 

propagation direction and speed of the traveling wave component of the evanescent wave, 

respectively; the angle between 𝑂𝐴⃗⃗⃗⃗  ⃗ and positive 𝑥 direction is Re(𝛼(𝑇)); the area of the 

orange region 𝑇(𝑇)𝑂𝑇̅(𝑇) (scaled hyperbolic angle) is 𝑐𝑠
′2|Im(𝛼(𝑇))|, which determines 

the exponential decay rate of the evanescent wave; 𝑂𝐵⃗⃗ ⃗⃗  ⃗ = 𝑐𝑠
′ .Re(cos 𝛼(𝑇)), Re(sin 𝛼(𝑇))/, 

𝐵𝑇(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑐𝑠
′ .Im(cos 𝛼(𝑇)), Im(sin 𝛼(𝑇))/ , and the direction of 𝐵𝑇(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  or 𝐵𝑇̅(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  is the 

steepest descent direction of the corresponding evanescent wave, see Fig. 2(f). 

Based on the geometrical approach mentioned above (Fig. 2), Eq. (1) can be geometrically 

solved. The additional constraint equations of Eqs. (8) and (9) can be described by 

𝑥-coordinate of 𝑂𝑇(𝑅)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑂𝑇(𝑇)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝑉. First, it should be noted that if 𝑇(𝐼) is at line 𝐴𝐴0, there 

are not emitted waves as the incident wave cannot meet MPI. Eq. (8) means that points 𝑇(𝐼) 

and 𝑇(𝑅) should be at different sides of line 𝐴𝐴0, or point 𝑇(𝑅) is at line 𝐴𝐴0. On the other 

hand, Eq. (9) means that both points 𝑇(𝐼) and 𝑇(𝑇) should be at the same side of 𝐴𝐴0, or 

point 𝑇(𝑇) is at line 𝐴𝐴0. In addition, as indicated by Fig. 2, the basic geometric relationships 

of the related points and lines are still valid if the solution of Eq. (1) is complex. Thus, it is not 

necessary to treat the propagation cases of evanescent waves individually. Two criteria are 

summarized as follow: 
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Criterion I: Criterion for reflected waves: points 𝑇(𝐼) and 𝑇(𝑅) are at different sides of line 

𝐴𝐴0, or point 𝑇(𝑅) is at line 𝐴𝐴0 (𝑇(𝐼) cannot be at line 𝐴𝐴0). 

Criterion II: Criterion for transmitted waves: both points 𝑇(𝐼) and 𝑇(𝑇) are at the same side 

of 𝐴𝐴0, or point 𝑇(𝑇) is at line 𝐴𝐴0 (𝑇(𝐼) cannot be at line 𝐴𝐴0). 

To illustrate applicability of the two criteria, the 1-D situation (Lurie, 2007; Shui et al., 

2014) is analyzed as an example (considering normal incidence of SH wave). As introduced in 

Section 1, Lurie (2007) found five cases of wave propagation on 1-D MPI, e.g. there will be one 

reflected and two transmitted waves for −𝑐𝑠 ≤ 𝑉 ≤ −𝑐𝑠
′ . Specifically, for the 1-D situation 

( 𝛼(𝐼) → 0 ), the solutions of Eq. (1a) should degenerate to 0  and 𝜋 . The geometric 

demonstration is given in Fig. 3. When 𝛼(𝐼) → 0, the location of point 𝐴 is at the positive 

infinite. Thus, the four tangent points (𝑇(𝐼), 𝑇(𝑅), 𝑇(𝑇), 𝑇̅(𝑇)) should be intersections of the 

circles and 𝑥-axis, and the evanescent wave cannot exist. Fig. 3(a) demonstrates the traditional 

situation of static material interface (𝑉 = 0). The MPI 𝐴𝐴0 is through the Origin. By Criterion 

I, the reflected wave with 𝑇(𝑅) is self-consistent. By Criterion II, the transmitted wave with 

𝑇̅(𝑇) is self-consistent. However, the transmitted wave with 𝑇(𝑇) is not self-consistent. Thus, 

there is one reflected wave and one transmitted wave, which is in consistent with the 

well-known phenomenon of static material interface. Fig. 3(b) demonstrates the case 

−𝑐𝑠 ≤ 𝑉 ≤ −𝑐𝑠
′ . By Criterion I, the reflected wave with 𝑇(𝑅) is self-consistent. By Criterion II, 

the transmitted waves with 𝑇̅(𝑇) and 𝑇(𝑇) are self-consistent. Thus, there should be one 

reflected and two transmitted waves, which is in consistent with previous results of MPI (Lurie, 

2007; Shui et al., 2014). 

Based on above method, the complete Snell’s law of elastic wave propagation on MPI can 

be illustrated geometrically, and the propagation cases can be easily distinguished based on the 

moving velocity of MPI and incident angle. The detailed self-consistent propagation cases for 

SH, P and SV waves are given in following sections. Before further discussion, we introduce a 

series of symbols, 𝐃𝑠→𝑙
(𝑅×𝑖)

, 𝐃𝑠→𝑠
(𝑅×𝑖)

, 𝐃𝑙→𝑙
(𝑅×𝑖)

, 𝐃𝑙→𝑠
(𝑅×𝑖)

, 𝐃𝑠→𝑙
(𝑇×𝑖)

, 𝐃𝑠→𝑠
(𝑇×𝑖)

, 𝐃𝑙→𝑙
(𝑇×𝑖)

, 𝐃𝑙→𝑠
(𝑇×𝑖)

. Illustrating by 

an example, the first one, 𝐃𝑠→𝑙
(𝑅×𝑖) , represents a set of 𝑉  for the existence of 𝑖  reflected 

longitudinal waves induced by shear wave incidence. “𝑖” is the number of existed waves which 

can be 0, 1, and 2. For the evanescent waves, “𝑖” should be “1”, it is specially replaced by “𝑒” for 

convenience. 

 

3.2 Classification of the propagation cases of SH waves 
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For SH incident wave, Eq. (1) has two pairs of solutions, and there are maximum one 

reflected wave and two transmitted waves. It can be verified that the set of 𝑉 for one reflected 

wave should be (Fig. 4(a)) 

𝐃𝑠→𝑠
(𝑅×1)

= {𝑉||𝑉| ≤ 𝑐𝑠, 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)},                                                                                                       (11) 

and the reflected wave cannot be an evanescent wave because point 𝐴 must be at the outer 

side of ⨀𝑂𝑠. Obviously, the set for no transmitted wave should be (Fig. 4(b)) 

𝐃𝑠→𝑠
(𝑅×0)

= 𝐑\𝐃𝑠→𝑠
(𝑅×1)

,                                                                                                                                          (12) 

where 𝐑 is the real domain. 

According to the criterion of transmitted waves (Criterion II), if there are no or two 

transmitted waves, points 𝑇(𝑇) and 𝑇̅(𝑇) should be at the same side of line 𝐴𝐴0 or point 𝑇(𝑇) 

or 𝑇̅(𝑇) is at line 𝐴𝐴0. Thus, 𝐴𝐴0 is separated by ⨀𝑂𝑠
′ or tangent to ⨀𝑂𝑠

′ (Fig. 5), which 

gives that 

|𝑉| ≥ 𝑐𝑠
′ .                                                                                                                                                               (13) 

Because 𝑂𝑇(𝐼) ⊥ 𝐴𝑇(𝐼), 𝑇(𝐼) should be at a circle with diameter 𝐴𝑂 (the red dash-dotted 

lines). Considering that 𝛼(𝐼) ∈ ,0, 𝜋 2⁄ -, part of the circle is deleted, and the red arcs is left in 

Fig. 5.  

According to Criterion II, if there are two transmitted waves, points 𝑇(𝑇), 𝑇̅(𝑇) and 𝑇(𝐼) 

should at the same side of line 𝐴𝐴0. Therefore, 𝑇(𝐼) should be at arc ⌢
AP) in Fig. 5(a) or arc ⌢

OP) 

in Fig. 5(b). In Fig. 5(a), 𝑉 ≥ 𝑐𝑠
′ , the condition 0 ≤ 𝑐𝑠 cos 𝛼(𝐼) ≤ 𝑉 should be satisfied to let 

𝛼(𝐼) be at arc ⌢
AP). In Fig. 5(b), 𝑉 ≤ −𝑐𝑠

′, ∀𝛼(𝐼) ∈ ,0, 𝜋 2⁄ -, there are two transmitted waves. 

Thus the set for two transmitted wave should be 

𝐃𝑠→𝑠
(𝑇×2)

= *𝑉|𝑉 ≤ −𝑐𝑠
′+ ∪ {𝑉| 𝑉 ≥ max{𝑐𝑠 cos 𝛼(𝐼) , 𝑐𝑠

′} , 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)}.                                          (14) 

These two transmitted waves cannot be evanescent waves because point 𝐴 must be at the 

outer side of ⨀𝑂𝑠
′. 

For the propagation cases without transmitted wave, points 𝑇(𝑇) and 𝑇̅(𝑇) , and 𝑇(𝐼) 

should be at different sides of line 𝐴𝐴0. Consequently, only if 𝑉 ≥ 𝑐𝑠
′ , and 𝑇(𝐼) is at arc 

⌢
AA 0

﷧)) (Fig. 5(a)), there is not transmitted wave, so the condition 𝑐𝑠 cos 𝛼(𝐼) ≥ 𝑉 should be 

satisfied. Hence, the set for no transmitted wave should be 

𝐃𝑠→𝑠
(𝑇×0)

= *𝑉|𝑐𝑠
′ < 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼)+;                                                                                                              (15) 

For the propagation case with one transmitted wave, points 𝑇(𝑇) and 𝑇̅(𝑇) should at 

different sides of line 𝐴𝐴0, and 𝑇(𝑇) and 𝑇̅(𝑇) cannot be at line 𝐴𝐴0. As a result, the set for 
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one transmitted wave should be (Fig. 6) 

𝐃𝑠→𝑠
(𝑇×1)

= {𝑉||𝑉| < 𝑐𝑠
′ , 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)}.                                                                                                       (16) 

The transmitted wave in this case can be an evanescent wave if points 𝐴 is at chord 𝐵𝐶 

except 𝑇(𝐼) (Fig. 6). It can be derived that the set for the existence of evanescent wave is 

𝐃𝑠→𝑠
(𝑇×𝑒)

= {𝑉|𝑐𝑠 cos 𝛼(𝐼) − √𝑐𝑠
′2 − 𝑐𝑠

2 sin 𝛼(𝐼) ≤ 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼) + √𝑐𝑠
′2 − 𝑐𝑠

2 sin 𝛼(𝐼) sin 𝛼01 , 𝑉

≠ 𝑐𝑠 cos 𝛼(𝐼)} ⊂ 𝐃𝑠→𝑠
(𝑇×1)

, (𝑐𝑠 < 𝑐𝑠
′).                                                                                    (17) 

By intersection operation of the sets for the existence of the reflected or transmitted waves 

(column 4 in Table 1), the classification of the propagation cases of SH waves on MPI are listed 

in Table 1 in consistent with previous work (Shui et al., 2017) and schematically demonstrated 

in Fig. 7. It can be verified that the ranges of 𝑉 listed in Table 1 completely cover the real 

domain without overlapping. The propagation scenarios shown in Fig. 7 agree with the 

previous simulation results (Shui et al., 2017). It can be seen from Fig. 7(e) that case SH-v is 

similar to the classic wave propagation on static material interface. For the propagation 

coefficients, except cases of SH-iii and SH-v which have only two emitted waves, the 

propagation coefficients cannot solved by the two continuous conditions, i.e. the displacement, 

stress and momentum continuity on MPI due to the inequality of unknown variables and 

equations. To obtain the propagation coefficients for all propagation cases, a method based on 

weak solutions of the continuity should be developed (Shui et al., 2017). 

 

3.3 Classification of the propagation cases of SV and P waves 

When the incident wave is SV or P waves, the emitted waves are always both SV and P 

waves. For the emitted waves with the same polarization to the incident wave, the propagation 

cases are similar to that of SH waves as discussed in Section 3.2. It is noted that P waves always 

propagate faster than SV waves. Actually, the ratio of P wave velocity to SV wave velocity is  

𝑐𝑙

𝑐𝑠
= √

2 − 2𝜈

1 − 2𝜈
> √

4

3
> 1                                                                                                                                 (18) 

as Poisson ratio 𝜈 ∈ (−1, 0.5). Such relation should be considered in the analysis. Thus, the 

propagation cases for emitted waves with different polarizations from that of the incident wave 

are different. The general analysis in this section is similar to that in Section 3.2, but the 

classification for P or SV waves incidence are much more complicated. 

3.3.1 Reflected waves 

Firstly, for the reflected wave with the same polarization to the incident wave, the 
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propagation cases are similar to that of SH waves, and the set of the reflected wave should be 

𝐃𝑠→𝑠
(𝑅×1)

= {𝑉||𝑉| ≤ 𝑐𝑠, 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)},                                                                                                     (19a) 

𝐃𝑙→𝑙
(𝑅×1)

= {𝑉||𝑉| ≤ 𝑐𝑙, 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)}.                                                                                                     (19b) 

The reflected wave cannot be an evanescent wave because point 𝐴 must be at the outer side of 

⨀𝑂𝑠 or ⨀𝑂𝑙. Similarly, the set of zero reflected wave is 

𝐃𝑠→𝑠
(𝑅×0)

= 𝐑\𝐃𝑠→𝑠
(𝑅×1)

,                                                                                                                                        (20a) 

𝐃𝑙→𝑙
(𝑅×0)

= 𝐑\𝐃𝑙→𝑙
(𝑅×1)

.                                                                                                                                       (20b) 

Therefore, we focused on the reflected waves with different polarizations from the 

incident wave. According to the criterion for reflected waves (Criterion I), if there are zero or 

two reflected waves, points 𝑇(𝑅) and 𝑇̅(𝑅) should at the same side of line 𝐴𝐴0. Such cases are 

similar to the transmitted waves analyzed in Section 3.2. The difference is that the criteria are 

opposite. Therefore, it can be derived that the sets of MPI moving velocity 𝑉 for the reflected 

waves with different polarizations from the incident wave should be 

𝐃𝑠→𝑙
(𝑅×0)

= *𝑉|𝑉 < −𝑐𝑙+ ∪ {𝑉|𝑉 > max{𝑐𝑠 cos 𝛼(𝐼) , 𝑐𝑙}} ∪ {𝑉|𝑉 = 𝑐𝑠 cos 𝛼(𝐼)},                               (21a) 

𝐃𝑙→𝑠
(𝑅×0)

= *𝑉|𝑉 < −𝑐𝑠+ ∪ {𝑉|𝑉 > max{𝑐𝑙 cos 𝛽(𝐼) , 𝑐𝑠}} ∪ {𝑉|𝑉 = 𝑐𝑙 cos 𝛽(𝐼)};                              (21b) 

𝐃𝑠→𝑙
(𝑅×1)

= {𝑉||𝑉| ≤ 𝑐𝑙, 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)},                                                                                                     (22a) 

𝐃𝑙→𝑠
(𝑅×1)

= {𝑉||𝑉| ≤ 𝑐𝑠, 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)};                                                                                                    (22b) 

𝐃𝑠→𝑙
(𝑅×2)

= *𝑉|𝑐𝑙 < 𝑉 < 𝑐𝑠 cos 𝛼(𝐼)+,                                                                                                             (23a) 

𝐃𝑙→𝑠
(𝑅×2)

= *𝑉|𝑐𝑠 < 𝑉 < 𝑐𝑙 cos 𝛽(𝐼)+.                                                                                                            (23b) 

As 𝑐𝑙 > 𝑐𝑠 (Eq. (18)), the reflected wave cannot be evanescent wave if the incident wave is P 

wave. If the incident wave is SV wave and 𝑉 ∈ 𝐃𝑠→𝑙
(𝑅×1)

, the reflected wave can be an evanescent 

wave as 𝑐𝑙 > 𝑐𝑠 (Eq. (18)), and the set for evanescent wave should be 

𝐃𝑠→𝑙
(𝑅×𝑒)

= {𝑉|𝑐𝑠 cos 𝛼(𝐼) − √𝑐𝑙
2 − 𝑐𝑠

2 sin 𝛼(𝐼) ≤ 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼) + √𝑐𝑙
2 − 𝑐𝑠

2 sin 𝛼(𝐼) , 𝑉

≠ 𝑐𝑠 cos 𝛼(𝐼)} ⊂ 𝐃𝑠→𝑙
(𝑅×1)

, (𝑐𝑠 < 𝑐𝑙).                                                                                    (24) 

3.3.2 Transmitted waves  

Similar to the results of SH wave incidence, the sets for transmitted waves can be derived 

as 

𝐃𝑠→𝑠
(𝑇×0)

= *𝑉|𝑐𝑠
′ < 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼)+,                                                                                                            (25a) 

𝐃𝑠→𝑙
(𝑇×0)

= *𝑉|𝑐𝑙
′ < 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼)+,                                                                                                            (25b) 
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𝐃𝑙→𝑠
(𝑇×0)

= *𝑉|𝑐𝑠
′ < 𝑉 ≤ 𝑐𝑙 cos 𝛽(𝐼)+,                                                                                                             (25c) 

𝐃𝑙→𝑙
(𝑇×0)

= *𝑉|𝑐𝑙
′ < 𝑉 ≤ 𝑐𝑙 cos 𝛽(𝐼)+;                                                                                                             (25d) 

𝐃𝑠→𝑠
(𝑇×1)

= *𝑉||𝑉| < 𝑐𝑠
′ , 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)+,                                                                                                     (26a) 

𝐃𝑠→𝑙
(𝑇×1)

= *𝑉||𝑉| < 𝑐𝑙
′, 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)+,                                                                                                     (26b) 

𝐃𝑙→𝑠
(𝑇×1)

= *𝑉||𝑉| < 𝑐𝑠
′ , 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)+,                                                                                                     (26c) 

𝐃𝑙→𝑙
(𝑇×1)

= *𝑉||𝑉| < 𝑐𝑙
′, 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)+;                                                                                                     (26d) 

𝐃𝑠→𝑠
(𝑇×2)

= *𝑉|𝑉 ≤ −𝑐𝑠
′+ ∪ {𝑉|𝑉 ≥ max{𝑐𝑠 cos 𝛼(𝐼) , 𝑐𝑠

′} , 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)},                                         (27a) 

𝐃𝑠→𝑙
(𝑇×2)

= *𝑉|𝑉 ≤ −𝑐𝑙
′+ ∪ {𝑉|𝑉 ≥ max{𝑐𝑠 cos 𝛼(𝐼) , 𝑐𝑙

′} , 𝑉 ≠ 𝑐𝑠 cos 𝛼(𝐼)},                                         (27b) 

𝐃𝑙→𝑠
(𝑇×2)

= *𝑉|𝑉 ≤ −𝑐𝑠
′+ ∪ {𝑉|𝑉 ≥ max{𝑐𝑙 cos 𝛽(𝐼) , 𝑐𝑠

′} , 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)},                                          (27c) 

𝐃𝑙→𝑙
(𝑇×2)

= *𝑉|𝑉 ≤ −𝑐𝑙
′+ ∪ {𝑉|𝑉 ≥ max{𝑐𝑙 cos 𝛽(𝐼) , 𝑐𝑙

′} , 𝑉 ≠ 𝑐𝑙 cos 𝛽(𝐼)};                                         (27d) 

𝐃𝑠→𝑠
(𝑇×𝑒)

= {𝑉|𝑐𝑠 cos 𝛼(𝐼) − √𝑐𝑠
′2 − 𝑐𝑠

2 sin 𝛼(𝐼) ≤ 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼) + √𝑐𝑠
′2 − 𝑐𝑠

2 sin 𝛼(𝐼) , 𝑉

≠ 𝑐𝑠 cos 𝛼(𝐼)} ⊂ 𝐃𝑠→𝑠
(𝑇×1)

, (𝑐𝑠 < 𝑐𝑠
′),                                                                                  (28a) 

𝐃𝑠→𝑙
(𝑇×𝑒)

= {𝑉|𝑐𝑠 cos 𝛼(𝐼) − √𝑐𝑙
′2 − 𝑐𝑠

2 sin 𝛼(𝐼) ≤ 𝑉 ≤ 𝑐𝑠 cos 𝛼(𝐼) + √𝑐𝑙
′2 − 𝑐𝑠

2 sin 𝛼(𝐼) , 𝑉

≠ 𝑐𝑠 cos 𝛼(𝐼)} ⊂ 𝐃𝑠→𝑠
(𝑇×1)

, (𝑐𝑠 < 𝑐𝑙
′),                                                                                  (28b) 

𝐃𝑙→𝑠
(𝑇×𝑒)

= {𝑉|𝑐𝑙 cos 𝛽(𝐼) − √𝑐𝑠
′2 − 𝑐𝑙

2 sin 𝛽(𝐼) ≤ 𝑉 ≤ 𝑐𝑙 cos 𝛽(𝐼) + √𝑐𝑠
′2 − 𝑐𝑙

2 sin 𝛽(𝐼) , 𝑉

≠ 𝑐𝑙 cos 𝛽(𝐼)} ⊂ 𝐃𝑙→𝑠
(𝑇×1)

, (𝑐𝑙 < 𝑐𝑠
′),                                                                                  (28c) 

𝐃𝑙→𝑙
(𝑇×𝑒)

= {𝑉|𝑐𝑙 cos 𝛽(𝐼) − √𝑐𝑙
′2 − 𝑐𝑙

2 sin 𝛽(𝐼) ≤ 𝑉 ≤ 𝑐𝑙 cos 𝛽(𝐼) + √𝑐𝑙
′2 − 𝑐𝑙

2 sin 𝛽(𝐼) , 𝑉

≠ 𝑐𝑙 cos 𝛽(𝐼)} ⊂ 𝐃𝑙→𝑠
(𝑇×1)

, (𝑐𝑙 < 𝑐𝑙
′).                                                                                  (28d) 

It is noted that if point 𝐴 is at chord 𝐵𝐶 of ⨀𝑂𝑠
′ (Fig. 6), 𝐴 must be at the inner side of ⨀𝑂𝑙

′ 

(Eq. (18)), which means that if the transmitted SV wave is an evanescent wave, the transmitted 

P wave must also be an evanescent wave. 

 

3.3.3 Classification of the propagation cases 

The classification of the propagation cases is actually the set operation of 𝐃 under the 

constraint of Eq. (18). For instance, for the case of SV wave incidence with 𝑖 reflected SV waves, 
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𝑗 reflected P waves, 𝑘 transmitted SV waves, and 𝑙 transmitted P waves, set of the MPI 

moving 𝑉  should be 𝐃𝑠→𝑠
(𝑅×𝑖)

∩ 𝐃𝑠→𝑙
(𝑅×𝑗)

∩ 𝐃𝑠→𝑠
(𝑇×𝑘)

∩ 𝐃𝑠→𝑙
(𝑇×𝑙)(𝑖 = 0,1; 𝑗 = 0,1,2; 𝑘 = 0,1,2; 𝑙 = 0,1,2) 

(similar to column 4 in Table 1). Thus, there are maximum 54 × 2 = 108 kinds of propagation 

cases for SV wave or P wave incidence by considering different numbers of emitted waves and 

different polarizations. However, the final results are not so complicated because most cases 

are inexistence as the corresponding sets of the MPI moving 𝑉 are empty. Indeed, at most 27 

kinds of propagation cases are distinguished. The classification of propagation cases of SV and 

P waves are listed in Table 2 and Table 3, and schematically demonstrated in Fig. 8 and Fig. 9, 

respectively. The propagation characteristics of cases P-i ~ P-xii are quite similar to that of SV 

wave incidence for case SV-i ~ SV-xii (referring to Table 2 and Table 3), and the only difference 

is the absence of evanescent waves, thus the propagation cases P-i ~ P-xii are not demonstrated, 

i.e. only cases P-xiii ~ P-xv are demonstrated in Fig. 9. It can be verified that the ranges of 𝑉 

listed in Table 2 (or Table 3) completely cover the real domain without overlapping. It can be 

seen from Fig. 8(j) that case SV-x (or P-x) is similar to the traditional wave propagation on 

static material interface. For the propagation coefficients, except cases SV-iv, SV-vi, SV-x, P-iv, 

P-vi, P-x, and P-xv, which have four emitted waves, the propagation coefficients for other 

propagation cases are not solvable with the four continuous conditions of displacement, stress 

and momentum on MPI due to the inequality of unknown variables and equations. To obtain 

the propagation coefficients for all propagation cases, a method based on weak solutions of the 

continuity on MPI should be considered (Shui et al., 2017). 

 

4 Conclusion 

In this work, based on Huygens principle, a geometric approach is proposed to study the 

Snell’s law of elastic wave propagation on MPI. Two criteria are proposed to determine the 

existence of the reflected and transmitted wave. Based on the criteria, 6 types of SH wave, 12 

types of SV, and 15 types of P wave propagation cases are found, and the corresponding sets of 

MPI moving velocity V are obtained. It is noted that the propagation coefficients for most 

propagation cases can not directly solved by continuous conditions of displacement, stress and 

momentum on MPI due to the inequality of unknown variables and equations. The geometric 

approach presented in this work is a convenient, simple and intuitive method to predict the 

number and direction of the emitted waves for elastic wave propagation on MPI. The results 

show complex characteristics of wave propagation on MPI, which may provide useful insights 

for further studying the elastodynamics of time-varying materials and time-varying structural 
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composites.  
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Figure Legends 

 

Fig. 1 Symbol illustration of waves in the incident plane: an example considering SH wave incidence. 𝑉 ∈ 𝑹 

is the interface moving velocity induced by material properties changes (Shui et al., 2017). The propagation 

angle 𝛼 (or 𝛽) is defined as the angle between the propagation direction and positive 𝑥 direction of shear 

(or longitudinal) waves. The superscripts “(𝐼)”, “(𝑅)”, and “(𝑇)” are used to distinguish the incident, reflected 

and transmitted waves, respectively. 𝛼(𝐼), 𝛽(𝐼)  ∈ ,0, 𝜋 2⁄ -  for symmetry. Note that the incident and 

transmission angles are defined as the same as the traditional ones, but the reflection angle defined here is 

the supplementary angle of the traditional one. 

 

Fig. 2 Illustration of the geometric analysis method of Snell’s law on MPI. (a) step 1; (b) step 2; (c) step 3; (d) 

step 4; (e) step 5 (case 1), demonstration of a travelling wave (𝛼(𝑇) ∈ 𝐑); and (f) step 5 (case 2), 

demonstration of an evanescent wave (𝛼(𝑇) ∈ 𝐙/𝐑). The blue elements correspond to the emitted waves, and 

the black ones correspond to the incident wave. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article) 

 

Fig. 3 Examples of the geometric approach: (a) common situation with static material interface (V=0). 

Criterion (1) indicates that the reflected wave with 𝑇(𝑅) is self-consistent. Criterion (2) indicates that the 

transmitted wave with 𝑇̅(𝑇)  is self-consistent, however the transmitted wave with 𝑇(𝑇)  is not 

self-consistent. Thus, there is one reflected wave and one transmitted wave, which is in line with the 

well-known phenomenon; (b) the case with −𝑐𝑠 ≤ 𝑉 ≤ −𝑐𝑠
′ . Criterion (1) and (2) indicate that all the 

reflected wave with 𝑇(𝑅), transmitted wave with 𝑇̅(𝑇) and 𝑇(𝑇) are self-consistent. Thus, there should be 

one reflected and two transmitted waves, which is in line with previous results (Lurie, 2007; Shui et al., 

2014). The solid lines with arrow mean self-consistent reflected waves and the dotted line with arrow means 

self-inconsistent reflected wave which should not exist during the practical propagation of SH wave on MPI. 

 

Fig. 4 Geometric demonstration of the reflected SH waves: (a) self-consistent case and (b) self-inconsistent 

case. 

 

Fig. 5 Geometric demonstration of two or zero transmitted SH waves. (a) 𝑉 ≥ 𝑐𝑠
′; (b) 𝑉 ≤ −𝑐𝑠

′. Because 

𝑂𝑇(𝐼) ⊥ 𝐴𝑇(𝐼), 𝑇(𝐼) should be at a circle with diameter 𝐴𝑂 (the red dash-dotted lines, color on line). 

Considering that 𝛼(𝐼) ∈ ,0, 𝜋 2⁄ -, part of the circle is deleted, and the red arcs is left in the figure. By 

Criterion (2), solid part of the red arcs means that there will be two transmitted waves if 𝑇(𝐼) is at it, and 

dotted part of the red arcs means that there will be no transmitted wave if 𝑇(𝐼) is at it. 

 

Fig. 6 Geometric demonstration for one transmitted SH wave (𝐵𝐶 is a chord of ⨀𝑂𝑠
′. 𝑂𝑇(𝐼) ⊥ 𝐴𝐶). If 𝐴 is at 

chord 𝐵𝐶 except 𝑇(𝐼), the transmitted wave is evanescent. 
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Fig. 7 Propagation scenarios (represented as wave fronts) and the corresponding geometric demonstrations 

of SH waves incidence on MPI: (a) SH-i; (b) SH-ii; (c) SH-iii; (d) SH-iv; (e) SH-v; (f) SH-vi. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

Fig. 8 Propagation scenarios (represented as wave fronts) and the corresponding geometric demonstration 

of SV wave incidence on MPI: (a) SV-i; (b) SV-ii; (c) SV-iii; (d) SV-iv; (e) SV-v; (f) SV-vi; (g) SV-vii; (h) SV-viii; (i) 

SV-ix; (j) SV-x; (k) SV-xi; (l) SV-xii. (For interpretation of the references to color in the figure legend box, the 

reader is referred to the web version of this article.) 

 

Fig. 9 Propagation scenarios (represented as wave fronts) and the corresponding geometric demonstration 

of P wave incidence on MPI: (a) P-xiii; (b) P-xiv; (c) P-v. (For interpretation of the references to color in the 

figure legend box, the reader is referred to the web version of this article.) 
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Table 1 Classification of the propagation cases of SH waves 

Case (Fig. No.) Reflected SH waves Transmitted SH waves Set of 𝑉 Expressions of the range of 𝑉 

SH-i(Fig. 7(a)) 0 0 𝐃𝑠→𝑠
(𝑅×0)

∩ 𝐃𝑠→𝑠
(𝑇×0)

  𝑉 = 𝑐𝑠 cos𝛼(𝐼)  

SH-ii(Fig. 7(b)) 0 1 𝐃𝑠→𝑠
(𝑅×0)

∩ 𝐃𝑠→𝑠
(𝑇×1)

  𝑐𝑠 < |𝑉| < 𝑐𝑠
′   

SH-iii(Fig. 7(c)) 0 2 𝐃𝑠→𝑠
(𝑅×0)

∩ 𝐃𝑠→𝑠
(𝑇×2)

  |𝑉| ≥ max*𝑐𝑠, 𝑐𝑠
′+ (|𝑉| ≠ 𝑐𝑠)  

SH-iv(Fig. 7(d)) 1 0 𝐃𝑠→𝑠
(𝑅×1)

∩ 𝐃𝑠→𝑠
(𝑇×0)

  𝑐𝑠
′ < 𝑉 < 𝑐𝑠 cos𝛼(𝐼)  

SH-v(Fig. 7(e)) 1 1 𝐃𝑠→𝑠
(𝑅×1)

∩ 𝐃𝑠→𝑠
(𝑇×1)

  |𝑉| ≤ min*𝑐𝑠, 𝑐𝑠
′+ (𝑉 ≠ 𝑐𝑠 cos𝛼(𝐼) , 𝑐𝑠

′)  

SH-vi(Fig. 7(f)) 1 2 𝐃𝑠→𝑠
(𝑅×1)

∩ 𝐃𝑠→𝑠
(𝑇×2)

  −𝑐𝑠 ≤ 𝑉 ≤ −𝑐𝑠
′  or max{𝑐𝑠 cos𝛼(𝐼) , 𝑐𝑠

′} ≤ 𝑉 ≤ 𝑐𝑠  

 

Table 2 Classification of the propagation cases of SV wave incidence 

Case (Fig. No.) Reflected waves  Transmitted waves Expressions of the range of 𝑉 

SV waves P waves SV waves P waves 

SV-i (Fig. 8(a)) 0 0  0 0 𝑉 = 𝑐̃𝑠 1 

SV-ii (Fig. 8(b)) 0 0  1 1 𝑐𝑙 < |𝑉| < 𝑐𝑠
′   

SV-iii (Fig. 8(c)) 0 0  2 1 max*𝑐𝑠
′ , 𝑐𝑙+ ≤ |𝑉| < 𝑐𝑙

′(|𝑉| ≠ 𝑐𝑙)  

SV-iv (Fig. 8(d)) 0 0  2 2 |𝑉| ≥ max*𝑐𝑙 , 𝑐𝑠
′+ (|𝑉| ≠ 𝑐𝑙)  

SV-v (Fig. 8(e)) 0 1  1 1 𝑐𝑠 < |𝑉| ≤ min*𝑐𝑙 , 𝑐𝑠
′+ (|𝑉| ≠ 𝑐𝑠

′)  

SV-vi (Fig. 8(f)) 0 1  2 1 max*𝑐𝑠, 𝑐𝑠
′+ ≤ |𝑉| ≤ min*𝑐𝑙 , 𝑐𝑙

′+ (|𝑉| ≠ 𝑐𝑠, 𝑐𝑙
′)  

SV-vii (Fig. 8(g)) 0 1  2 2 max*𝑐𝑠, 𝑐𝑙
′+ ≤ |𝑉| ≤ 𝑐𝑙(𝑉 ≠ 𝑐̃𝑠, ±𝑐𝑠)  

SV-viii (Fig. 8(h)) 1 1  0 0 𝑐𝑙
′ < 𝑉 < 𝑐̃𝑠  

SV-ix (Fig. 8(i)) 1 1  0 1 𝑐𝑠
′ < 𝑉 ≤ min*𝑐̃𝑠, 𝑐𝑙

′+ (𝑉 ≠ 𝑐̃𝑠)  

SV-x (Fig. 8(j)) 1 1  1 1 |𝑉| ≤ min*𝑐𝑠, 𝑐𝑠
′+ (𝑉 ≠ 𝑐̃𝑠, ±𝑐𝑠

′)  

SV-xi (Fig. 8(k)) 1 1  2 1 −min*𝑐𝑠, 𝑐𝑙
′+ ≤ 𝑉 ≤ −𝑐𝑠

′  or max*𝑐̃𝑠, 𝑐𝑠
′+ ≤ 𝑉 ≤ min*𝑐𝑠, 𝑐𝑙

′+ (𝑉 ≠ 𝑐̃𝑠, ±𝑐𝑙
′)  

SV-xii (Fig. 8(l)) 1 1  2 2 −𝑐𝑠 < 𝑉 ≤ −𝑐𝑙
′ or max*𝑐̃𝑠, 𝑐𝑙

′+ ≤ 𝑉 < 𝑐𝑠(𝑉 ≠ 𝑐̃𝑠)  

1 𝑐̃𝑠 = 𝑐𝑠 cos𝛼(𝐼). 

 

Table 3 Classification of the propagation cases of P wave incidence 

Case (Fig. No.) Reflected waves  Transmitted waves Expressions of the range of 𝑉 

SV waves P waves SV waves P waves 

P-i 0 0  0 0 𝑉 = 𝑐̃𝑙 1 

P-ii 0 0  1 1 𝑐𝑙 < |𝑉| < 𝑐𝑠
′   

P-iii 0 0  2 1 max*𝑐𝑠
′ , 𝑐𝑙+ ≤ |𝑉| < 𝑐𝑙

′(|𝑉| ≠ 𝑐𝑙)  

P-iv 0 0  2 2 |𝑉| ≥ max*𝑐𝑙 , 𝑐𝑙
′+ (|𝑉| ≠ 𝑐𝑙)  

P-v 0 1  1 1 −min*𝑐𝑙 , 𝑐𝑠
′+ ≤ 𝑉 < −𝑐𝑠 or max*𝑐̃𝑙 , 𝑐𝑠+ < 𝑉 ≤ min*𝑐𝑙

′, 𝑐𝑠
′+ (|𝑉| ≠ 𝑐𝑠

′)  

P-vi 0 1  2 1 −min*𝑐𝑙 , 𝑐𝑙
′+ ≤ 𝑉 ≤ −max*𝑐𝑠, 𝑐𝑠

′+ or max*𝑐̃𝑙 , 𝑐𝑠, 𝑐𝑠
′+ ≤ 𝑉 ≤ min*𝑐𝑙 , 𝑐𝑙

′+ (|𝑉| ≠ 𝑐𝑠, 𝑐𝑙
′) 

P-vii 0 1  2 2 −𝑐𝑙 ≤ 𝑉 ≤ −max*𝑐𝑠, 𝑐𝑙
′+ or max*𝑐̃𝑙 , 𝑐𝑠, 𝑐𝑙

′+ ≤ 𝑉 ≤ 𝑐𝑙(𝑉 ≠ ±𝑐𝑠, 𝑐̃𝑙) 

P-viii 1 1  0 0 𝑐𝑙
′ < 𝑉 ≤ max*𝑐̃𝑙 , 𝑐𝑠+ (𝑉 ≠ 𝑐̃𝑙)  

P-ix 1 1  0 1 𝑐𝑠
′ < 𝑉 ≤ min*𝑐̃𝑙 , 𝑐𝑠, 𝑐𝑙

′+ (𝑉 ≠ 𝑐̃𝑙 , 𝑐𝑙
′) 

P-x 1 1  1 1 |𝑉| ≤ min*𝑐𝑠, 𝑐𝑠
′+ (𝑉 ≠ 𝑐̃𝑙 , 𝑐𝑠

′)  

P-xi 1 1  2 1 −min*𝑐𝑠, 𝑐𝑙
′+ ≤ 𝑉 ≤ −𝑐𝑠

′  or max*𝑐̃𝑙 , 𝑐𝑠
′+ ≤ 𝑉 ≤ min*𝑐𝑠, 𝑐𝑙

′+ (𝑉 ≠ 𝑐̃𝑙 , ±𝑐𝑙
′)  

P-xii 1 1  2 2 −𝑐𝑠 ≤ 𝑉 ≤ −𝑐𝑙
′ or max*𝑐̃𝑙 , 𝑐𝑙

′+ ≤ 𝑉 ≤ 𝑐𝑠(𝑉 ≠ 𝑐̃𝑙)  

P-xiii (Fig. 9(a)) 2 1  0 0 max*𝑐𝑠, 𝑐𝑙
′+ < 𝑉 < 𝑐̃𝑙   

P-xiv (Fig. 9(b)) 2 1  0 1 max*𝑐𝑠, 𝑐𝑠
′+ < 𝑉 < min*𝑐̃𝑙 , 𝑐𝑙

′+  

P-xv (Fig. 9(c)) 2 1  1 1 𝑐𝑠 < 𝑉 < min*𝑐̃𝑙 , 𝑐𝑠
′+  

1 𝑐̃𝑙 = 𝑐𝑙 cos𝛽(𝐼). 
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