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Abstract

Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that
there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the
velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse
wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave inci-
dent obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by
two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be
continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are
derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model
and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy
at the interface. Some particular cases have also been reduced from the present formulation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The problems of reflection and refraction of elastic waves from the discontinuity between two elastic
half-spaces are of great interest in various fields e.g. geophysics, seismology and petroleum engineering.
These problems not only provide better information about the internal composition of the Earth but are
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Nomenclature

a velocity of longitudinal wave in elastic half-space
b velocity of transverse wave in elastic half-space
k, l Lame�s parameters
se stress in elastic half-space
ss stress in porous elastic half-space
hsii pressures in fluid phase i

ue displacement vector in the porous elastic solid
/e,we potentials in elastic half-space
qe density of the elastic half-space
Ki bulk modulus of fluid phase i

vi velocity of fluid phase i

vs velocity of solid phase
as volume fraction of the solid phase
ai volume fraction of the fluid phase i

Gfr shear modulus of the porous solid
K intrinsic permeability
Kfr frame or drained bulk modulus
Kri relative permeability of fluid phase i

li viscosity of fluid phase i

P �
i intrinsic averaged pressure of fluid phase i

hqii volume averaged density of fluid phase i

hqsi volume averaged density of porous solid
k wavenumber
ui displacement vector in the fluid phase i

us displacement vector in the porous elastic solid
V phase velocity
x angular frequency
X1,X2,X3 velocities of compressional waves in porous solid
X4 velocity of transverse wave in porous solid
/,w,g scalar potentials
H,G,J vector potentials
I unit tensor matrix
r,n Position vector, unit normal vector
Pcap capillary pressure
i

ffiffiffiffiffiffiffi
�1

p
.
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also very helpful in exploration of valuable materials beneath the Earth surface e.g. water, oils, minerals,
hydro-carbon etc. Many problems of reflection and refraction of elastic waves from boundaries have
been discussed by the researchers in the past and have appeared in the open literature (see Ewing et al.,
1957; Achenbach, 1973; Aki and Richards, 1980; Sheriff and Geldart, 1995; Udias, 1999, among several
others).

Biot (1956a,b) formulated the dynamical equations and constitutive relations for a fluid saturated por-
ous elastic solid. Since then a number of dynamical problems in the porous media have been investigated by
the researchers. Notable among them are Deresiewicz (1960, 1962, 1964, 1967), Geertsma and Smith (1961),
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Biot (1962), Yew and Jogi (1976), Plona (1980), Berryman (1981), Hajra and Mukhopadhyay (1982), de la
Cruz and Spanos (1985), Wu et al. (1990), de la Cruz et al. (1992), Sharma and Gogna (1992), Cieszko and
Kubik (1998), Gurevich and Schoenberg (1999) among several others. Basically, there are three widely
acceptable theories of porous media: one is Biot�s theory, second is mixture theory and third is the averag-
ing theory or hybrid mixture theory. Literature is extensive on mixture theories. Some of the references are
Morland (1972), Bedford and Drumheller (1978), Bowen (1980, 1982) and Hassanizadeh and Gray (1990).
Bowen (1982) has shown that Biot�s theory and mixture theory are equivalent, if the coupling parameter
between the state variable of the solid skeleton and the pore fluid, introduced by Biot, is neglected. Mixture
theory for porous media saturated by fluids includes the concept of volume fraction to characterize the
microstructure of the medium. Hybrid mixture theory (HMT) is an upscaling approach based on thermo-
dynamical principals and is used to develop deterministic models of porous media. Recently, Lu and
Hanyga (2005) presented a comprehensive comparison of these theories.

Biot (1956a,b) developed constitutive relations and the equations of motion, including inertial terms for
a liquid saturated porous medium. He has also discussed the propagation of plane harmonic elastic waves
and shown that in an isotropic, homogeneous fluid saturated porous medium, there are two P-waves
namely fast P-wave and slow P-wave, and one S-wave propagating with different velocities. The problems
of wave propagation in porous elastic medium saturated by two or more fluids together are also of great
interest in seismology. Tuncay and Corapcioglu (1997) developed a theory of wave propagation in isotropic
poroelastic media saturated by two immiscible Newtonian fluids. They applied the volume average tech-
nique to explore the wave propagation characteristics in a linearly elastic medium saturated by two immis-
cible Newtonian fluids. The equations for low frequency wave propagation in a poroelastic medium
saturated by two immiscible fluids are developed. They have shown that in such a medium, there exist three
compressional waves and one transverse wave. The first two compressional waves and one transverse wave
are similar to those predicted by Biot (1956a,b), while the third compressional wave arises due to the pres-
sure difference between the fluid phase and is dependent on the slope of the capillary pressure–saturation
relation. The third compressional wave was also predicted by Garg and Nayfeh (1986) and Santos et al.
(1990b). Santos et al. (1990a) proposed a method to determine the elastic constants for isotropic porous
media saturated by two fluids. Gray and Schrefler (2001) derived the equilibrium effective stress acting
on the solid phase of a porous medium containing two immiscible fluid phases and obtained the relation
between the fluid pressures at the fluid–fluid interface. Wei and Muraleetharan (2002a,b) developed a con-
tinuum theory of multiphase porous media that is capable of rigorously characterizing the interactions
among coexisting components. They have also developed a macroscale model where the state of a porous
medium is described by macrostate variables measurable through experiments. Recently, Lu and Hanyga
(2005) developed a linear isothermal dynamic model for a porous medium saturated by two immiscible
fluids. They obtained equation of motion in the frequency domain and calculated wave velocities and atten-
uations for three P-waves and one S-wave. Thigpen and Berryman (1985) presented a continuum theory of
mixtures for a porous elastic solid saturated by immiscible viscous fluids. Bedford and Drumheller (1983)
gave an extensive survey of continuum theories of mixtures of immiscible constituents. Schanz and Diebels
(2003) presented the governing equations for the mixture theory based on the Theory of Porous Media
(TPM-mixture theory extended by the concept of volume fractions) under the assumption of linear theory
in terms of small displacements and small deformation gradients. They have also derived linear constitutive
equations (Hooke�s law) and showed that the structure of governing differential equations in Biot�s Theory
and in Theory of Porous Media is the same and hence the wave forms predicted by these theories are equal.
Hanyga (2004) developed a general dynamical model for porous media saturated by two immiscible fluids.
The central idea of his theory is the use of one energy and one entropy for the porous medium as well as the
use of the concept of volume fraction from the mixture theory.

In the present paper we first discuss the low frequency wave propagation in a porous elastic medium sat-
urated by two immiscible fluids using the theory proposed by Tuncay and Corapcioglu (1997). We then
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present the calculations of reflection and refraction coefficients for longitudinal and transverse waves prop-
agating through the uniform elastic half-space and striking obliquely at the plane interface of elastic/porous
half-space. These coefficients are then used to find the expressions of energy ratios of various reflected and
refracted waves at the interface. Numerical computations have been performed for a particular model to
study the nature of dependence of these coefficients and of energy ratios on angle of incidence of the inci-
dent wave. The energy conservation at the interface is rigorously verified. The variations of velocities of
existing waves with some fluid parameters have been presented. Some problems of reflection and refraction
phenomenon have also been deduced as particular case of this formulation.
2. Field equations and constitutive relations

Following Tuncay and Corapcioglu (1997), the equations of motion in the absence of body forces for
low frequency wave propagation in a porous elastic medium saturated by two immiscible liquids, are given
by
hqsi
o
2us

ot2
¼ r a11 þ

1

3
Gfr

� �
r � us þ a12r � u1 þ a13r � u2

� �
þr � ðGfrrusÞ þ c1ðv1 � vsÞ þ c2ðv2 � vsÞ; ð1Þ

hq1i
o2u1

ot2
¼ rða21r � us þ a22r � u1 þ a23r � u2Þ � c1ðv1 � vsÞ; ð2Þ

hq2i
o2u2

ot2
¼ rða31r � us þ a32r � u1 þ a33r � u2Þ � c2ðv2 � vsÞ; ð3Þ
where
a11 ¼ K fr; a12 ¼ a21 ¼ K1asS1ðA2 þ K2Þ=D; a13 ¼ a31 ¼ K2asð1� S1ÞðA2 þ K1Þ;

a22 ¼ K1S
2
1ð1� asÞ K2 þ

A2

S1

� ��
D; a23 ¼ a32 ¼ K1K2S1ð1� S1Þð1� asÞ=D;

a33 ¼ K2ð1� S1Þ2ð1� asÞ Ks þ
A2

ð1� S1Þ

� ��
D; D ¼ K1ð1� S1Þ þ A2 þ K2S1;

c1 ¼ ð1� asÞ2S2
1l1=KKr1; c2 ¼ ð1� asÞ2ð1� S1Þ2l2=KK r2;
where Ki and vi are the bulk modulus and velocity of fluid phase i, vs is the velocity of solid phase, as is the
volume fraction of the solid phase, K is the intrinsic permeability of the medium and Kri is the relative per-
meability of fluid phase i. Gfr is the shear modulus of the porous solid whereas Kfr is frame or drained bulk
modulus. us is the the displacement vector in the porous elastic solid and ui is the displacement vector in the
fluid phase i, hqsi is the volume averaged density of porous solid, hqii and li are the volume averaged den-
sity and viscosity of fluid phase i respectively, Si = ai/(1 � as), (i = 1,2) with S1 + S2 = 1 and
A2 ¼ dP cap

dS1
S1ð1� S1Þ; where P cap ¼ P �

1 � P �
2, P

�
i is the intrinsic averaged pressures of fluid phase i and ai is

the volume fraction for the fluid phase i.
Introducing the scalar potentials /, w and g; vector potentials H, G and J through Helmholtz represen-

tation of vector as follows
us ¼ r/þr�H; r �H ¼ 0; ð4Þ
u1 ¼ rwþr�G; r �G ¼ 0; ð5Þ
u2 ¼ rgþr� J; r � J ¼ 0; ð6Þ
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Inserting these values of vectors us, u1 and u2 into Eqs. (1)–(3), we obtain the following equations
hqsi
o2/
ot2

¼ a�11r2/þ a12r2wþ a13r2gþ c1
ow
ot

� o/
ot

� �
þ c2

og
ot

� o/
ot

� �
; ð7Þ

hq1i
o
2w
ot2

¼ a21r2/þ a22r2wþ a23r2gþ c1
o/
ot

� ow
ot

� �
; ð8Þ

hq2i
o2g
ot2

¼ a31r2/þ a32r2wþ a33r2gþ c2
o/
ot

� og
ot

� �
; ð9Þ

hqsi
o
2H

ot2
¼ Gfrr2Hþ c1

oG

ot
� oH

ot

� �
þ c2

oJ

ot
� oH

ot

� �
; ð10Þ

hq1i
o2G

ot2
¼ c1

oH

ot
� oG

ot

� �
; ð11Þ

hq2i
o
2J

ot2
¼ c2

oH

ot
� oJ

ot

� �
; ð12Þ
where a�11 ¼ a11 þ 4
3
Gfr.
3. Wave propagation

Let us consider a plane wave propagating in the positive direction of a unit vector n in the form given by
f/;w; gg ¼ fA;B;Cg expfikðn � r� VtÞg; ð13Þ

where k is the wavenumber, V is the phase velocity of the wave and A, B and C denote the amplitudes and r

is the position vector. Substituting Eq. (13) into Eqs. (7)–(9), we get the following equations
ða�11k2 � iðc1 þ c2Þx� hqsix2ÞAþ ða12k2 þ ic1xÞBþ ða13k2 þ ic2xÞC ¼ 0; ð14Þ
ða21k2 þ ic1xÞAþ ðk2a22 � ic1xþ hq1ix2ÞBþ a23k

2C ¼ 0; ð15Þ
ða31k2 þ ic2xÞAþ a32k

2Bþ ða33k2 � ic2x� hq2ix2ÞC ¼ 0; ð16Þ
where x = kV is the angular frequency. A non-trivial solution of Eqs. (14)–(16) exists if the determinant of
the coefficient matrix vanishes:
Z1X 3 þ Z2X 2 þ Z3X þ Z4 ¼ 0; ð17Þ

where X ¼ x2

k2
and the coefficients of Eq. (17) are given by,
Z1 ¼
c1c2ðhq1i þ hq2i þ hqsiÞ � hqsihq1ihq2ix2

x2

� ic2hq1iðhq2i þ hqsiÞ þ c1hq2iðhq1i þ hqsiÞ
x

; ð18Þ

Z2 ¼ � a�11ðc1c2 � hq1ihq2ix2Þ þ 2c1c2ða12 þ a13 þ a23Þ
x2

� a22ðc1c2 � hqsihq2ix2Þ þ a33ðc1c2 � hqsihq1ix2Þ
x2

� i
a11ðc2hq1i þ c1hq2iÞ þ 2a12c1hq2i þ 2a13c2hq1i

x

� i
a22ðc2ðhq2i þ hqsiÞ þ c1hq2iÞ þ a33ðc2hq1i þ c1ðhqsi þ hq1iÞÞ

x
; ð19Þ
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Z3 ¼ �a�11ða22hq2i þ a33hq1iÞ � a212hq2i � a�13hq1i þ hqsiða22a33 � a223Þ

� i
a11ða22c2 þ a33c1Þ � a212c2 � 2a12ða21c2 � a33c1Þ � a213c1 þ 2a13ða22c2 � a23c1Þ

x

� i
ðc1 þ c2Þða22a33 � a223Þ

x
; ð20Þ

Z4 ¼ a�11ða22a33 � a223Þ � a212a33 þ a13ð2a12a23 � a13a22Þ: ð21Þ
Similarly, we can take
fH;G; Jg ¼ fA;B;Cg expfikðn � r� VtgÞ: ð22Þ

Substituting Eq. (22) into Eqs. (10)–(12) and putting the determinant of the coefficient matrix equal to zero,
we obtain
X 2ðZ5X þ Z6Þ ¼ 0; ð23Þ

where
Z5 ¼
c1c2ðhq1i þ hq2i þ hqsiÞ � hqsihq1ihq2ix2

x2

� i
c2hq1iðhq2i þ hqsiÞ þ c1hq2iðhq1i þ hqsiÞ

x
; ð24Þ

Z6 ¼
�Gfrðc1c2 � hq1ihq2ix2Þ

x2
þ i

Gfrðc2hq1i þ c1hq2iÞ
x

; ð25Þ
The coefficients given by (18)–(21), (24), (25) are the same coefficients as obtained by Tuncay and
Corapcioglu (1997) for the relevant analysis.

Using Eq. (13) into Eqs. (4)–(6), we obtain
fus; u1; u2g ¼ fA;B;Cgikn expfikðn � r� VtÞg:

This shows that the displacement vectors us, u1 and u2 have the same direction as that of n. Therefore, three
waves with velocities given by Eq. (17) are compressional (longitudinal). The three roots of Eq. (17) de-
noted by X1, X2 and X3 would then represent the velocities of first, second and third longitudinal waves
respectively. Similarly, substituting Eq. (22) into Eqs. (4)–(6) and taking scalar product with n, we find that
us Æ n = 0. Thus, the wave propagating with velocity X4 (which is given by the root of Eq. (23)) is a
transverse wave. It can be seen that, if we put A2 = 0, the coefficient Z4 vanishes. This shows that one
of the longitudinal wave is associated with the pressure difference between two fluid phases, i.e. capillary
pressure.

Following Tuncay and Corapcioglu (1997), the stress in porous solid is given by
hssi ¼ ða11r � us þ a12r � u1 þ a13r � u2ÞI þ Gfr rus þ rusð ÞT � 2

3
r � usI

� �
; ð26Þ
and the pressures in fluids are given by
hs1i ¼ ða21 þr � us þ a22r � u1 þ a23r � u2ÞI ; ð27Þ
hs2i ¼ ða31 þr � us þ a32r � u1 þ a33r � u2ÞI ; ð28Þ
where I is unit tensor matrix.
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The general displacement of the solid and fluids in x and z directions are given by
usx ¼
o/
ox

� oH
oz

; usz ¼
o/
oz

þ oH
ox

; ð29Þ

u1x ¼
ow
ox

� oG
oz

; u1z ¼
ow
oz

þ oG
ox

; ð30Þ

u2x ¼
og
ox

� oJ
oz

; u2z ¼
og
oz

þ oJ
ox

; ð31Þ
where usx, usz, u1x, u1z, u2x and u2z denote the displacement components in porous solid, first fluid and sec-
ond fluid respectively. The suffixes x and z denote their directions. H, G and J are the y-components of the
vectors H, G and J respectively. Taking {H,G,J}(x,z, t) = {H,G,J}(x,z)exp(�ixt), we get the following
solutions of Eqs. (11) and (12)
G ¼ ic1H
ic1 þ hq1ix

; J ¼ ic2H
ic2 þ hq2ix

; ð32Þ
Considering Helmholtz representation of displacement vector in the uniform elastic medium, we have
the components
uex ¼
o/e

ox
� owe

oz
; uez ¼

o/e

oz
þ owe

ox
ð33Þ
where uex and uez are the components of displacement vector ue in the elastic solid along x and z directions
respectively. It can be shown that /e and we satisfy the following wave equations
r2/e ¼
1

a2
o2/e

ot2
; r2we ¼

1

b2

o2we

ot2
; ð34Þ
where a2 ¼ kþ2l
qe

and b2 ¼ l
qe
are the velocities of longitudinal and transverse waves respectively; k and l are

the Lame�s parameters and qe is the density of the elastic solid.
The stress–strain relation in uniform elastic medium is given by
se ¼ kr � ueI þ 2lðrue þ ðrueÞTÞ; ð35Þ
where the subscript �e� denotes the quantities in the uniform elastic medium.
4. Problem formulation and boundary conditions

We consider a plane interface along x-axis between a uniform elastic solid half-space and a porous elastic
solid half-space saturated by two immiscible fluids. The z-axis is chosen vertical to the interface and point-
ing downward into the porous half-space so that, the uniform elastic half-space occupies the region
�1 < Z < 0 and porous half-space occupies the region 0 < Z < 1. We aim to attempt a reflection and
refraction problem in the two-dimensional x–z plane and the incident wave is assumed to incident obliquely
at the interface, after traveling through the uniform elastic half-space.

We assume that the two half-space separated by a plane interface along z = 0 are in perfect con-
tact. Therefore, the boundary conditions at the plane interface are the continuity of stress components,
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displacement components and a condition preventing the flow of two fluids of porous solid into the uniform
elastic solid. The mathematical form of these boundary conditions at the interface z = 0 are:
ðseÞzz ¼ szz þ hs1i þ hs2i; ðseÞzx ¼ szx;

_uex ¼ _usx; _uez ¼ _usz; _usz ¼ _u1z; _usz ¼ _u2z;
ð36Þ
where superposed dot represents the temporal derivative.
5. Reflection and refraction of waves at a plane interface

5.1. Incident longitudinal wave

Let a train of longitudinal wave with amplitude Ae0 traveling through the uniform elastic medium be
incident at the interface z = 0 and making an angle h0 with the normal to the interface. This incident wave
will give rise to the following reflected and refracted waves.

In the elastic half-space: (i) a reflected longitudinal wave with amplitude Ae1 making an angle h1 with the
normal to the interface; (ii) a reflected transverse wave with amplitude Be making an angle h2 with the nor-
mal to the interface.

In the porous half-space: (i) three refracted longitudinal waves with amplitudes As1, As2 and As3 and mak-
ing angles c1, c2 and c3 with the normal to the interface; (ii) a refracted transverse wave with amplitude Bs1

making an angle c4 with the normal to the interface. Following Hajra and Mukhopadhyay (1982), the form
of potentials in the half-spaces are taken as:

In the elastic half-space:
/e ¼ Ae0 expfik0ðx sin h0 þ z cos h0 � atÞg
þ Ae1 expfik0ðx sin h1 � z cos h1 � atÞg; ð37Þ

we ¼ Be expfik1ðx sin h2 � z cos h2 � btÞg; ð38Þ
where k0 = x/a and k1 = x/b are the wavenumbers.
In the porous half-space:
/ ¼ As1 expfi½ks1ðx sin c1 þ z cos c1Þ � xt�g; ð39Þ
w ¼ As2 expfi½ks2ðx sin c2 þ z cos c2Þ � xt�g; ð40Þ
g ¼ As3 expfi½ks3ðx sin c3 þ z cos c3Þ � xt�g; ð41Þ
H ¼ Bs4 expfi½ks4ðx sin c4 þ z cos c4Þ � xt�g: ð42Þ
Using Eqs. (26)–(31), (33) into the above boundary conditions (36) and inserting the expressions of
potentials given by (37)–(42) and the Snell�s law is given by
sin h0
a

¼ sin h1
a

¼ sin h2
b

¼ sin c1
X 1

¼ sin c2
X 2

¼ sin c3
X 3

¼ sin c4
X 4

;

we obtain a set of six equations into six unknown. This set of equations can be written in matrix form as
PR ¼ Q; ð43Þ
where P = {bij} is a matrix of order 6 · 6, with zero entries except for
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b11 ¼ � k
l
þ 2cos2h0

� �
; b12 ¼ 2 sin h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
� sin2h0

s
;

b13 ¼
a11 þ a21 þ a31

l
þ Gfr

3l

� �
a2

X 2
1

� Gfr

l
sin2h0; b14 ¼

a12 þ a22 þ a32
l

� �
a2

X 2
2

;

b15 ¼
a13 þ a23 þ a33

l

� �
a2

X 2
3

; b16 ¼
Gfr

l
sin h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
4

� sin2h0

s
;

b21 ¼ sin 2h0; b22 ¼
a2

b2
� 2sin2h0; b23 ¼

Gfr

l
sin h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
1

� sin2h0

s
;

b26 ¼ �Gfr

2l
a2

X 2
4

� 2sin2h0

� �
; b31 ¼ sin h0; b32 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
� sin2h0

s
; b33 ¼ � sin h0;

b36 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
4

� sin2h0

s
; b41 ¼ cos h0; b42 ¼ � sin h0; b43 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
1

� sin2h0

s
;

b46 ¼ sin h0; b53 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
1

� sin2h0

s
; b54 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
2

� sin2h0

s
; b56 ¼

hq1ix
ic1 þ hq1ix

� �
sin h0;

b63 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
1

� sin2h0

s
; b65 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
3

� sin2h0

s
; b66 ¼

hq2ix
ic2 þ hq1ix

� �
sin h0;
Q = {qi} and R = {Ri} are column matrices of order 6 · 1. Their entries are given by
q1 ¼
k
l
þ 2cos2h0; q2 ¼ sin 2h0; q3 ¼ � sin h0; q4 ¼ cos h0; q5 ¼ q6 ¼ 0;

R1 ¼
Ae1

Ae0

; R2 ¼
Be

Ae0

; R3 ¼
As1

Ae0

; R4 ¼
As2

Ae0

; R5 ¼
As3

Ae0

; R6 ¼
Bs1

Ae0

:

Following Achenbach (1973), the rate at which the energy is transferred per unit area of the surface is given
by the scalar product of surface traction and the particle velocity. Thus, for the uniform elastic solid, the
rate of transmission of energy per unit area denoted by P �

e at the interface z = 0 is given by
P �
e ¼ ðseÞxz _uex þ ðseÞzz _uez; ð44Þ
For the fluid saturated porous solid, the rate of of transmission of energy per unit area denoted by P �
p at the

interface z = 0 is given by
P �
p ¼ ðssÞxz _usx þ ðssÞzz _usz þ s1 _u1z þ s2 _u2z: ð45Þ
Using the appropriate potentials given by (37)–(42) and using Eqs. (26)–(35) into the expressions given by
(44) and (45), one can obtain the average energy transmission per unit surface area. The energy ratios
denoted by Ei, (i = 1, 2,. . .6) give the time rate of average energy transmission for the respective wave
to that of the incident wave. The expressions of these energy ratios Ei for the reflected P, reflected
SV, first refracted P, second refracted P, third refracted P and refracted SV-waves respectively are given
by
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E1 ¼ R2
1; E2 ¼ R2
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1
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a2

b2
� sin2h0

s
;

E3 ¼ R2
3

b2

X 2
1 cos h0

Gfr

3l
þ a11

l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
1

� sin2h0

s
; E4 ¼ R2

4

a22b
2

lX 2
2 cos h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
2

� sin2h0

s
;

E5 ¼ R2
5

a33b
2

lX 2
3 cos h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
3

� sin2h0

s
; E6 ¼ R2

6

Gfrb
2

2lX 2
4 cos h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

X 2
4

� sin2h0

s
:

5.2. Incident transverse wave

Next, to discuss the reflection and refraction of transverse wave at the interface z = 0, we shall assume
the same geometry of the problem as considered earlier in case of incident longitudinal wave. Suppose a
train of transverse wave traveling through the uniform elastic solid becomes incident at the interface
z = 0 at an angle h0 with the normal to the interface. This wave would give rise to exactly the same reflected
and refracted waves as described in case of incident longitudinal wave. We take the following potentials in
the elastic medium.
we ¼ Be0 expfik0ðx sin h0 þ z cos h0 � btÞg;

þ Be1 expfik0ðx sin h2 � z cos h2 � btÞg; ð46Þ

/e ¼ Ae expfik1ðx sin h1 � z cos h1 � atÞg; ð47Þ
where k0 = x/b and k1 = x/a are the wavenumbers, Be0 is the amplitude of incident transverse wave with h0
as the angle of incidence, Be1 is the amplitude of reflected transverse wave, Ae is the amplitude of reflected
longitudinal wave.

In the porous solid the potentials are taken as follows
/ ¼ As1 expfi½ks1ðx sin c1 þ z cos a1Þ � xt�g; ð48Þ

w ¼ As2 expfi½ks2ðx sin c2 þ z cos a2Þ � xt�g; ð49Þ

g ¼ As3 expfi½ks3ðx sin c3 þ z cos a3Þ � xt�g; ð50Þ

H ¼ Bs1 expfi½ks4ðx sin c4 þ z cos c4Þ � xt�g: ð51Þ
where As1, As2 and As3 are the the amplitudes of the three refracted longitudinal waves and Bs1 is the ampli-
tude of the refracted transverse wave, ksn = x/Xn, (n = 1,2,3,4) are the wavenumbers of respective waves.

Substituting the potentials (46)–(51) with the help of (26)–(35), into the boundary conditions given by
(36) and making use of Snell�s law given by
sin h0
b

¼ sin h1
a

¼ sin h2
b

¼ sin c1
X 1

¼ sin c2
X 2

¼ sin c3
X 3

¼ sin c4
X 4

;

we find that amplitude ratios satisfy the relation
PR ¼ Q ð52Þ
where P ¼ fbijg is a matrix of order 6 · 6, whose non-zero elements are given by



S.K. Tomar, A. Arora / International Journal of Solids and Structures 43 (2006) 1991–2013 2001
b11 ¼ � k
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� �
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Q ¼ fqig and R ¼ fRig are column matrices of order 6 · 1. Their entries are given by
q1 ¼ sin 2h0; q2 ¼ cos 2h0; q3 ¼ cos h0; q4 ¼ sin h0; q5 ¼ q6 ¼ 0;

R1 ¼
Ae

Be0

; R2 ¼
Be1

Be0

; R3 ¼
As1

Be0

; R4 ¼
As2

Be0

; R5 ¼
As3

Be0

; R6 ¼
Bs1

Be0

:

To consider the partitioning of energy at the interface between different reflected and refracted waves, we
proceed exactly similar to that in case of incident longitudinal wave. The expressions of energy ratios
Ei; ði ¼ 1; 2; . . . ; 6Þ for the reflected-P, reflected-SV, first refracted-P, second refracted-P, third refracted-
P and refracted-SV waves are given as follows:
E1 ¼ R
2

1
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6. Particular cases

(a) When one fluid out of two immiscible fluids is neglected then the problem reduces to the problem of
reflection and transmission of elastic waves at a plane interface between a uniform elastic half-space and
that of porous elastic half-space saturated by a fluid. In this case, we have S1 = A2 = 0, so that
a12 = a22 = a32 = 0 and c1 = 0. With these values, one can verify that the boundary condition _usz ¼ _u1z
at the interface z = 0 is automatically satisfied and the remaining five boundary conditions which can be
deduced from the matrix equation (43), can now be written as
X5

j¼1

bijRj ¼ qi; ði ¼ 1; 2; 3; 4; 5Þ; ð53Þ
where � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis
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l
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s
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and q1 ¼ k
l þ 2cos2h0, q2 ¼ sin 2h0, q3 ¼ � sin h0, q4 ¼ cos h0, q5 ¼ 0. Eq. (43) gives the expressions of reflec-

tion and transmission coefficients for the relevant problem. Similarly, in case of incident transverse wave,
one can deduce from Eq. (52), the followings
X
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bijRj ¼ qi; ði ¼ 1; 2; 3; 4; 5Þ ð54Þ
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and
q1 ¼ sin 2h0 q2 ¼ cos 2h0; q3 ¼ cos h0; q4 ¼ sin h0; q5 ¼ 0:
(b) If both the fluids in the porous half-space are neglected then the problem reduces to the classical
problem of reflection and transmission of longitudinal wave and transverse wave at a plane interface be-
tween two different uniform elastic half-spaces in perfect contact. In this case, we have a1 = a2 = 0, so that
S1 = S2 = A2 = 0. Using these values, one can deduce from Eqs. (43) and (52), the well known expressions
of reflection and transmission coefficients for the relevant problem in each case.
7. Numerical results and discussion

In order to study the problem in greater detail, we have computed the reflection and transmission coef-
ficients and the energy ratios numerically for a particular model. For this purpose, we have taken the values
of relevant elastic parameters as follows:

In the uniform elastic half-space:
k ¼ 2:238� 1011 dyne=cm2; l ¼ 2:992� 1011 dyne=cm2; qe ¼ 2:65 gm=cm3;

a ¼ 5:57 km=s; b ¼ 3:36 km=s:
In the porous elastic half-space:
K fr ¼ 0:4� 1011 dyne=cm2; Ks ¼ 0:95� 1011 dyne=cm2; K1 ¼ 0:1375� 1011 dyne=cm2;

K2 ¼ 0:1156� 1011 dyne=cm2; Gfr ¼ 0:55� 1011 dyne=cm2; hqsi ¼ 2:6 gm=cm3;

hq1i ¼ 0:82 gm=cm3; hq2i ¼ 0:92 gm=cm3:
Note that we have considered the porous medium saturated by two immiscible non-viscous fluids through-
out the numerical computations.

First, we solve Eqs. (17) and (23) numerically to obtain the values of velocities of three dilatational waves
and one transverse wave propagating in the porous medium. Since, we are considering the porous medium
saturated by non-viscous fluids, so we put li = 0, which implies ci = 0. We shall make use of these values
while solving Eq. (17) numerically. We shall apply Cardon�s method to solve Eq. (17). Applying the trans-
formation Y ¼ X þ a

3
, we obtain
Y 3 þ 3hY þ g ¼ 0; ð55Þ
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where
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For all the three roots to be real D(=g2 + 4h3) < 0. Assuming D < 0, we obtain three roots of Eq. (55) as
follows:
Y n ¼ 2
ffiffiffiffiffiffiffi
�h

p
cos

/0 þ 2pðn� 1Þ
3

� �
; n ¼ 1; 2; 3;ffiffiffip� �
where /0 ¼ tan�1 jDj
�g : Hence we getffiffiffiffiffiffiffiffiffiffiffiffiffiffir
Xn ¼ Y n �
a
3
; ðn ¼ 1; 2; 3Þ: ð56Þ
Eq. (56) gives the expressions of velocities of three dilatational waves.
From Eq. (23), the velocity of transverse wave is given by
X 4 ¼
ffiffiffiffiffiffi
Gfr

qs

s
: ð57Þ
We have computed these velocities for different values of as, a1 and Prð¼ dP cap

dS1
Þ. Fig. 1 depicts the variations

of velocities with Pr for as = 0.08 and a1 = 0.04. We note that longitudinal wave with velocity X1 decreases
monotonically with Pr, the longitudinal wave with velocity X2 first remains constant in the range
0 < Pr 6 2.8 and then decreases monotonically with Pr and the longitudinal wave with velocity X3 first in-
creases very slowly in the range 0 < Pr 6 2.8 and then increases fast with Pr. Fig. 2 shows the variations of
velocities with as, when a1 = 0.04 and Pr = 0.30 Pa s and Fig. 3 shows the variations of velocities with a1,
when as = 0.08 and Pr = 0.30 Pa s. We note from Figs. 2 and 3 that the velocities of all the three longitu-
dinal waves are strongly influenced by the parameters as and a1. However the velocity of transverse wave X4

remains unchanged and is not influenced by any of these parameters at all as was expected beforehand. As
mentioned by Tuncay and Corapcioglu (1997), the longitudinal wave associated with the pressure difference
between the fluids has lowest phase velocity and high attenuation coefficient, therefore, the longitudinal
wave with velocity X3 is that very wave and exists due to the presence of second fluid in the porous medium.
The other two longitudinal waves with velocities X1 and X2 are similar to the velocities of �P fast� and �P
slow� waves exist in porous medium saturated by one liquid and discussed extensively by Biot (1956a,b).

Next, we have solved the matrix equations given by (43) and (52) by applying the method of Matrix

Inversion using a FORTRAN-77 computer program. The values of reflection and transmission coefficients
are computed against the angles of incidence for both longitudinal and transverse incident waves. The vari-
ations of these amplitude and energy ratios with the angle of incidence are shown graphically through Figs.
4–11.

The angular dependence of reflection/transmission coefficients for an incident longitudinal wave are
shown in Figs. 4 and 5. We notice from Fig. 4 that the amplitude ratio R1 has value 0.78 near normal
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incidence and thereafter decreases with increase of h0 achieving its value nearly zero at h0 = 75�. As h0 in-
creases beyond 75�, the value of R1 increases sharply and approaches to its maximum value equal to 1.0 at
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h0 = 90�. The amplitude ratio R2 has value nearly zero at normal incidence and goes on increasing with
increase of h0 achieving its maximum value near 60� and then decreases to the value zero as h0 approaches
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Fig. 5. Variations of amplitude ratios with angle of incidence of longitudinal wave. (Curve I: R4 · 10, Curve II: R5, Curve III: R6).
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Fig. 7. Variations of energy ratios with angle of incidence of longitudinal wave. (Curve I: E4 · 103, Curve II: E5, Curve III: E6).
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Fig. 8. Variations of amplitude ratios with angle of incidence of transverse wave. (Curve I: R1, Curve II: R2, Curve III: R3 � 10).
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Fig. 9. Variations of amplitude ratios with angle of incidence of transverse wave. (Curve I: R4 � 10, Curve II: R5 � 102 , Curve III: R6).
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Fig. 10. Variations of energy ratios with angle of incidence of transverse wave. (Curve I: E1, Curve II: E2, Curve III: E3 � 10).
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Fig. 11. Variations of energy ratios with angle of incidence of longitudinal wave. (Curve I: E4 � 103, Curve II: E5, Curve III: E6).
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to 90�. The value of amplitude ratio R3 is found to be very small throughout the entire range of h0. Its max-
imum value is 0.0308 at h0 = 1� and then decreases with increase in h0, approaching to the value zero at
h0 = 90�. We note from Fig. 5 that the value of amplitude ratio R4 has maximum value 0.002 at h0 = 1�
and then decreases with h0 getting its value equal to zero at h0 = 90�.

The variation of energy ratios of reflected and refracted waves with angle of incidence are depicted in
Figs. 6 and 7. Fig. 6 reveals that energy ratio E1 has maximum value at h0 = 1�. Its value then decreases
with increase of h0 and becomes zero at h0 = 75� after which its value increases sharply and reaching to its
maximum value equal to 1.0 at grazing incidence. The energy ratio E2 has value zero at h0 = 1� and after
that its value increases continuously with increase of h0 attaining its maximum value at h0 = 76�. There-
after, its value starts decreasing and finally becomes zero at h0 = 90�. The value of energy ratio E3 is
found to be very small but non-zero in the entire range of h0 except at grazing incidence where its value
is zero. It retains almost constant value up to h0 = 80�, after which its value starts decreasing and ulti-
mately vanishes at h0 = 90�. Fig. 7 shows that the value of energy ratio E4 is very small and it decreases
monotonically with increase of h0 and finally becomes zero at grazing incidence. The energy ratio E5 be-
gins from a value 0.35 near normal incidence and it then decreases with increase of h0 and finally becomes
zero at h0 = 90� angle of incidence. The value of energy ratio E6 has value zero at h0 = 1� and then in-
creases with increase of h0 attaining its maximum value in the range 70� < h0 < 80�, thereafter its value
decreases to vanish at h0 = 90�. It is clear from Figs. 6 and 7 that at grazing incidence, no other reflected
or transmitted waves appear, except the reflected longitudinal wave corresponding to the amplitude ratio
R1.

In the case of incident transverse wave at the interface, a critical angle hc is found between 37� < h0 < 38�.
Figs. 8 and 9 show the variations of amplitude ratios with angle of incidence. Fig. 8 shows that the ampli-
tude ratio R1 begins with value zero at h0 = 0� and its value increases with increase of h0. The behavior of R2
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and R3 is almost similar. Both the amplitude ratios increase very slowly with increase of h0. From Fig. 9, we
observe that the amplitude ratios R4 and R5 have value zero at normal incidence, thereafter their values in-
crease almost linearly with h0 but at different rates. As the angle of incidence h0 comes close to the critical
angle hc, both the amplitude ratios have a sudden jump in their values. The amplitude ratio R6 has maxi-
mum value at normal incidence and thereafter its value decreases as h0 increases. It is to be noted that the
value of amplitude ratio R4 is less than the values of amplitude ratio R5 in the range 0� < h0 6 37�. The
difference between their values increases with increase of h0.

Figs. 10 and 11 show the variation of reflected and refracted energy ratios with the angle of incidence of
transverse wave. We note from these figures that all the energy ratios increase with increase of h0 with a
slow rate except the energy ratios corresponding to reflected and refracted transverse waves. The energy
ratios corresponding to these waves exhibit a reverse behavior in the range 0� < h0 6 35�. Beyond this
range, their behavior is alike and decreasing. In the calculations of energy ratios, it has been verified that
sum of energy ratios is equal to unity. This shows that there is no loss of energy during transmission of
waves.
8. Conclusions

A mathematical analysis of reflection and refraction phenomenon of longitudinal and transverse waves
traveling through a uniform elastic half-space and striking with varying angles at a plane interface between
uniform elastic half-space and porous half-space saturated by two immiscible fluids. It is concluded that

(I) Three longitudinal waves and one transverse wave propagating with different velocities exist in a por-
ous medium saturated by two immiscible fluids.

(II) Of three longitudinal waves, the two with velocities X1 and X2 corresponds to the P-fast and P-slow
waves in Biot�s theory, while the third longitudinal wave with velocity X3 is related to the capillary
pressure effect between the two fluids and it is found that X1 > X2 > X3.

(III) When longitudinal or transverse wave is incident at the interface, the reflection and transmission
coefficients are found to be the function of angle of incidence. However, the nature of
dependence of these coefficients on angle of incidence is found to be different for different angle of
incidence.

(IV) When transverse wave is incident normally, there appears only one reflected wave corresponding to
amplitude ratio R2 and only one refracted wave corresponding to amplitude ratio R6. On the other
hand, when longitudinal wave is incident normally, there exist two reflected waves corresponding
to amplitude ratios R1 and R3 and two refracted waves corresponding to amplitude ratios R4 and
R5. At grazing incidence of longitudinal wave, no other reflected or transmitted wave appears except
a reflected wave corresponding to the amplitude ratio R1.

(V) In both the problems, it is found that the sum of energy ratios is equal to unity. This shows that there
is no dissipation of energy during transmission.
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