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Abstract

Incorporating with the high electro-mechanical coupling performance of piezoelectric materials, design and analysis of
an adhesively bonded smart composite pipe joint system were conducted. In this joint system, piezoelectric layers were inte-
grated into the joint coupler in order to reduce stress concentration in the joint adhesive layer. To theoretically verify the
composite action and efficiency of the integrated piezoelectric layers, an electro-mechanical model based on the first-order
shear deformation theory was established. This model was able to clarify the energetic characteristics of the proposed joint
system on the improvement in the joint strength, which was under the action of a bending moment at the joint ends. The
state-space method was utilized to obtain the final analytical solutions, including the peel and shear stress distributions in
the adhesive layer. Finally, some numerical examples were calculated to evaluate the effect of the detailed stacking
sequence and size of the integrated piezoelectric layers on reducing the stress concentration in the adhesive layer as well
as the applied electric fields. These numerical results validated the integrity of the developed adhesively bonded smart
composite pipe joint system.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

With the advancement of adhesive materials and techniques in adhesive bonding in the past decades, a num-
ber of adhesively bonded joint systems have been increasingly applied in engineering structures, such as the sin-
gle-lap joint, single-strap joint, double lap joint and pipe joint in aeronautics, automotive, civil engineering
structures etc. Recently, with the inflated energy consumption, the exploitation and transport of oil and gas
have become one of the hottest topics in the world. As is well known, adhesively bonded pipeline networks,
including adhesively bonded socket joint, butt-and-strap joint and flanged joint etc., have been successfully
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applied as one of the most low-cost and efficient transport methods in the industry. Evidently, for any type of
adhesively bonded joint systems, stress transfer is generally through the adhesive layer bond-line via peel and
shear stresses. And, a significant peel/shear stress concentration always exists in the edge region at the adhesive
layer bond-line, which has been theoretically and experimentally verified by previous works (Goland and Reiss-
ner, 1944; Hart-Smith, 1973; Adams and Wake, 1984; Tsai and Morton, 1994). Thereby, the stress concentra-
tion in the edge region at the adhesive layer is the lethiferous reason of inducing adhesively bonded joint failure.
In order to prevent the joint from premature failure, reducing the stress concentration becomes crucial.
Although many theoretical, numerical and experimental analyses have been conducted in the literatures on
adhesively bonded beam and plate joint systems, only a limited number of experimental and theoretical studies
have been conducted to investigate the adhesively bonded pipe joint system subjected to complicated external
tension, bending and torsion loading, including Adams and Peppiatt (1977), Chen and Cheng (1992a), Chen
and Cheng (1992b), Choi and Lee (1997), Lee and Oh (1999), Yang (2000), Yang et al. (2002), and Pugno
and Carpinteri (2003) etc. Therefore, how to improve the strength capacity and reliability of such joint systems
is still the most desired aim in engineering community. Some traditional and preventive enhancement methods,
including rounding off the sharp edges, spewing fillets and tapering of the adherends etc. (Hart-Smith, 1983;
Roberts, 1989; Cheng et al., 1991), have been successfully applied in engineering structures. Furthermore, some
other mechanical stiffening methods have also been introduced to improve the joint strength. For instance,
Albat and Romilly (1999) have used some reinforcing patches to reduce the stress concentration in adhesive
layers. However, all of the above mentioned strength enhancement methods, namely, the traditional geometric
improvement or mechanical stiffening methods are passive enhancement methods. They are unable to survive
sudden and extreme loadings. Therefore, in the present paper, an adaptive adhesively bonded pipe joint system
was designed and analyzed to create a smart and active enhancement and protection for such pipe joint system
using high electro-mechanic coupling piezoelectric materials.

Smart materials have been successfully applied as sensors and actuators in the engineering structures, such
as Crawley and de Luis (1987), Lee and Moon (1990), Cheng et al. (2000), Wu et al. (2001), Batra and Geng
(2001), Luo and Tong (2002), Zhou and Wang (2002), Zhou et al. (2003), Cheng et al. (2005a,b) etc. However,
few studies can be found in the open literatures on the application of smart materials in adhesive joint systems.
Recently, Cheng and Taheri (2005, 2006) have utilized piezoelectric materials to successfully improve the
adhesively bonded beam-like joint system in theory and experiment, and then introduced the adaptive strength
improvement method for the conventional adhesively bonded joint system. From the authors’ previous works,
it is verified that the peel/shear stress concentration in the adhesive layer can be remarkably reduced through
actively adjusting applied electric fields in the integrated piezoelectric patches/layers. Therefore, it is a reason-
able development to integrate the piezoelectric materials into the connection coupler of a common pipe joint
system. It is expected that this adhesively bonded smart pipe joint system will reduce the stress concentration
and enhance the strength of the pipe joint.

In this paper, an idealized adhesively bonded smart composite pipe joint system, which had an adaptive con-
nection coupler that was integrated with some piezoelectric layers as actuators, was firstly developed. In order
to conveniently design and optimize the proposed smart joint structure, an analytical model based on the first-
order shear deformation theory was set up to obtain fundamental expressions for the joint system. This model
was able to consider the electro-mechanical coupling effect of the integrated piezoelectric layers. Further, when
the joint was subjected to a bending moment at the joint end, a basic solution process was presented in detail.
The state-space method was employed to obtain the analytical solutions, including the peel and shear stress dis-
tributions in the adhesive layer bond line. Finally, some detailed numerical simulations were conducted to dem-
onstrate the design and optimization of the joint system under the combined end bending moment and electric
fields, including the effect of the thickness and stacking sequence of the integrated piezoelectric layers.

2. Basic smart pipe joint structure and fundamental equations

2.1. Basic smart composite pipe joint structure

In general, an adhesively bonded pipe joint system is composed of a main pipe, connection coupler and
adhesive layer, such as a single-strap type pipe joint, as shown in Fig. 1. In theory, such a pipe joint system



Fig. 1. A schematic view of a typical pipe joint system.
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can be approximated as a symmetric or quasi-symmetric joint structure even though the material properties
and geometries of the pipe and coupler are different from each other. As mentioned above, in order to reduce
the stress concentration in the adhesive layer bond line, many traditional passive reinforcement methods have
been developed to enhance the strength capacity of such joints. In this study, we proposed to develop an
actively enhanced pipe joint – a smart composite pipe joint system, in which high electro-mechanical coupling
piezoelectric materials are integrated as actuators to adaptively reduce the peel/shear stresses concentration in
the adhesive layer. It is well known that the peel/shear stress concentrations in the adhesive layer can be inten-
sively reduced by adjusting the applied forces and moments at the joint edges as well as the geometries and
material properties of the adherent and adhesive (Roberts, 1989). Therefore, on the basis of our findings in
previous studies (Cheng and Taheri, 2005, 2006), together with the high electro-mechanical coupling effect
of the piezoelectric materials, a smart composite pipe joint system with a smart connection coupler integrated
with piezoelectric reinforced layers can be constructed, as shown in Figs. 1 and 3(b), was proposed. Since the
general piezoelectric ceramics are brittle, it is difficult to integrate them into the joint coupler (Cheng et al., in
press). Thus considering the manufacture convenience of the pipe joint, we can use piezoelectric particle/fiber
reinforced composite materials in the present application. For an example of an adhesively bonded socket
joint, we can directly integrate the piezoelectric particle/fiber reinforced composite layer into the composite
socket part as the actuator. In the present smart pipe joint system, adjusting externally applied electric fields
in the integrated active piezoelectric layers can induce relevant deformation in the smart laminates to cause
additional force and moment at the joint edges so as to reduce/increase the stress concentration in the adhesive
layer. It is undoubted that the stacking sequence of the reinforced piezoelectric layers in the connection cou-
pler should have a significant effect on the efficiency of the smart joint, so do the piezoelectric layer thickness
and applied electric fields. In order to validate the composite action and efficiency of the integrated piezoelec-
tric reinforced layers, an analytical model based on the first-order shear deformation theory will be established
to carry out the peel and shear stress distribution analysis in the adhesive layer under the electro-mechanical
loading in the following sections.
2.2. Fundamental equations

In order to verify the efficiency of the smart composite pipe joint system, the first-order shear deformation
theory is employed to model the smart joint and further obtain the relevant fundamental equations. Based on
the assumption of the first-order shear deformation theory for a moderately thick shell, the displacement fields
can be assumed as functions of the mid-plane displacements (u0,v0,w0) in the following forms:
uð1; n; zÞ ¼ u0ð1; nÞ þ z/ð1; nÞ ð1aÞ

vð1; n; zÞ ¼ v0ð1; nÞ þ zuð1; nÞ ð1bÞ

wð1; n; zÞ ¼ w0ð1; nÞ ð1cÞ
where (u0,v0,w0) are the displacements of a point (f,n, 0) on the mid-plane of the shell, and, (/,u) are the rota-
tions of a normal to the reference surface as shown in Fig. 2.
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Fig. 2. A schematic geometric view of the pipe joint: (a) an isometric view and (b) a cross-sectional view.
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In terms of the strain–displacement relationships in the general shell coordinate system as shown in Fig. 2,
the strain can be expressed as follows:
Fig.
e1 ¼ e1 ¼
ou
o1
¼ ou0

o1
þ z

o/
o1

; ð2aÞ

en ¼ e2 ¼
w

Rþ z
þ R

Rþ z
ov
on
¼ w

Rþ z
þ R

Rþ z
ov0

on
þ z

ou
on

� �
; ð2bÞ

ez ¼ e3 ¼
ow
oz
¼ 0; ð2cÞ

enz ¼ e4 ¼ c23 ¼
R

Rþ z
ow
on
þ ov

oz
� v

Rþ z
¼ R

Rþ z
ow
on
� v0

Rþ z
þ R

Rþ z
u; ð2dÞ

e1z ¼ e5 ¼ c13 ¼
ou
oz
þ ow

o1
¼ /þ ow0

o1
; ð2eÞ

e1n ¼ e6 ¼ c12 ¼
R

Rþ z
ou
on
þ ov

o1
¼ R

Rþ z
ou0

on
þ zR

Rþ z
o/
on
þ ov0

o1
þ z

ou
o1

ð2fÞ
where R denotes the mid-plane radius for different parts of the joint, such as Rp and Rc are the radius of the
mid-plane for the pipe wall and connection coupler wall, respectively; see Fig. 3.

Considering the effect of piezoelectric layers with the poling direction along the z-axis and fiber distribution
angle of the kth layer in the composite laminated pipe, the common stress–strain relationships of the kth lam-
ina can be obtained in the shell coordinate system as
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3. The conventional pipe-joint system (a) and the proposed smart pipe joint system integrated with the piezoelectric layer (b).
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where the superscript ‘‘k’’ denotes the kth layer of the laminate panel. Qij are the transformed stiffnesses and can
be obtained from the stacked lamina. Ek

3 is the applied electric field in the kth actuating piezoelectric layer. It is
noted that the piezoelectric coefficients are equal to zero in the elastic layer. Because most of the reinforcements
used in engineering are orthotropic, including chopped-strand mats, woven roving, unidirectional fabrics etc.,
the stress–strain relationships of the pipe walls can be approximately described in the following forms:
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For a general laminate, the forces and moments can be deduced from the stress resultant by integration of
the stresses along the thickness. Considering the effect of the integrated piezoelectric layers on different parts of
the smart composite pipe joint system, the forces and moments can be obtained as follows:
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where these resultant forces and moments are general expressions for any parts of pipe joint system. For in-
stance, the above resultant forces and moments will represent the resultant forces and moments of the pipe if
the radius R in the general expressions is replaced by Rp. In the same manner, the resultant forces and mo-
ments for other parts can be obtained. The extensive shell stiffnesses are re-defined and used in the above der-
ivation, i.e. Aimn, Bimn etc. And, the additional resultant forces N PZT

ij and moments MPZT
ij ði; j ¼ 1; 2Þ caused by

external electric fields that are applied to the integrated piezoelectric layers are defined as
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with the electric field applied to the distribution covered surface electrode represented by the 2-D Heaviside
step function as
Ek
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3. Representative volume model and equilibrium equations

For a conventional composite pipe joint, it can be approximated as a symmetric structure, as shown in
Fig. 1. Then, only half of the joint needs to be modeled, as shown in Fig. 4. A representative infinitesimal ele-
ment of the joint section is depicted in Fig. 5. In terms of the static equilibrium conditions for each layer as
shown in Fig. 5, the fundamental equilibrium equations for any segment of the whole smart pipe joint system
(with a rectangular cross section) can be obtained as follows.
Symmetric axis
x1 x2

l1 l2

MM

Bare pipe Coupling pipe

Connection coupler

Fig. 4. A schematic view of the different parts of the composite pipe joint system.



Fig. 5. The stresses and forces on the infinitesimal element of a joint system: (a) the top layer (connection coupler), (b) the adhesive layer,
(c) the bottom layer (main pipe).
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For the bare part of the main pipe without the adhesive stress distribution effect, the equilibrium equations
from the infinitesimal element can be derived, which are in the local coordinate system, as follows:
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For the pipe part covered by the connection coupler, the following equilibrium equations in the local coor-
dinate system can be obtained by considering the effect of the adhesive layer stresses:
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And in the connection coupler, the equilibrium equations can be described in the local coordinate system by
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where Ra is the radius of the adhesive layer and Ra ¼ RciþRpo

2
. Rci and Rpo are the inner radius of the connection

coupler and the outer radius of the main pipe, i.e. the top and bottom surfaces of the adhesive layer, respec-
tively. Here, sf, sn and p denote the shear and normal stresses in the adhesive layer in the f-axis, n-axis and z-
axis, respectively. Evidently, the shear and normal stresses in the adhesive layer are caused by the discontinuity
of the relative displacements on the top and bottom surfaces of the adhesive layer. Assuming that the adhesive
shear stresses are uniform throughout the thickness of the adhesive layer, the shear stresses sf and sn can be
obtained from the above assumed displacement fields of the pipe and coupler by using the average values of
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In the same manner, the normal stress p of the adhesive layer can be determined from the relative radial
displacements of the pipe and coupler:
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where Ga, Ea and ta are the shear modulus, Young’s modulus and Poisson’s ratio of the adhesive, respectively.
ha is the thickness of the adhesive layer.

Furthermore, considering the symmetric smart pipe joint system under the action of the end force and
bending moment, as shown in Fig. 4, the relevant boundary conditions and the continuity conditions can
be described for different parts of the joint in details in the following:

At x2 = l2, when the end of pipe is subjected to an external applied force or a bending moment, the relevant
boundary conditions can be represented by
N b1 ¼ eN b1; Qb1n ¼ eQb1n; Qb1z ¼ eQb1z; Mb1 ¼ eM b1; Mb1n ¼ eM b1n ð12aÞ
At x1 = l1, since the end of the coupler is free, the boundary conditions can be expressed as
N c1 ¼ 0; Qc1n ¼ 0; Qc1z ¼ 0; Mc1 ¼ 0; Mc1n ¼ 0 ð12bÞ
At x1 = 0, due to the free end and the symmetry, the boundary conditions for the pipe and coupler can be
expressed as
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Similarly, at the end of the coupling part of the pipe, i.e. x1 = l1 and x2 = 0, the continuity conditions
between the coupling part and bare part of the pipe can be represented by
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where the upper ‘‘�’’ of the above variables denotes the prescribed external forces and moments.
In order to obtain the displacement-based governing equations for the different parts of the composite pipe

joint system, the resultant forces and moments (Eq. (5)) and the strain–displacement relationships are substi-
tuted into the above equilibrium equations and further the relevant displacement-based governing equations
for the different parts of the joint are derived. For example, in the coupled pipe part, the displacement-based
governing equations can be expressed in the local coordinate system as
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Similarly, the displacement-based governing equations for the bare pipe part and connection coupler part
can be also obtained in the respective local coordinate systems.

Evidently, based on the above analyses, there are a total 15 second-order differential equations with 30
boundary conditions as shown in Eq. (12), which will be used to determine 15 unknown functions, i.e. up0,
/p, vp0, up and wp in the coupled pipe part, ub0, /b, vb0, ub and wb in the bare pipe part, uc0, /c, vc0, uc

and wc in the connection coupler part. Thus, the problem is closed. In order to obtain the analytical solutions
for these differential equations, a coordinate transform is introduced to transform the above differential equa-
tions into a uniform coordinate system as follows:
na

np
¼ Ra

Rp
and

na

nc
¼ Ra

Rc
ð14Þ
Further some coordinate transform relationships can be represented by
oð�Þ
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o
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o
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� �2
o

2ð�Þ
on2

a

: ð15dÞ
where the notation ‘•’ inside the bracket denotes the differential variables.
After applying the above coordinate transforms to the displacement-based governing equations for the

three parts in their respective local coordinate system, a new set of governing equations with 15 unknown vari-
ables and 30 boundary and continuity conditions are obtained in the uniform coordinate system.

4. Analytical solution procedure

Considering the symmetry, anti-symmetry and continuity of the circular geometry and applied loading, the
general solutions by the Fourier series in the na-axis can be expressed in the following forms:
u0ð1; nÞ ¼
X

n

Uð1Þ cos
nna

Ra

� �
ð16aÞ

/ð1; nÞ ¼
X

n

Uð1Þ cos
nna

Ra

� �
ð16bÞ
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v0ð1; nÞ ¼
X

n

V ð1Þ sin
nna

Ra

� �
ð16cÞ

uð1; nÞ ¼
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n
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ð16dÞ
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X

n
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It is noted that the above basic solutions are general solutions and suitable for the three different parts of
the joint. So far, 15 new unknown variables, Up(1), Up(1), Vp(1), Wp(1), Wp(1), Ub(1), Ub(1), Vb(1), Wb(1), Wb(1),
Up(1), Uc(1), Vc(1), Wc(1) and Wc(1), have been introduced. In order to simplify the solution process, it is
assumed that the applied bending moment M at the joint end is produced by the normal stress resultant with
a cosine distribution around the pipe wall, i.e.
eN ð1; nÞ ¼ eN 0ð1Þ cos
na

Ra

� �

Therefore, the assumed Fourier series solution can be further simplified to contain only one sine or cosine term
for the basic solutions. Further, the boundary conditions (Eq. (12a)) can be represented by
N b1 ¼ �
eM

pR2
b

cos
na

Ra

� �
; Qb1n ¼ 0; Qbz1 ¼ 0; Mb1 ¼ 0; Mb1n ¼ 0 ð12aÞ
After substitution of the above relevant solutions into the governing equations in the uniform coordinate
system, the coefficients of sine and cosine are collected to obtain a new set of 15 ordinary differential equations
involving the above 15 new variables. Here, the detailed new ordinary differential equations for the coupled
pipe part are obtained after collecting the coefficients of sine and cosine in the resultant force equations
(13a)–(13e)) in the following forms:
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In the same manner, the new ordinary differential equations for the connection coupler part and bare pipe
part can be obtained.

In order to solve these 15-ordinary differential equations, the state-space method can be employed to sim-
plify these equations and further obtain a new set of first-order state equations by introducing the following
variables:
Z1 ¼ U p; Z2 ¼ Z 01 ¼
oU p

o1
; Z3 ¼ Up; Z4 ¼ Z 03 ¼

oUp

o1
; Z5 ¼ V p;

Z6 ¼ Z 05 ¼
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Z12 ¼ Z 011 ¼
oU c
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o1
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oWb
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o1
Using the above introduced new variables, the relevant differential equations for the connection coupler
and coupled pipe in the overlap part can be expressed by a state equation as
fZg0 ¼ ½H �fZg þ ½K� ð18aÞ
Similarly, a state equation for the bare pipe part can be obtained
fXg0 ¼ ½M �fXg ð18bÞ
where the non-zero components of the coefficient matrices [H] and [M] are given in detail in Appendix A. The
20 · 1 dimensions matrix [K] is related to the actuating piezoelectric layer induced forces and moments due to
externally applied electric fields and its non-zero components can be represented by
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Kð12; 1Þ ¼
Dc11ðN PZT

c1 Þ
0
1 � Bc11ðMPZT
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0
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Ac11Dc11 � B2
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n
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cn

Ac55Rc
with the following derivation definitions: ð�Þ0x ¼
oð�Þ
ox , oHðx�x0Þ

ox ¼ dðx� x0Þ and o2Hðx�x0Þ
ox2 ¼ d0ðx� x0Þ.

Thus, the shear and peel stresses in the adhesive layer can be re-written by the introduced state variables in
the following matrix forms:
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Now integrating both sides of Eq. (18a) over dummy variable # from f0 to f, the final solution in the fol-
lowing form are derived:
Zð1Þ ¼ e1½H �fk1g þ e1½H �
Z 1

e�#½H �½K�d# ð20aÞ
and the general solution for Eq. (18b) is
X ð1Þ ¼ e1½M �fk2g ð20bÞ

where {k1} is a vector with 20 unknown coefficients determined by the relevant boundary and continuity con-
ditions at 1 = 0, l1, and, {k2} is a vector with 10 unknown coefficients calculated by the boundary and conti-
nuity conditions at 1 = 0, l2, as shown in Eq. (12). With the help of the strain–stress and strain–displacement
relationships (Eqs. (2)–(5)), the unknown coefficients {ki} (i = 1,2) are determined by the boundary and con-
tinuity conditions via the programmed Mathematica software. The peel and shear stress distribution in the
adhesive layer of the smart composite pipe joint system can be analytically calculated by Eq. (19).

5. Numerical example and discussion

In order to validate the effect and efficiency of the integrated piezoelectric layer on the connection coupler,
some detailed numerical analyses have been conducted to confirm the integrity of the smart composite pipe
joint system subjected to the bending moment at the end of the joint. The 54-dregree filament-wound E-
glass/Derakane 470 composite pipe has been taken as the calculation samples for the pipe and the connection
coupler. The material properties and geometric parameters of the composite pipe and coupler, adhesive and
piezoelectric ceramics used in the detailed simulations have been assumed as follows:

Composite layer: E1 = 25.2 GPa, E2 = 7.5 GPa, G12 = 2.4 GPa, v12 = 0.32;
Epoxy adhesive: Ea = 0.96 GPa, Ga = 0.34 GPa, l3 = 0.412;
Piezoelectric materials: EPZT = 8.4 · 1010 N/m2, l3 = 0.22, d31 = d32 = � 310 · 10�12 m/V;
Geometric parameters: l1 = 0.0254 m; l2 = 0.0254 m; ha = 0.0254 mm, hp = hc = 2.54 mm, Rpi = 50.8 mm.

Assuming that the smart connection coupler consists of six plys with the following stacking sequence
[Comp/PZT1/Comp/Comp/PZT2/Comp] and relevant lamina thickness hc

6
= hc

6
= hc

6
= hc

6
= hc

6
= hc

6


 �
, where the layers
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PZT1 and PZT2 are subjected to electric fields E1
3 and E2

3, respectively. In order to validate the developed elec-
tro-mechanical coupled analytical model, numerical comparisons are firstly presented between the analytical
solution and finite element modeling (FEM) results. A complete model of the smart pipe joint was meshed and
simulated by ABAQUS eight-node three-dimensional elasticity element (C3D8) and adhesive element
(COH3D8).1 It is seen from Figs. 6 and 7 that, with an applied bending moment 113 N m at the end of this
smart joint, the analytical results are close to the FEM results. This suggests that the developed analytical
model is reliable. The analytical model can be used to conduct parametric analysis. Thereafter, we utilized
the verified analytical model to further consider the smart joint response under the action of coupled
electric/mechanical loading.

Subjected to the combined electric/mechanical loading, the peel and shear stress distributions are calculated
and the results are shown in Figs. 8 and 9 for the shear stress distribution and Fig. 10 for the peel stress dis-
tribution along the f axial direction at na = 0, where E1

3 ¼ E2
3 is used and taken as Study Case 1. All the numer-

ical results in Figs. 8–10 indicate that the peel/shear stress concentrations always present at the edge in the end
region of the joint; however, they can be significantly and adaptively changed by the electric fields applied to
the integrated piezoelectric layers. Further, in order to evaluate the effect of different electric fields applied to
different piezoelectric layers on the shear/peel stress distributions, numerical simulations are conducted and
the results of the maximum stress values are presented in Fig. 11 for four study cases. In Case 1, i.e.
E1

3 ¼ E2
3 which can induce NPZT

i 6¼ 0 and MPZT
i � 0; Case 2, i.e. E2

3 ¼ �E1
3 which can yield N PZT

i � 0 and
MPZT

i 6¼ 0; Case 3, i.e. E1
3 6¼ 0 and E2

3 ¼ 0 which means N PZT
i 6¼ 0 and MPZT

i 6¼ 0; and Case 4, i.e. E1
3 ¼ 0 and
ζ(m)

0-0.005-0.01 0.005 0.01

Sh
ea

r 
st

re
ss

 τ
ζ

(M
Pa

) 

-0.5

-1.0

-1.5

-2.0

-2.5

Analytical solution  
FEM result 

Fig. 6. Numerical comparison of shear stress s1 distribution of a smart joint.
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Fig. 7. Numerical comparison of peel stress p distribution of a smart joint.
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3 on the maximum shear stresses s1, sn (a, b) and maximum peel stress p

(c) in Cases 1–4.
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E2
3 6¼ 0 which indicates N PZT

i 6¼ 0 and MPZT
i 6¼ 0. From the numerical results in Fig. 11, it is seen that the

applied negative electric fields E1
3 can drastically reduce all the maximum values of shear stresses sf, sn and

peel stress p in Case 1. Specifically, the shear stress sf is reduced from �3.23 MPa to �1.77 MPa, the shear
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stress sn is changed from 2.25 MPa to �1.76 MPa, including zero, and the peel stress is changed from 77.4
MPa (tension) to �97.7 MPa (compression), including zero. This means that the stress concentrations in
the adhesive layer can be successfully controlled and even eliminated by applying appropriate electric fields
through the integrated piezoelectric layers. To the opposite, a positive electric field E1

3 will increase the max-
imum values of peel stress p and shear stresses sf and sn in Case 1. The same effect is observed in Case 4 as in
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Case 1. Compared to Case 1, the applied negative and positive electric fields in Case 2 can induce completely
reversed effects, i.e. the applied negative electric fields E1

3 can significantly increase all the maximum values of
peel and shear stresses in Case 2 as depicted in Fig. 11. Meanwhile, the applied negative and positive electric
fields only have very limited effects on the maximum peel and shear stresses in Case 3. These results indicate
that the proposed strength improvement method for the composite pipe joint is designable and can be opti-
mized by controlling the electric fields applied to different piezoelectric layers.

The thickness effect of the integrated piezoelectric layers in the connection coupler is also investigated.
Here, it is assumed that the composite connection coupler has the same stacking sequence with different lam-
ina thicknesses hc

6
= hc

4
= hc

12
= hc

12
= hc

4
= hc

6


 �
. Similarly, four cases for this geometric parameter are examined, includ-

ing Case 5, E1
3 ¼ E2

3, Case 6, E2
3 ¼ �E1

3, Case 7, E1
3 6¼ 0 and E2

3 ¼ 0, and Case 8, E1
3 ¼ 0 and E2

3 6¼ 0. Fig. 12
illustrates the detailed numerical results for the thickness effect of the integrated piezoelectric layers on the
joint strength enhancement in the composite pipe joint system. From Fig. 12, it is evident that the thicker inte-
grated piezoelectric layers can achieve greater efficiency on changing the maximum peel and shear stresses than
the thinner piezoelectric layers. In order to compare and summarize the efficiency of the integrated piezoelec-
tric layers in different study cases, some more detailed comparisons of the maximum peel/shear stresses for all
the study cases are presented in Fig. 13–15. From the numerical comparisons, it is again confirmed that the
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thickness of the integrated piezoelectric layers has a significant effect on the maximum peel and shear stresses,
and the thicker integrated piezoelectric layers can speed up the enhancement/reduction of the maximum peel/
shear stress under the relevant applied electric fields. Due to the overall material properties change of the cou-
pler caused by thickening the integrated piezoelectric layers, the initial maximum peel/shear stresses (i.e. the
maximum peel/shear stresses at E1

3 ¼ E2
3 ¼ 0) have a little increase, as shown in Figs. 13–15. Through the com-

parisons, it is found that the smart pipe joint structure in Case 6 can achieve a better ability and efficiency in
reducing the maximum peel and shears stresses.

From the above detailed numerical analysis, it is evident that the integrated piezoelectric layers can signif-
icantly reduce the maximum peel/shear stresses in the adhesive layer with suitable stacking sequence, lamina
thickness and applied electric fields. The strength of the smart joint can be adaptively enhanced through a
proper design.
6. Conclusion

In this paper, design and analysis of an adhesively bonded smart composite pipe joint system was con-
ducted to evaluate the adaptive reduction of the stress concentration in the adhesive layer via the connection
coupler integrated with piezoelectric layers as actuators. In order to evaluate the function and efficiency of the
integrated piezoelectric layers, an electro-mechanical analytical model was developed to derive fundamental
governing equations based on the first-order shear deformation theory. Further, a detailed analytical solution
was obtained for the case when the joint was subjected to a bending moment at the end of the joint. The state-
space method was employed to obtain the final exact analytical solutions. Both the peel and shear stresses in
the adhesive layer were obtained analytically. A finite element analysis was conducted to validate the analyt-
ical modeling. Finally, some detailed numerical results were calculated to evaluate the effect of the lamina
thickness and applied electric fields on the peel/shear stress concentrations. It is found that, under a proper
combination, the peel and shear stress concentrations can be significantly reduced or eliminated in the devel-
oped smart composite pipe joint system. It is noted that thermal stress is also a typical loading conditions in
practice. This will be a topic in the future studies.
Appendix A. The element of matrix [H] and [M]

Based on the introduced new state variables, the resultant governing equations for the overlapping pipe and
the connection coupler, as shown in Eqs. (17a)–(17e), are presented in the matrix form as
½N�fZg0 ¼ ½A�fZg; ðA:1Þ
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further, the matrix [H] in Eq. (18a) is obtained as
½H � ¼ ½N��1½A� ðA:2Þ

where the non-zero elements of the matrix are as follows:
Nði; iÞ ¼ 1 ði ¼ 1; 3; 5; . . . ; 19Þ;
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:

Similarly, the displacement based governing equations for the bare pipe part can be obtained by neglecting
the right terms of Eqs. (17a)–(17e), and are further represented in the matrix form as follows:
½P�fXg0 ¼ ½B�fXg; ðA:3Þ
where the [P] is a 10 · 10 dimensional matrix, in which the elements are equal to the relevant elements of the
first 10 columns in the first 10 rows of matrix [N]. The matrix [B] is also a 10 · 10 dimensional matrix, which
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are equal to the part of the first 10 rows · 10 columns of matrix [A], only by neglecting the underlined terms in
the relevant elements. Then, the matrix [M] can be obtained by
½M � ¼ ½P��1½B� ðA:4Þ
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