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a b s t r a c t 

In this study, a systematic pull-out simulation scheme in the formwork of two dimensional (2D) axisym- 

metric domain using peridynamics (PD) is presented. An axisymmetric ordinary state-based peridynamic 

model is used to model the pull-out deformation just like the axisymmetric stress element in the finite 

element method (FEM). A failure criterion based on the bond energy density is adopted to predict the 

interfacial debonding, while a new PD contact model in the 2D axisymmetric domain is proposed to sim- 

ulate the friction sliding during the pull-out process. The PD pull-out simulation scheme based on the 

respective 2D axisymmetric model, interfacial failure criterion and contact model is quantitatively vali- 

dated in comparisons with either the FEM or analytical solutions. The whole process of the pull-out test 

is simulated using the proposed PD scheme, and the influences of both the interfacial fracture toughness 

and friction coefficient on the bond-slip behavior are investigated. The developed PD pull-out modeling 

scheme is capable of effectively simulating the pull-out tests and predicting the bond-slip behavior. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pull-out tests are a kind of very important experiments to

tudy the bond-slip behaviors in reinforced structures and com-

osites. For example, the FRP or steel bar pull-out tests from con-

rete ( Baena et al., 2009; Cosenza et al., 1997; Larralde and Silva-

odriguez, 1993; Torre-Casanova et al., 2013; Zhou and Qiao 2018 )

ere commonly utilized to study the bond behaviors between con-

rete and bars when using the bars as reinforcement in concrete

tructures to improve their mechanical resistance. The single fiber

ull-out tests ( Beglarigale and Yazici, 2015; Cunha et al., 2010;

iFrancia et al., 1996; Takaku and Arridge, 1973 ) were also adopted

o study the interface properties in the fiber reinforced compos-

tes. Pull-out tests are widely used at different scales ( Baena et al.,

009; Delfolie et al., 1999; Fang et al., 2006; Qian et al., 20 0 0;

hannag et al., 1997; Singh et al., 2004 ) in applied science and en-

ineering to test models and/or empirically understand the behav-

or of composite materials and its reinforcement. 

The results of a pull-out test typically show three phases ( Gao

t al., 1988; Zhou et al., 1993 ) of the bar or fiber displacement:
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1) continuous deformation, (2) interfacial debonding, and (3) fric-

ion sliding. These three phases are not completely separated from

ach other during the pull-out test, because the friction sliding

sually occurs on the debonding surfaces even when the interface

s not yet totally debonded. Therefore, a whole simulation process

f the pull-out test is needed to deal with the interfacial crack

ropagation and friction contact between the debonding surfaces

s well as the large relative displacement between the bar/fiber

nd the matrix. The coupling issues in a pull-out test discussed

bove make the modeling process quite difficult and challenging. 

Researchers have sought for different numerical models to

imulate this important type of tests ( Banholzer et al., 2005;

howdhury and Okabe, 2007; Kang et al., 2014; Povirk and

eedleman, 1993; Tsai et al., 2005 ). Among these numerical

odels of pull-out tests, the finite element method (FEM) usually

erves as one of the best computational frameworks. Povirk and

eedleman (1993) implemented almost the earliest FEM for fiber

ull-out simulation, in which the fiber was assumed to be rigid

nd the computed region was confined only to the matrix. Li and

obasher (1998) considered the deformation of both the fiber and

atrix, of which a clamping pressure was applied at the outer

ayer of matrix elements to simulate the effect of matrix shrinkage

nd the contact elements of zero thickness were used to model

ontact effect. Beckert and Lauke (1996, 1997 ) computed the

https://doi.org/10.1016/j.ijsolstr.2019.03.014
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evolution of the energy release rate during the pull-out process

using FEM. Pochiraju et al. (2001) and Lin et al. (2001) simulated

the single fiber push-out test, the corresponding problem to the

pull-out test, in the framework of FEM, respectively. In the study

by Pochiraju et al. (2001) , the convergence problems due to singu-

lar global stiffness matrices were encountered in the simulation;

while in the simulation by Lin et al. (2001) , the contact was only

examined between the originally adjacent volumetric elements,

and it was thus not adequate to capture the frictional sliding

when the fiber was obviously pulled out from the surrounding

matrix. Tsai et al. (2003) first performed simulations with simpli-

fied interface models, i.e., the fully-bonded and the friction-only

interface models, and they later proposed a relatively advanced

one which combined the cohesive zone and friction interface

models ( Tsai et al., 2005 ). Ellis et al. (2014) simulated the single

fiber pull-out response with account of fiber morphology using

FEM in three dimensional (3D) domain which was certainly time

consuming. Molecular dynamics (MD) was also used to investigate

the pull-out behaviors of carbon nanotube from polymer matrix

( Chowdhury and Okabe, 2007; Li et al., 2011; Yang et al., 2012 ).

However, MD simulations are usually limited to very small length

scales. 

Although the simulation of the pull-out problem has been stud-

ied for many years, the difficulties in the numerical treatments to

the whole pull-out process are still considerable. The mesh, crack

and contact problems as well as many parameters involved in

the pull-out process all contribute to the difficulties in continuous

pull-out modeling. Peridynamics introduced by Silling (20 0 0) may

be an alternative framework to deal with the aforementioned is-

sues. Peridynamics (PD) is a new non-local theory of mechanics

and numerical methods because it can simulate crack propagation

behaviors naturally ( Silling and Askari, 2005 ). The PD has shown

excellent capabilities in many complex problems involving damage

( Kilic et al., 2009; Xu et al., 2008; Zhang and Qiao, 2018a ), cracks

( Bobaru and Zhang, 2015; Ha and Bobaru, 2010; Zhang and Qiao,

2018b; Zhou et al., 2016 ) as well as contact problems ( Dubinsky

and Elperin, 2015; Littlewood, 2010; Rabczuk and Ren, 2017; Ye

et al., 2017 ). Lu et al. (2018) conducted the PD simulation of anchor

bolt pull-out from concrete using the 2D plane stress bond-based

PD model. The advantages of PD in fracture analysis and the com-

plexities of the bar or fiber pull-out problems show that there is a

need to develop a natural and efficient PD simulation scheme for

pull-out simulation. 

In this study, the systematic PD pull-out simulation in the

2D axisymmetric domain using ordinary state-based peridynam-

ics (OSBPD) is for the first time presented. The 2D axisymmetric

OSBPD model newly proposed by Zhang and Qiao (2018c ) is used,

and it serves as the axisymmetric stress element in the FEM frame-

work. A failure criterion developed by Zhang and Qiao (2018c ) is

also adopted for dealing with the interfacial debonding in pull-

out. A new PD contact model is developed for the friction sliding

in the pull-out simulation. These three individual modeling parts

(i.e., the axisymmetric OSBPD model, failure criterion for interfa-

cial debonding, and contact model) form the PD pull-out simula-

tion scheme, and they are used to simulate the whole process of

the pull-out test continuously and naturally. 

The paper is organized as follows. Section 2 introduces the

theoretical backgrounds needed in the present PD modeling, i.e.,

the axisymmetric OSBPD model, the failure criterion for interfa-

cial debonding, and the PD contact model. Section 3 gives the nec-

essary information about the program implementation of the PD

pull-out simulation scheme. Section 4 provides the step-by-step as

well as whole quantitative validations in the PD pull-out simula-

tion. In particular, the influence of two key parameters (i.e., the

friction coefficient and the interfacial fracture toughness) on the

pull-out behavior is investigated in Section 4 . 
. Peridynamic modeling 

The peridynamic modeling for the pull-out tests in this study

onsists of three parts, i.e., the axisymmetric ordinary state-based

eridynamics (OSBPD) model, the failure criterion for interfacial

ebonding based on the critical bond energy density, and the PD

ontact-friction model. They form the whole framework to handle

he corresponding issues in pull-out tests, i.e., axisymmetric pull-

ut deformation, interfacial debonding, and friction sliding. 

.1. Axisymmetric PD model for pull-out deformation 

In peridynamics (PD), every material point is connected to other

oints inside a certain region called “horizon” based on the idea of

ong range force. The horizon is usually defined to be a sphere in

he 3D domain or a disk in the 2D domain centering at the mate-

ial point with a radius δ, and all the connected points are neigh-

or points of the central material point. These connections, called

eridynamic bonds, are used to generate interactions between the

onded points. The equation of motion can be written as 

( x ) ̈u ( x , t ) = 

∫ 
H 

(
T [ x , t] 

〈
x 

′ − x 

〉
− T [ x 

′ , t] 
〈
x − x 

′ 〉)d V x ′ + b (x , t) 

(1)

here ρ is the density at point x , and u is the displacement of x

t time t. H is the horizon, and x ′ is one of material points bonded

o x. x ′ − x is the bond vector which is also written as ξ. dV 

x ′ is the

nfinitesimal volume associated to x ′ , and it is also denoted as dV ξ .

 is the external body force. T [ x , t] is the force vector state defined

n the state-based theory, and T [ x , t] 〈 x ′ − x 〉 can be viewed as a

apping from the vector x ′ − x to the certain force vector. 

The force vector in OSBPD is parallel to the deformed bond vec-

or y ′ − y or Y 〈 ξ 〉 , where y and y ′ are the positions of x and x ′ in

he deformed configuration, respectively. The force vector in OS-

PD can also be expressed as 

 〈 ξ 〉 = t 〈 ξ 〉 Y 〈 ξ 〉 
| Y 〈 ξ 〉 | (2)

here t is the scalar force state. The scalar force state of OS-

PD models in 3D and 2D plane stress/strain conditions was de-

ived by Silling et al. (2007) and Le et al. (2014) , respectively. The

D axisymmetric type of OSBPD model is recently developed by

hang and Qiao (2018c ). 

In the 2D axisymmetric PD model, all peridynamic points lie

n the half-plane passing through the axis of symmetry. A coordi-

ate r - z is adopted to describe variables of these points. Based on

he axisymmetric characteristics, the PD elastic energy density at a

oint x in the axisymmetric PD model is written as 

 ( x ) = 

λ′ 
2 

(
�∗ + 

u r 

r 

)2 

+ 

β

2 

( ωe ) • e + 

γ

2 

(
u r 

r 

)2 

+ α�∗
(

u r 

r 

)
(3)

here λ′ , β , γ , α are the PD parameters whose relationships with

lassical Lamé constants will be given later in Eq. (11) . ω is the

nfluence function whose value at a bond vector ξ depends only

n the bond length | ξ|. x is the position scalar state whose value

t ξ is the bond length | ξ|. e is the extension scalar state whose

alue at ξ is the bond elongation. u r and r denote the radial dis-

lacement and radial coordinate of the concerned material point,

espectively. The dot product ( • ) of two PD states is defined by

illing et al. (2007) , and it is simply the integration of the regu-

ar product over the horizon if two PD states are in scalar states. 

The variable �∗ is defined as 

∗ = 

2 ωx • e 

q 
(4)
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Fig. 1. Axisymmetric ordinary state-based peridynamic model. 
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here q is the weighted volume, and it is written as 

 = ωx • x = 

∫ 
H 

ω 〈 ξ 〉 | ξ | 2 d V ξ (5) 

V ξ is the infinitesimal volume of one neighbor point x ′ from the

iew of the central point x . It is emphasized that the representa-

ive volume of one material point is proportional to its radial co-

rdinate in the proposed 2D axisymmetric PD model. Therefore, as

een in Fig. 1 , one has 

 V ξ = 2 π r ′ | ξ | d | ξ | dφ = 2 π( r + | ξ | cos φ) | ξ | d | ξ | dφ (6)

And the weighted volume is thus calculated as 

 = 2 π

∫ δ

0 

∫ 2 π

0 

ω 〈 ξ 〉 | ξ | 2 ( r + | ξ | cos φ) | ξ | d | ξ | dφ

= ( 2 π) ( 2 π r ) 

∫ δ

0 

ω 〈 ξ 〉 | ξ | 3 d | ξ | (7) 

hich indicates that the weighted volume in the 2D axisymmetric

D model is not a uniform value even though all points share the

ame δ. 

As shown in Eq. (3) , the PD elastic energy density in the 2D ax-

symmetric PD model is a variable depending not only on the ex-

ension scalar state e , but also on the radial displacement u r . In the

D axisymmetric PD model, an extra body force b r perpendicular

o the symmetric axis is needed by the equilibrium of axisymmet-

ic body, and it is calculated by the derivative of W with respect to

 r in Eq. (8) . As shown in Fig. 1 , for the unification of the notation,

n extra body force b r is written as 

 r = b r ( −e r ) (8) 

here e r is the unit vector in the same direction as the r -axis. Ac-

ording to the derivative of W with respect to e and u r , one can

btain 

 = 

[ 
λ′ �∗ + 

(
λ′ + α

)u r 

r 

] 
2 ωx 

q 
+ βωe (9) 

nd 

 r = 

1 

r 

[ (
λ′ + α

)
�∗ + 

(
λ′ + γ

)u r 

r 

] 
(10) 

The PD parameters in Eqs. (3) , (9) and (10) are calculated as 

′ = λ − μ

β = 

8 μ

q 

γ = 3 μ

α = μ (11) 

y equalizing W to the corresponding strain energy density in the

lassical theory. λ and μ are the Lamé constants. More details

bout the derivation can be found in Zhang and Qiao (2018c) . The
nternal forces given by Eqs. (9) - (11) and non-uniform volume dis-

ribution described by Eqs. (6) and (7) compose the 2D axisym-

etric PD model which is used for the axisymmetric pull-out de-

ormation in the 2D domain. 

.2. Failure criterion for interfacial debonding 

In peridynamic models, the formation of damages and cracks is

ased on the accumulation of bond breakage. It allows bonds to

reak irreversibly when a certain failure criterion is satisfied. The

nteraction or the force vector associated with that bond is elimi-

ated from the calculation of the motion equation once the bond is

roken. The local damage at a point is computed as the ratio of the

umber of the broken bonds to the total number of all the bonds

wned by this point. A failure criterion based on the bond energy

ensity ( Foster et al., 2011 ) is adopted in the 2D axisymmetric PD

odel for interfacial debonding prediction. It is assumed that there

s a critical energy density w̄ c associated with a certain bond. The

ond will be broken if the energy density w̄ contained in the bond

xceeds the critical value w̄ c . The calculation of w̄ is performed by

¯
 = 

∫ t 

0 

(
T [ x , t] 

〈
x 

′ − x 

〉
− T [ x 

′ , t] 
〈
x − x 

′ 〉) · ˙ Y [ x , t] 
〈
x 

′ − x 

〉
dt (12)

here t indicates the time and 

˙ Y is the time derivative of the

eformation state. The critical value w̄ c corresponding to w̄ in

he 2D axisymmetric PD model is determined to be ( Zhang and

iao, 2018c ) 

¯
 c = 

3 G c 

8 πδ3 

(
1 

r x 
+ 

1 

r x ′ 

)
(13) 

here G c is the critical energy release rate (fracture toughness) in

lassical fracture mechanics. r x and r x ′ are the radial coordinates of

he central and neighbor points connected by the concerned bond.

If the dual force density property ( Bobaru et al., 2016; Ren et al.,

017; Silling et al., 2007; Silling and Lehoucq, 2010 ) of the state-

ased peridynamics is considered, the concerned bond between x

nd x ′ will be distinguished into the bond x ′ − x originating at x

nd another one x − x ′ originating at x ′ . In this situation, the bond

nergy density in the view of x is redefined as 

 = 

∫ t 

0 

T [ x , t] 
〈
x 

′ − x 

〉
· ˙ Y [ x , t] 

〈
x 

′ − x 

〉
dt (14)

nd the critical value w c corresponding to w is separated from w̄ c 

s 

 c = 

3 G c 

8 πδ3 r x 
(15) 

The critical bond energy density criterion presented above can

e used to judge the breakage of the interfacial peridynamic

onds in the pull-out simulation and thus the associated interfacial

ebonding when the critical energy release rate of interface bond

interfacial fracture toughness) is given as an input parameter. 

.3. Peridynamic contact model for friction sliding 

The shrinkage of the matrix induces a contact between debond-

ng surfaces ( Penn et al., 1989 ), and the friction sliding due to the

nterface contact cannot be neglected in the pull-out simulation.

hus, a PD contact model is needed in the PD pull-out simulation. 

Contact in peridynamics involves material points that are dis-

onnected at the onset of a simulation or those that become dis-

onnected as a result of bond breakage. As stated in the short-

ange force approach ( Littlewood, 2015; Silling and Askari, 2005 )

hich is the most common approach or framework to model con-

act in PD, the contact interaction can be generated between a pair

f material points only when these two points are disconnected
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Fig. 2. A peridynamic contact model in the axisymmetric 2D domain. 
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and close enough. Therefore, as shown in Fig. 2 , a contact interac-

tion is established between two points x and x ′ , if there is no in-

tact material bond between them and the distance between these

two points is smaller than the cut-off distance δc . In this study, δc 

is called the contact horizon which will be utilized to determine

whether contact interactions between two points should be estab-

lished. 

As also shown in Fig. 2 , S is the sliding interface after interfacial

debonding. The material points x and x ′ on both sides of the inter-

face move to y and y ′ , respectively. The vector ξ = x ′ − x is used

for convenience, but the material bond between these two points

is disconnected because of either the pre-existing or the newly

formed interfacial crack. In the proposed PD contact model, a nor-

mal contact force state T n and a friction force state T f are defined.

When the contact forces are taken into consideration, the motion

equation of a point given by Eq. (1) is rewritten as 

ρ( x ) ̈u ( x , t ) = 

∫ 
H 

(
T [ x , t] 〈 ξ 〉 − T [ x 

′ , t] 〈 −ξ 〉 )d V x ′ + b (x , t) 

+ 

∫ 
H c 

(
T n [ x , t] 〈 ξ 〉 − T n [ x 

′ , t] 〈 −ξ 〉 + T f [ x , t] 〈 ξ 〉 − T f [ x 

′ , t] 〈 −ξ 〉 
)

d V x

(16)

Considering the contact force distribution along the sliding in-

terface, these two force states are written as 

T n 〈 ξ 〉 = −t n 〈 ξ 〉 sgn ( Y 〈 ξ 〉 · e r ) e r (17)

and 

T f 〈 ξ 〉 = t f 〈 ξ 〉 sgn 

(
∂ 

∂t 
( Y 〈 ξ 〉 · e z ) 

)
e z (18)

where t n and t f are the corresponding scalar force states. e z and

e r are the unit vectors along the z -axis and r -axis, respectively. For

simplification, only the kinetic friction is considered in this model

as indicated by Eq. (18) 

The Coulomb’s friction law is adopted to establish the relation-

ship between the normal contact force and the friction force as 

 f 〈 ξ 〉 = f t n 〈 ξ 〉 (19)

where f is the coefficient of kinetic friction ( Popov, 2010 ). 

Assuming that the normal contact pressure on the debonding

surfaces is p c , the normal contact force state must be determined

to recover the normal contact pressure. Since the normal contact

pressure p c has a dimension of force per unit area (N/m 

2 ) and

 n 〈 ξ 〉 has a dimension of force per unit volume squared (N/m 

6 ),

they have the same relationship as that shown by Eq. (15) between
 c (J/m 

2 ) and w c (J/m 

6 ). Replacing the material horizon δ and the

adial coordinate r x of the initial position x with the contact hori-

on δc and the radial coordinate r y of the current position y , one

as 

 n 〈 ξ 〉 = 

{
3 p c 

8 πδc 
3 
r y 

if | Y 〈 ξ 〉 | < δc and ξ is disconected 

0 otherwise 
(20)

When ξ is disconnected, there is no intact material bond be-

ween material points x and x ′ . 
The normal contact pressure p c is evaluated as 

p c = E c 

( | X 〈 ξ 〉 · e r | − | Y 〈 ξ 〉 · e r | 
| X 〈 ξ 〉 · e r | 

)
(21)

When the two points get close to each other in the radial direc-

ion, | X 〈 ξ 〉 · e r | is larger than | Y 〈 ξ 〉 · e r | . E c is the contact stiffness

n the proposed 2D axisymmetric PD contact model, and it is eval-

ated by 

1 

E c 
= 

1 

E 1 
+ 

1 

E 2 
(22)

here E 1 and E 2 are the elastic moduli of the two contact bodies

n both sides of the interface. Eq. (22) is used in consideration of

he Hertzian contact stiffness ( Popov, 2010 ) in the classical theory.

he Poisson’s ratios of the contact bodies are not taken into ac-

ount because the normal contact is assumed to be only relevant

o the radial deformation. 

. Program implementation 

A computational program is implemented to integrate the three

odeling parts (i.e., 2D axisymmetric OSBPD model, failure crite-

ion for interfacial debonding, and contact model for frictional slid-

ng) in Section 2 into one whole for the systematic PD pull-out

imulation. The main steps of the PD modeling software and the

mportant numerical treatments used in this study are introduced

s follows. 

.1. Fundamental peridynamic program framework 

The concerned region in PD can be discretized into nodes with

nown volumes in the reference configuration. The discretized

orm of the motion equation, Eq. (16) , is written as 

ρü ( x i , t ) = 

k ∑ 

j=1 

(
T [ x i , t] 〈 ξi 〉 − T [ x j , t] 〈 −ξi 〉 

)
V j + b ( x i , t) 

+ 

k c ∑ 

j c =1 

(
T n [ x i , t] 〈 ξi 〉 − T n [ x j c , t] 〈 −ξi 〉 

+ T f [ x i , t] 〈 ξi 〉 − T f [ x j c , t] 〈 −ξi 〉 
)

V j c ∀ i = 1 , 2 , ..., N (23)

here x i represents a discrete material node, x j represents a neigh-

or node of x i , and k is the total number of neighbor nodes of x i .

imilarly, x j c is the contact node of x i , and k c is the total num-

er of contact nodes of x i . N is the total number of nodes of the

oncerned region. 

Explicit time integration ( Silling and Askari, 2005 ) has been

ommonly used to obtain the value of displacement, velocity and

cceleration of PD particles. In the explicit time integration for PD,

he kinetic energy is difficult to be eliminated from the system.

herefore, the normal explicit scheme is usually used in dynamic

eridynamic simulations, and it is not suitable for quasi-static

nes. A very low loading rate may improve the situation, but it

eeds a lot of time steps, thus resulting in a heavy time cost. 

In this study, the quasi-static pull-out is simulated using

he adaptive dynamic relaxation (ADR) method as proposed by
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Fig. 3. The flowchart of the PD program for the pull-out simulation. 

Fig. 4. The geometry and boundary conditions of the bar-matrix system for pull- 

out deformation. 
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ilic and Madenci (2010) because of its feasibility for the quasi-

tatic PD solutions. Replacing the normal density by the fictitious

ne and introducing the damping coefficients, Eq. (23) can be re-

ritten as 

Ü ( X , t ) + c � ˙ U ( X , t ) = F 
(
U , U 

′ 
, X , X 

′ ) (24) 

here � is the fictitious diagonal density matrix and c is the

daptively-varying damping coefficients. X and U represent the

ositions and displacements of the collocation points, respectively.

 is the resultant force of the collocation points. The iteration

rogram can be written as 

˙ 
 

n +1 / 2 = [ ( 2 − c n �t ) ̇ U 

n −1 / 2 + 2�t �−1 F n ] / ( 2 + c n �t ) (25)

 

n +1 = U 

n + �t ˙ U 

n +1 / 2 (26) 
 

n +1 = 2 

√ √ √ √ √ 

(
U 

n +1 
)T [(

F n − F n +1 
)
�−1 / 

(
�t ˙ U 

n +1 / 2 
)]

U 

n +1 [ (
U 

n +1 
)T 

U 

n +1 

] (27) 

here n indicates the n th iteration. Due to the unknown velocity

eld at t −1/2 , the integration can be started from n = 1 by using 

˙ 
 

1 / 2 = �t �−1 F 0 / 2 (28) 

 

1 = 0 (29) 

The damping coefficient is set to zero whenever zero velocity

r zero displacement is encountered so that the division by zero

an be avoided. The time step can be chosen as 1 for the sake of

onvenience ( Kilic and Madenci, 2010 ). The detailed calculation of

he fictitious diagonal density matrix � for the 2D axisymmetric

D model can be found in Zhang and Qiao (2018c) . 

A flowchart of the PD program is shown in Fig. 3 . The dis-

lacements of the PD particles are updated in each time iteration

ccording to Eqs. (25) - (27) . The breakage of the bond is deter-

ined according to the failure criterion in Section 2.2 , while the

nternal forces are calculated by the 2D axisymmetric PD model

n Section 2.1 . The volume modification scheme considered in

e et al. (2014) is adopted in the PD model to reduce the dis-

retization effect in discrete PD numerical implementations. The

ontact forces between some PD particles are calculated by the PD

ontact model in Section 2.3 . 

As exhibited in Fig. 3 , the material bonds or the neighbor fam-

ly of each PD particle are built on the initial configuration by just

ne search before the time iterations, but the contact nodes of a
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Fig. 5. Displacement fields in pull-out deformation: (a) the z component by FEM (m), (b) the z component by PD (m); (c) the r component (m) by FEM, and (d) the r 

component (m) by PD. 

Fig. 6. Displacement components with different �x and a fixed δ: (a) z component, and (b) r component, along the bonded interface between the bar and the matrix. 
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PD particle are searched instantaneously on the current configura-

tion, which will increase the computational cost. The special treat-

ments adopted in this study to reduce computational time and re-

lated costs in PD contact implementation are described in the next

section. 

3.2. Special treatments for time-cost saving 

The contact model, including the search of the contact pairs as

well as the calculation of contact forces, is applied to the whole PD

discretization region in the program as shown in Fig. 3 . However,

for the pull-out simulation in this study, contact only occurs near

the interface between the matrix and the bar or the fiber. There-
ore, a contact region is pre-defined along the interface for the con-

act model. The contact region can be set as small as possible, but

t least it covers all the PD particles where contact may occur. A

re-defined contact region can limit the contact search and com-

utation within this sub-region instead of the whole peridynamic

iscretization body, and it can thus reduce the contact computa-

ional time cost. 

As also shown in Fig. 3 , one can search the contact nodes for

he particle x i in every time iteration. Because the deformation

onfiguration does not change very much in time, there is no need

o update the contact neighbors of x i in the quasi-static pull-out

imulation every single time step. Hence, an alternative strategy is

dopted, in which the contact pairs are searched and updated ev-
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Fig. 7. Displacement components with different �x and a fixed m : (a) z component, and (b) r component, along the bonded interface between the bar and the matrix. 

Fig. 8. Force-displacement behaviors in pull-out deformation of different kinds of discretization: (a) m -convergence, and (b) δ-convergence. 

Table 1 

Material properties of the bar-matrix system. 

Bar Matrix 

Young’s modulus E (GPa) Poisson’s ratio v Young’s modulus E (GPa) Poisson’s ratio v 

210 0.3 40 0.2 
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ry C n -time ( C n > 1) steps rather than every one time step. The

ontact neighbors of x i are held before next updating, but the con-

act forces are still calculated every time step based on the current

article positions and contact relationships. 

The C ++ programming language is used for the implementa-

ion of the program, and parallel computing is enabled by referring

o Peridigm ( Parks et al., 2012 ) because this open source PD code

upplies an excellent parallel computing framework for the mesh-

ree type of PD solvers. All simulations are run on a work station

ith a 20-core Intel CPU. 

. Numerical results 

Again, the proposed pull-out simulation scheme consists of

hree aforementioned component models: an axisymmetric PD

odel for pull-out deformation, a bond failure criterion for inter-

acial debonding, and a PD contact model for frictional sliding. The

erifications for the pull-out simulation scheme are demonstrated

tep by step based on the validations of these three models suc-

essively in Sections 4.1 –4.3 . In Sections 4.1 and 4.2 , the contact on

he interface is not considered, and the focus is concentrated in the

alidation of the 2D axisymmetric PD model and the bond failure

riterion. Eventually, in Section 4.3 , the bonding of the interface
s turned off to verify only the contact model. The whole pull-out

rocess simulation is finally presented in Section 4.4 where both

he interfacial bonding/debonding and contact are taken into con-

ideration. 

.1. Axisymmetric pull-out deformation 

A bar/fiber-matrix system will experience continuous deforma-

ion under the pull-out load before any failure occurs. As shown in

ig. 4 , a bar is embedded in the matrix, and both the bar (or fiber)

nd matrix are considered as cylinders. An axial displacement

 z = 0.01 mm is applied to the top end of the bar, and an axial

isplacement constraint u z = 0 is applied to the bottom of the

atrix. The boundary regions are chosen as the outermost layers

f particles in the PD numerical implementation. The length of the

ar is L = 120 mm which is equal to the height of the matrix. A

re-existing ring crack with length a = 20 mm is inserted into the

eridynamic discretization. The radii of the bar and the matrix are

 = 10 mm and R = 80 mm, respectively. 

The material properties of the bar and matrix used in this study

re the same as the ones used by Gao et al. (1988) , and they

re listed in Table 1 . The interface between the bar and the ma-

rix is assumed to be perfectly bonded in this section. It is worth
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Fig. 9. Local damage at (a) u = 5.6 × 10 −6 m, (b) u = 6.4 × 10 −6 m, (c) u = 8.0 × 10 −6 m, and elastic energy density at (d) u = 5.6 × 10 −6 m, (e) u = 6.4 × 10 −6 m, (f) 

u = 8.0 × 10 −6 m. 
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mentioning that the dual force density ( Silling and Lehoucq, 2010 )

defined in the state-based peridynamics can model the interface

accounting for different material properties on both sides. Both the

theoretical and numerical details of the material interface can be

found in the work by Ren et al. (2017) . 

The axial and radial displacement fields of the pull-out system

are compared between the FEM and PD. The FEM results are

obtained by ABAQUS using the axisymmetric stress element with

the size of 0.1 mm × 0.1 mm. The PD results are first obtained

using the horizon radius δ = r/ 10 and the node size �x = r/ 40 .

The displacement fields obtained by the FEM and PD are shown

and compared in Fig. 5 . The same color range is used for both

the peridynamic and FEM results in all the comparisons. The color

ranges are produced automatically by ABAQUS, and it is set to be

the same values in ParaView to post-process the PD results. 

As shown in Fig. 5 , the numerical results obtained by the 2D ax-

isymmetric PD model agree very well with those by the FEM. The

accuracy of the axisymmetric PD model in the pull-out simulation

is thus verified even the bi-material and interface exist. 

The discretization in PD are defined by the node size �x ,

the horizon radius δ, and the ratio m = δ/ �x , where two of

them are independent. The detailed convergence behaviors of

the 2D axisymmetric PD model are previously discussed by

Zhang and Qiao (2018c ). Both m -convergence and δ-convergence

study ( Bobaru et al., 2009 ) are hereby performed to show the in-

fluence of the discretization on the PD pull-out deformation re-

sults. The radius r of the bar is taken as the characteristic length

in different kinds of PD discretization. In m -convergence, δ is fixed

as r /10 while �x ranges from r /10 to r /50, which corresponds to

m ranging from 1 to 5. In δ-convergence, the m value is fixed as

4 and �x ranges from r /5 to r /80 or δ from 0.8 r to 0.05 r in other

words. 

The results of the m -convergence and the δ-convergence are

shown in Figs. 6 and 7 , respectively, where Figs. 6 (a) and 7 (a) are
 T
or the axial displacement (the z component) and Figs. 6 (b) and

 (b) are for the radial displacement (the r component). As shown

n Figs. 6 and 7 , the predicted displacement components along

he bonded interface by the PD model are in good agreements

ith the FEM curves for most of discretization cases above. It is

ound that the coarsest node size �x in both m -convergence and

-convergence will cause the most considerable deviations. The

elative errors between the PD results and the FEM ones decrease

lowly when the node size �x is small enough in the convergence

tudy. 

The pull-out force-displacement responses in the continuous

ull-out deformation stage are also investigated in the convergence

tudy. The pull-out stiffness is defined as the ratio of the end reac-

ion force to the end applied displacement. As shown in Fig. 8 , the

ull-out system is stiffer if the PD nodes are coarser in both the

 -convergence and δ-convergence study. 

.2. Interfacial crack initiation and debonding 

The critical bond energy density failure criterion presented

n Section 2.2 is now used for the interfacial debonding in the

ull-out simulation. The critical bond energy density of bonds

cross the interface are calculated by Eq. (15) using the crit-

cal energy release rate of interface or the interfacial fracture

oughness G ic ( Zhou et al., 1992 ). The value G ic = 6 J/m 

2 used in

ao et al. (1988) is also adopted here. It is assumed that the crit-

cal energy release rate of interface (or interfacial fracture tough-

ess) G ic is much smaller than those of the matrix and the bar,

esulting in a weak bonding interface. The geometry and the mate-

ial properties of the pull-out system here are the same as those in

ection 4.1 . The applied end displacement is denoted as u , and its

ncrement is set as 2 × 10 −10 m every time step in the ADR method.

he final end displacement u is up to 8 × 10 −6 m. 
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Fig. 10. Zoom-in view of the elastic energy density at u = 8.0 × 10 −6 m. 

Fig. 11. Critical displacement and force obtained in PD when the crack propagation 

length is larger than zero. 
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The interfacial crack initiation and debonding process is first

btained by PD using the discretization of δ = r/ 10 and �x =
/ 40 . The local damage and the elastic energy density during the

ebonding process are plotted in Fig. 9 . 

The crack path is indicated by the local damage value. The crack

s initiated at the bottom of the pre-crack as shown in Fig. 9 (a). It

hen propagates along the interface as the end pull-out displace-

ent increases. The elastic energy density in Fig. 9 (f) is specially

lotted in Fig. 10 with a zoom-in view. As seen in Figs. 9 (d)-(f) and

0, the elastic energy density concentrating in the newly-formed

rack tip leads to further interfacial debonding. 

The proposed failure criterion is validated quantitatively by the

omparisons of the critical end applied displacements and the crit-

cal end reaction forces for interfacial debonding obtained by PD

nd FEM. As shown in Fig. 11 , the critical pull-out displacement

nd force in PD are determined to be the values in the force-

isplacement curve when the crack propagation length is larger

han zero. 

The PD critical values are compared with the FEM results which

re obtained by the Virtual Crack Closure Technique (VCCT). The

rack propagation length in PD is calculated by monitoring the po-

ition of the crack tip where the local damage value exceeds a

ertain damage value. The computed local damage values near the

rack tip or the crack plane is dependent on the chosen m ( δ/ �x )

alues. In this study, the damage values indicating the crack tip are

rescribed as 0.21, 0.26, 0.37, 0.4 and 0.41 in the cases m = 1, 2, 3,
 and 5 considering that the corresponding maximum computed

amage values near crack surfaces are 0.25, 0.3, 0.41, 0.44, and

.45, respectively. In VCCT, a simple criterion for mix-mode frac-

ure or interfacial debonding considering the absence of additional

arameters in some complex fracture criteria, (e.g., the Power Law

 Camanho et al., 2003; Wu and Reuter Jr, 1965 ) and the BK Law

 Benzeggagh and Kenane, 1996 )) is 

 I + G II ≥ G ic (30) 

The predictions of the critical displacement and critical force

y the VCCT of FEM are indicated by the black dash lines shown

n Figs. 12 and 13 . 

As shown in Fig. 12 , the PD models are computed with m = 1,

, 3, 4, 5 and a fixed value of δ = 0.1 r . The PD results in cases of m

 3 are quite consistent with the FEM results. The relative errors

f the critical displacement between FEM and PD of m = 4 and 5

re 1.98% and 1.8%, respectively; while they are 2.4% and 2.2%, re-

pectively, for the critical force. The largest deviation of both the

ritical displacement and critical force are caused by the smallest

 value (i.e., m = 1). In Fig. 13 , the PD models are computed with

= 0.1 r , 0.2 r , 0.4 r , 0.8 r and a fixed value of m = 4. The PD results

gree well with the FEM ones when δ < 0.4 r . The relative errors

f the critical displacement between FEM and PD of δ = 0.1 r and

.2 r are 1.98% and 2.2%, respectively; while they are 2.4% and 6.0%,

espectively, for the critical force. Also, as expected, the largest δ
alue (i.e., δ = 0.8 r ) results in the largest deviation. 

The results above are computed on the geometry where the

re-crack length is a = 20 mm and the radius of the bar is r = 10

m. To further investigate the performance of the failure criterion

n different geometries, the critical pull-out forces are computed

ersus different pre-crack lengths at a fixed bar radius r = 10 mm,

nd the critical pull-out stresses are obtained for different bar radii

t a fixed pre-crack length a = 40 mm. 

The critical debonding force in the model given by Stang and

hah (1986) is expressed as 

 c = 2 π r 2 
(

E f G ic 

r 

)1 / 2 

(31) 

here E f is the elastic modulus of the bar or the fiber. As an im-

rovement, the model developed by Gao et al. (1988) is given as

 c = 2 π r 2 

[ 

E f G ic ( 1 + η) 

r 
(
1 − 2 k v f 

)
] 1 / 2 

(32) 
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Fig. 12. Critical PD values with different m and a fixed δ (note: the constant lines/values are obtained by FEM): (a) critical displacement, and (b) critical force. 

Fig. 13. Critical PD values with different δ and a fixed m (note: the constant lines/values are obtained by FEM): (a) critical displacement, and (b) critical force. 

Fig. 14. Comparisons among different models: (a) critical force vs. pre-crack length, and (b) critical stress vs. radius of the bar. 
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k = 

c 1 v f + c 2 v m 

c 1 
(
1 − v f 

)
+ 1 + v m 

+ 2 c 2 
(33)

η = 

c 2 ( 1 − 2 k v m 

) 

c 1 
(
1 − 2 k v f 

) (34)
nd c 1 = E m 

/ E f , c 2 = r 2 / ( R 2 − r 2 ) . The critical forces predicted by

oth the theoretical models above are independent of the pre-

rack length. Also, in Eqs. (31) and (32) , the interfacial friction ef-

ect is not taken into consideration. 

The PD results are compared not only with the VCCT model of

EM, but also with these two theoretical models in Eqs. (31) and

32) . It can be found in Fig. 14 (a) that the PD results agree well
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Fig. 15. Normal contact on the interface between the bar and the matrix. 
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ith the VCCT results of FEM when the pre-crack is not close

o the bottom of the bar. As shown in Fig. 14 (b), almost all

he PD results are in good agreements with those of VCCT and

ao et al. (1988) ’s model. The results obtained by the model of

tang and Shah (1986) have large deviations from VCCT when the

adius of the bar is large because their model ignores the effect of

he volume fraction of the bar ( Gao et al., 1988 ). The PD results

ave a maximum error compared to VCCT when the radius r is the

mallest (see Fig. 14 (b)). A small r and a fixed δ result in a large

atio of δ/ r which thus increases the error as shown in Fig. 13 (b). 

.3. Interfacial contact and friction 

The normal contact and friction in the newly proposed PD con-

act model in Section 2.3 are related by the Coulomb’s Law. Both

he PD normal contact and the PD friction models are validated in

he following. 

.3.1. Normal contact 

To validate the normal contact part of PD modeling, a case

tudy is considered, as shown in Fig. 15 . A bar is embedded in the

atrix, but it is divided by a pre-crack plane which goes across

he whole interface, suggesting that the bar and the matrix are not

onded at all. The geometry in Fig. 15 are the same as those shown

n Fig. 4 . The shrinkage of the matrix is defined to be ε s = u s /R ,

nd it is simulated by the direct applied radial displacement u s on

he outer surface of the matrix ( Li and Mobasher, 1998 ). The axial

tress σ p is applied to both ends of the bar which will lead to the

ontraction of the bar in the radial direction, and it thus decreases

he interfacial normal contact pressure σ n . This is caused by the

oisson’s contraction effect in the pull-out test. 

A radial displacement u s = 8 × 10 −6 m is applied to the outer

urface of the matrix by an increment �u s = 4 × 10 −9 m every time

tep to simulate the shrinkage. The axial stress is set to be 0 in the

ases where the Poisson’s contraction is not of a concern. 

The search interval C n of the PD contact model is set to be 100

n all the following cases involving contact. The contact horizon δc 

s an extra parameter, and m c is defined to be δc / �x in the PD

ases involving contact. In this study, the contact horizon δc must

ot be larger than the material horizon δ to avoid non-physical

ontact between particles belong to the same intact material body.

he following three groups of discretization parameters are inves-

igated and compared for the normal PD contact model. 

Group A: m ( δ/ �x ) and m c ( δc / �x ) are fixed as 3, and �x is set

as r /20, r /30, and r /40, which means equal m and m c but

varying δ and δc . 

Group B: δ and δc are fixed as r /10, and �x is set as r /20, r /30,

and r /40, which means equal δ and δc but varying m and m c 

(2, 3, 4). 

Group C: m is fixed as 4, and δ is fixed as r /10. m c is set as 2,

3, 4, which means equal m, m c , and δ but varying δc . 
As shown in Fig. 16 , the total interfacial normal contact forces

re evaluated during the shrinkage. The radial displacement u s is

pplied by 20 0 0 time steps. As demonstrated in Fig. 16 , the fast

esponses are shown during the shrinkage, and the steady con-

act states are achieved by the contact model in all PD numer-

cal cases. The normal contact pressures along the interface in

he steady states are plotted in Fig. 17 . The contact pressure in

D is transferred from the PD contact force density ( Lehoucq and

illing, 2008 ). The PD results are compared with the FEM ones

o quantitatively verify the contact model. As shown in Fig. 17 ,

he contact pressures obtained by PD match well with those of

EM. The results obtained on the PD discretization of m = 4 and

x = r/ 40 show best agreements with FEM. The sharp derivations

ccurring at both ends of the bar may result from the absence of

he intact half-circle contact region for the particles in the corners.

Average contact pressures induced by different matrix shrink-

ges are also evaluated. As shown in Fig. 18 , the PD contact pres-

ures increase linearly with the increase of shrinkage. The PD re-

ults keep good match with the FEM ones as demonstrated in

ig. 18 . Consequently, the PD results using m = 4 and �x = r/ 40

how best agreements with FEM. 

In addition, the Poisson’s contraction effect in the PD contact

odel is investigated. As shown in Fig. 19 , the matrix shrinkage

s is fixed as 1 × 10 −4 , and the average PD contact pressures are

valuated under different axial pull stresses. As observed in Fig. 19 ,

he average contact pressures decrease linearly with the increase of

he pull stress σ p . The PD results using m = 4 and �x = r/ 40 again

gree best with FEM. 

.3.2. Friction sliding 

The simulation case shown in Fig. 20 is computed for the ver-

fication of the friction part of PD contact modeling. All the inter-

acial bonding is still eliminated by the pre-crack between the bar

nd the matrix. A radial displacement u s = 8 × 10 −6 m is also ap-

lied to the outer surface of the matrix by an increment of �u s 
 4 × 10 −9 m every time step to generate the shrinkage strain of

s = 1 × 10 −4 . A very small axial displacement increment of �u

 1 × 10 −11 m is first applied to the top end of the bar until the

xial displacement reaches u = 5 × 10 −7 m. It will then achieve

 steady initial pull-out friction state ( s ≈ 0). After that, the ax-

al displacement u will increase to 0.08 m by an incremental �u

 8 × 10 −8 m to pull the bar out of the matrix. The friction stress

ill be induced during the pull-out process due to the matrix

hrinkage if the interface has a non-zero friction coefficient f . The

ode size of the peridynamic discretization is �x = r/ 40 , the ma-

erial horizon is δ = 4 �x , and the contact horizon is δc = 3 �x . 

An analytical model is derived for quantitative comparisons

ith the PD results. As shown in Fig. 20 , the bar is pulled out of

he matrix at some time and the pull-out displacement is denoted

s s in which the axial deformation of the bar is ignored. Consider-

ng the Poisson’s contraction of the bar, the friction stress will be a

unction of the coordinate z and not be uniform along the contact

nterface. At an arbitrary location z = l , one has 

r 2 σp ( l ) = 2 π r 

∫ l 

0 

σ f ( z ) dz (35) 

nd the Coulomb’s friction model states that 

f = f σn (36) 

The linear decrease of σ n caused by σ p due to the Poisson’s

ontraction is expressed as 

n = σ0 − K σp (37) 

here σ 0 is the normal contact pressure due to matrix shrink-

ge when σ p = 0. Therefore, at the boundary l = 0, the normal con-

act pressure is σ 0 and the friction stress is σ f = f σ 0 . Combining
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Fig. 16. Normal contact force during the shrinkage obtained by PD. 

Fig. 17. Normal contact pressure distribution along the interface in steady contact state. 

Fig. 18. Average contact pressure vs. matrix shrinkage. 
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Eqs. (35) - (37) and the boundary condition, one can solve that 

σ f ( z ) = f σ0 e 
−2 K f z r (38)

and the total friction force at this moment is 

F f = 2 π r 

∫ L −s 

0 

σ f ( z ) dz = 

π r 2 σ0 

K 

(
1 − e −2 K f L −s 

r 

)
(39)

In this friction part of PD contact model validation, the matrix

shrinkage is fixed as εs = 1 × 10 −4 . σ 0 and K are determined by the

FEM results in Section 4.3.1 to be 7.53 MPa and 0.044, respectively.

The distributions of the friction stresses along the interface in

the initial pull-out state where s ≈ 0 are shown in Fig. 21 . The fric-
ion force density on the PD particles is transferred into the friction

tresses of the classical theory on the contact surfaces. Three fric-

ion coefficients f (i.e., 0.2, 0.4 and 0.6) are used in Fig. 21 for both

he analytical model and PD. It can be found that the PD results

f different friction coefficients are in good agreements with the

orresponding analytical results along the interface except for the

egions near both ends. The total friction forces on the interface are

urther evaluated under different friction coefficients. The compar-

sons of the total friction forces with different friction coefficients

etween the PD simulation and the analytical model are plotted

n Fig. 22 . The PD predictions agree very well with the analytical

olution. The maximum relative error of the PD total friction force
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Fig. 19. Average contact pressure under different axial pull stresses. 

Fig. 20. Friction sliding during the pull-out of the bar. 

Fig. 21. Friction stress distribution along the interface in the initial pull-out friction 

state. 

r  

i

 

i  

m  

t  

a  

e  

0  

Fig. 22. Total friction force of different friction coefficients in the initial pull-out 

friction state. 

Fig. 23. Friction force during the pull-out of the bar. 

l  

P  

P  

p  

i  
esults to the analytical solution is 3% when the friction coefficient

s 0.6 (see Fig. 22 ). 

The total friction force versus the pull-out displacement dur-

ng the pull-out process are obtained by PD and the analytical

odel. The oscillation existing in the PD force curves obtained by

he time integration solvers is reduced by the smoothness priors

nalysis ( Kitagawa and Gersch, 1996 ) which is an effective trend

xtraction method for data series. Three friction coefficients of 0.2,

.4, 0.6 are also used, and the results of both PD and the ana-
ytical model are compared in Fig. 23 . As shown in Fig. 23 , the

D results can keep a good match with the analytical ones. The

D curves show sudden drops in the early stage of the pull-out

rocess which implies that the sudden jump of the displacement

ncrement �u from 1 × 10 −11 m to 8 × 10 −8 m every time step
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Fig. 24. The pull-out force, the friction force and the released energy during the 

pull-out process. 
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will break the steady contact state for a while. As also shown

in Fig. 23 , the PD results with a smaller friction coefficient show

more stable behavior and better agreement with the analytical
model. 

Fig. 25. The computed variable fields at three situations (a, b, c) (see Fig. 24 ) during the 

and c.2), and the friction force density (a.3, b.3 and c.3). 
.4. Whole process of pull-out simulation 

In addition to the individual validations of the three PD model-

ng parts above, the whole process of the pull-out is simulated. The

eometric sizes and material properties used in Sections 4.1 are

lso used here for the whole process of pull-out simulation except

hat the pre-crack length a = 10 mm is set as the initial interface

rack. Both the interfacial debonding and the friction sliding are

onsidered. The critical energy release rate of interface (interfacial

racture toughness) and the friction coefficient of the interface are

et to be G ic = 6 J/m 

2 and f = 0.2, respectively, in the first place. The

ode size of the peridynamic discretization is �x = r/ 40 , the ma-

erial horizon is δ = 4 �x , and the contact horizon is δc = 3 �x . 

In each beginning of the simulations, a radial displacement u s 
 8 × 10 −6 m as shown in Figs. 15 and 20 is applied to the outer

urface of the matrix by an increment of �u s = 8 × 10 −10 m to

imulate the matrix shrinkage. After that, the matrix shrinkage is

eld, and an axial displacement u is applied to the top end of the

lready-deformed bar by an increment of �u = 4 × 10 −10 m. 

The pull-out force, friction force and released fracture energy

re plotted in Fig. 24 , with respect to the applied end displace-

ent. The axial displacement, local damage, and friction force of

he bar/matrix system at three situations (a, b, c) as indicated in

ig. 24 are further extracted in Fig. 25 . 
pull-out process: the axial displacement (a.1, b.1 and c.1), the local damage (a.2, b.2 
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Fig. 26. The pull-out force vs. end applied displacement obtained by PD and FEM. 
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The axial displacement at the top end of the bar in Fig. 25 is

he sum of the applied end displacement and the initial displace-

ent caused by the matrix shrinkage. As shown in Figs. 24 and

5 (a.1, a.2, and a.3), before the crack propagation, the friction force

xists on the pre-crack surface and decreases due to the Pois-

on’s contraction with the increase of the pull-out force. Dur-

ng the crack propagation and interfacial debonding, as shown in

igs. 24 and 25 (b.1, b.2, and b.3), the interface energy is released

nd the newly-formed debonding surface participates in the inter-

acial friction, which will increase the friction force and further in-

rease the pull-out force. When the crack propagates across the

otal interface, as shown in Figs. 24 and 25 (c.1, c.2, and c.3), the

ull-out force drops but the friction force still increases, which im-

lies that the Poisson’s contraction of the bar weakens. As shown

n Fig. 25 (b.1, b.2, and b.3), the maximum of the local damage value

long the newly formed interfacial crack is 0.38, and it is smaller

han the expected value 0.41 in the PD case of m = 4, which means

hat some interfacial PD bonds are still unbroken even when the

nterface has already debonded. This kind of unbroken-bonds phe-

omenon was also found in the thermally-driven crack simula-
ig. 27. The force-displacement curves of the pull-out processes: (a) different friction c

racture toughness values and a fixed friction coefficient. 
ion by Xu et al. (2018) . Considering that the applied shrinkage

ill increase the proportion of the mode II fracture component,

t is deduced that the failure criterion based on the bond energy

ensity has limitations in cases where the mode II fracture compo-

ent dominates. The limitation of the bond energy density-based

ailure criterion on the mode II dominant fracture has also been

ecently observed by Zhang and Qiao (2019 ). 

Some force-displacement results before and during interfacial

ebonding are obtained by FEM and compared with the PD ones

n Fig. 26 . The axisymmetric stress element, and the VCCT as well

s the hard contact model are used together in ABAQUS for the

EM calculation. Considering the complexity of the whole process

n the FEM simulation, FEM data is obtained not by one single con-

inuous FEM simulation, rather than using several static FEM calcu-

ations with different successive interface debonding lengths as an

quivalence to the quasi-static interface crack propagation. The re-

ated parameters considered in both PD and FEM calculations are

ame. As shown in Fig. 26 , in spite of the limitations of the fail-

re criterion discussed above, the critical force for the interfacial

rack initiation predicted by PD still agrees well with the FEM one.

owever, as shown in Fig. 25 (b.3), the remaining unbroken bonds

entioned above will result in insufficient contact on the newly-

ormed debonding surfaces and thus a loss of the friction forces.

herefore, the friction coefficient on the newly-formed debonding

urface is modified by a reduction factor of 0.5 in the calculation of

EM for comparisons. As shown in Fig. 26 , the FEM results after the

orrection keep a good match with the PD ones, which means that

he insufficient contact issues in PD can be compensated by appro-

riately enhancing the friction coefficient on the newly-formed in-

erfacial crack surface. The PD bond failure criteria which can avoid

he unbroken-bonds issue in the mode II dominant fracture need

urther investigations, and the PD simulation for pull-out tests may

e improved by the new PD bond failure criterion based on the

ritical skew recently proposed by Zhang and Qiao (2019 ). 

The influences of friction coefficient and interfacial fracture

oughness on the pull-out behavior are investigated. Two more

ases with f = 0 and 0.1 and a fixed G ic = 6 J/m 

2 are simulated

or the influence of the friction coefficient. In addition, two more

ases with G ic = 12 J/m 

2 and 24 J/m 

2 and a fixed f = 0.2 are also

imulated for the effect of the interfacial fracture toughness. The

orce-displacement curves are plotted in Fig. 27 . The discussion

s focused on the stage involving both the interfacial debonding
oefficients and a fixed interfacial fracture toughness, and (b) different interfacial 
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and friction sliding. It can be found that the friction coefficient

mainly influences the slope of the curve during interfacial debond-

ing while the interfacial fracture toughness directly change the

critical load when the interfacial crack starts to propagate. 

As shown in Figs. 26 and 27 , the developed peridynamic

scheme involving three step-by-step modeling parts is capable of

simulating the whole process of the pull-out tests continuously

and spontaneously. The PD prediction capabilities (e.g., including

the interface local damage, the interface released energy, and the

interface friction force) can be obtained real-time during the sim-

ulation. The further comparative study between a more compre-

hensive PD pull-out simulation and the experiment is still ongo-

ing. The research in progress is making efforts to (1) improve some

aspects of the simulation framework, e.g., more realistic interfa-

cial failure and contact models in the proposed scheme, and (2)

conduct some experimental testing with sufficient parameter mea-

surements for detailed comparisons and computational analysis.

Furthermore, very small ratio of the fiber radius to the matrix ra-

dius must be treated using some PD local refinement techniques

( Areias et al., 2018; Bobaru and Ha, 2011; Dipasquale et al., 2014;

Ren et al., 2017, 2016; Shojaei et al., 2018; Silling et al., 2014 ) if the

single fiber pull-out tests are simulated. 

5. Conclusions 

A systematic ordinary state-based peridynamic (OSBPD) scheme

for the fiber/bar pull-out simulation in the 2D axisymmetric do-

main is developed. An axisymmetric PD model and a bond energy

density failure criterion are used for analyzing the axisymmetric

deformation and interfacial debonding, respectively. A new PD con-

tact model is for the first time proposed for the friction sliding in

the pull-out simulation, and a PD contact checking and computing

algorithm is implemented in the meshfree PD codes for the contact

model. The three individual modeling parts (i.e., the axisymmetric

OSBPD model, failure criterion for interfacial debonding, and con-

tact model) and whole pull-out process (i.e., combining the three

modeling parts in a step-by-step fashion) in the PD pull-out simu-

lation scheme are all quantitatively validated. 

The axisymmetric PD model can capture the axisymmetric de-

formation accurately. The critical interfacial debonding loads pre-

dicted by the critical bond energy density failure criterion using a

suitable PD discretization also agree very well with the ones ob-

tained by the conventional VCCT in FEM and some analytical mod-

els. The convergence behaviors of both the axisymmetric PD model

and the failure criterion for interfacial debonding are investigated

based on the same set of PD discretization. It is found that the PD

discretization has a pronounced influence on the errors of failure

criterion than the deformation model. 

The normal contact and friction sliding aspects of the proposed

PD contact model are also verified numerically. Good quantitative

agreements of the interfacial normal contact pressures obtained

by the PD model and FEM under the same matrix shrinkage are

achieved. The influences of the PD material horizon, the particle

size and the PD contact horizon on the performance of the PD

normal contact are also discussed. The ratio m shows the most

obvious impact on the accuracy of the PD normal contact model.

The friction aspect of the PD contact model is demonstrated by its

comparisons with the analytical model considering the Poisson’s

contraction effect. The transferred friction stress distributions and

the total friction forces using different friction coefficients during

the pull-out process predicted by the PD contact model are in good

agreement with the analytical solutions. 

Finally, the whole process of the pull-out test is simulated con-

tinuously by the PD scheme considering the axisymmetric defor-

mation, interfacial debonding, and friction sliding on the cracked

surfaces. The unbroken-bond issue during the simulation and the
orresponding correction are addressed and discussed, and an ex-

ellent agreement of bond-slip curves between the PD and FEM

imulations is obtained. The influences of the interface friction co-

fficient and the interfacial fracture toughness on the bond-slip be-

avior in the pull-out simulation are investigated. The developed

D scheme for the fiber/bar pull-out simulation is capable of accu-

ately simulating the deformation, interfacial debonding, and con-

act/friction during the pull-out process, and it can be further ex-

ended for bar/fiber push-out simulations. 
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