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Abstract

The effect of material compressibility on the stress and strain fields for a mode-I crack propagating steadily in a power-
law hardening material is investigated under plane strain conditions. The plastic deformation of materials is characterized
by the J2 flow theory within the framework of isotropic hardening and infinitesimal displacement gradient. The asymptotic
solutions developed by the present authors [Zhu, X.K., Hwang K.C., 2002. Dynamic crack-tip field for tensile cracks prop-
agating in power-law hardening materials. International Journal of Fracture 115, 323–342] for incompressible hardening
materials are extended in this work to the compressible hardening materials. The results show that all stresses, strains, and
particle velocities in the asymptotic fields are fully continuous and bounded without elastic unloading near the dynamic
crack tip. The stress field contains two free parameters req0 and s330 that cannot be determined in the asymptotic analysis,
and can be determined from the full-field solutions. For the given values of req0 and s330, all field quantities around the
crack tip are determined through numerical integration, and then the effects of the hardening exponent n, the Poisson ratio
m, and the crack growth speed M on the asymptotic fields are studied. The approximate behaviors of the proposed solutions
are discussed in the limit of m! 0.5 or n!1.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Deformation and failure of dynamic cracks have been investigated for years due to its significant impor-
tance in engineering. A monograph of Freund (1998) systematically elaborated the general concepts, methods,
and results for dynamic cracks propagating in both elastic and elastic–plastic materials. Rosakis and Ravi-
chandran (2000) reviewed the current research status of dynamic failure mechanics. In general, two kinds
of dynamic cracks are categorized. One is the dynamic cracks caused impact loads that are primarily studied
in dynamic crack initiation (Wall, 2002). The other is dynamic cracks propagating steadily that are primarily
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investigated in the analysis of asymptotic fields (Zhang et al., 2003). The present work will focus on mode-I
dynamic cracks growing steadily in power-law hardening materials under the plane strain condition.

For elastic dynamic cracks, the solutions of crack-tip fields are accepted commonly. For elastic–plastic
dynamic cracks, however, there are different asymptotic and numerical solutions, and the broad agreements
among them could not be found due to the extremely complexity. For elastic–perfectly plastic materials,
Gao and Nemat-Nasser (1983a) and Gao (1985) proposed the asymptotic solutions that contain strong dis-
continuities, in which the stresses are bounded, and the strains are logarithmically singular at the crack tip.
For power-law hardening materials, Gao and Nemat-Nasser (1983b) and Zhu and Hwang (1996) proposed
dynamic near-tip fields with discontinuous and logarithmically singular stresses and strains. However, Leigh-
ton et al. (1987) demonstrated that the principle of the maximum plastic work prohibits the existence of any
dynamic discontinuities in stress, strain, and velocity fields for an incompressible elastic–perfectly plastic mate-
rial, and successfully constructed a unique asymptotic crack-tip field with fully continuous and bounded stres-
ses, strains, and particle velocities for the material. Similarly using the maximum plastic work principle,
Drugan and Shen (1987), Zhu (1995), and Zhang et al. (1997) confirmed that dynamic strong discontinuities
are not allowed for any field quantities at the dynamic crack tip for non-hardening and hardening materials.
Accordingly, Zhang et al. (1997) extended the continuous solutions of Leighton et al. (1987) to the compress-
ible elastic–perfectly plastic material, and obtained an asymptotic crack-tip field with continuous and bounded
stresses and strains. Zhu and Hwang (2002) further extended these continuous solutions to the incompressible
power-law hardening materials after a detailed review of the asymptotic solutions for elastic–plastic dynamic
crack growth.

Lam and Freund (1985) could be the pioneers who reported numerical solutions of dynamic mode-I crack
growth using finite element analysis (FEA) for elastic–perfectly plastic materials. Xu and Saigal (1999) obtained
numerical results of the dynamic crack growth for linear and power-law hardening materials using the Element
Free Galerkin (EFG) method. The EFG solutions agree well with the FEA results as the material hardening van-
ishes, and both numerical results indicated that the stresses and strains are continuous near the crack tip. On the
other hand, Varias and Shih (1994) presented a different FEA results that exhibit sizable jumps in both stresses
and strains at h � 90� for elastic–plastic materials with and without strain hardening. Due to the reasons intro-
duced above, a physically realizable solution should be continuous near the crack tip, and thus the discontinuous
solutions must be ruled out. Nevertheless, all numerical solutions showed the occurrence of elastic unloading near
the crack surfaces that were not observed in available asymptotic solutions.

The present paper extends the companion work in Zhu and Hwang (2002) for incompressible power-law
hardening material to the compressible power-law hardening materials, and constructs continuous stress
and deformation fields for the steady dynamic crack growth. The detailed discussions are performed for
the effects of the hardening exponent n, the Poisson ratio m, and the crack growth speed M on the asymptotic
fields, and for the approximate behaviors of the proposed solutions in the limit of m! 0.5 or n!1.

2. Basic equations and boundary conditions

2.1. Basic equations

Consider a mode-I dynamic crack propagating steadily at speed V in a compressible power-law hardening
material under plane strain conditions. The elastic–plastic responses of materials are characterized by the J2

flow theory within the framework of isotropic hardening and infinitesimal displacement gradient. Both the
rectangular coordinates (x1,x2) and the polar coordinates (r,h) are introduced with their common origin fixed
at the crack tip and the edge line h = 0 aligned to the x1 direction. The two coordinate systems translate with
the crack tip that moves steadily in the x1 direction at the speed V.

In reference to the rectangular components of the Cauchy stress tensor and the particle velocity vector, rab

and va, the equations of momentum balance are expressed as:
rab;b ¼ q _va ð1Þ
where q is the material mass density, the comma in the subscript denotes the differentiation with respect to the
coordinate xb and the superimposed dot denotes a material time derivative. In this paper, the repeated indices
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follow the usual summation convention. The Latin indices range from 1 to 3, whereas the Greek indices range
only from 1 to 2.

For the infinitesimal deformation, in terms of the particle velocity va and the rectangular components of the
strain tensor eab, the components of the small strain rate tensor have the form of:
_eab ¼
1

2
ðva;b þ vb;aÞ ð2Þ
According to the J2 flow theory of plasticity, the elastic–plastic deformation of materials obeys the Prandtl–
Reuss constitutive rule:
_eij ¼
1

2l
_sij þ

1� 2m
3ð1þ mÞ _rkkdij

� �
þ ksij ð3Þ
where l is the elastic shear modulus, m is the Poisson’s ratio, dij is the Kronecker delta, sij = rij � rkkdij/3 are
the rectangular components of deviatoric stress tensor, and k is the non-negative plastic flow factor. As the
material hardens, the plastic strain follows the power-law stress–strain relation in uniaxial tension:
ep ¼ c
r
r0

� �n

ð4Þ
where r and ep are the uniaxial stress and strain, respectively. c is a material constant, and n > 1 is the hard-
ening exponent, r0 is the initial yield stress. From (4), using the normality rule of plastic deformation in the J2

flow theory, one obtains the plastic flow factor:
k ¼ 3nc
2r0

req

r0

� �n�2
_req

r0

ð5Þ
where req is the Mises equivalent stress and defined by req = (3/2sijsij)
1/2.
2.2. Plane strain conditions

Under plane strain conditions, one has e33 = 0. From (3) and in reference to the stress components, this
plane strain condition becomes:
_s33 þ
1� 2m

2ð1þ mÞ ð _r11 þ _r22 þ _s33Þ þ 2lks33 ¼ 0 ð6Þ
2.3. Boundary conditions

For the mode-I crack, the symmetric conditions are:
r12ðr; 0Þ ¼ 0; v2ðr; 0Þ ¼ 0 ð7Þ
The traction-free conditions on crack faces require:
r22ðr;�pÞ ¼ 0; r12ðr;�pÞ ¼ 0 ð8Þ
2.4. Continuity conditions

Possible discontinuity of field quantities is an important problem in the study of dynamic crack-tip fields.
As concluded in Zhu and Hwang (2002), the possibility of dynamic strong discontinuities for all field variables
does not exist near the dynamic crack tip either for elastic–perfectly plastic materials or for power-law isotro-
pic hardening materials, which can be mathematically expressed as:
½jrijj� ¼ 0; ½jeijj� ¼ 0; ½jvij� ¼ 0 ð9Þ
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The equations above infer that all components of stresses, strains, and particle velocities are continuous near
the dynamic crack tip.
3. Asymptotic analyses and continuous solutions

3.1. Asymptotic governing equations

The present authors (Zhu and Hwang, 2002) successfully constructed a family of fully continuous dynamic
crack-tip field for incompressible power-law hardening materials, by using an assumption that all components
of stresses, strains, and particle velocities are bounded at the dynamic crack tip. Suppose this assumption is
valid here, and all bounded field variables can be then expressed as functions of the polar coordinate h only:
rijðr; hÞ ¼ rijðhÞ þ oð1Þ
eijðr; hÞ ¼ eijðhÞ þ oð1Þ
viðr; hÞ ¼ viðhÞ þ oð1Þ

ð10Þ
where o() is the symbol of infinitesimal order, and means that o(1)! 0 as r! 0. For steady-state crack
growth, the material time derivative of any field variable, say g, is equivalent to the spatial derivative
�Vog/ox1. Since all field variables are functions of the polar coordinate h only, the material time derivative
of g is simplified as:
_g ¼ �V
og
ox1

¼ V sin h
r

og
oh

ð11Þ
For the sake of brevity in mathematical analysis, we introduce four stress variables:
S1ðhÞ ¼ s11ðhÞ þ
1

2
s33ðhÞ

S2ðhÞ ¼ s12ðhÞ
S3ðhÞ ¼ s33ðhÞ

rh ¼
1

2
ðr11 þ r22Þ

ð12Þ
These four stress components together with the two velocity components v1(h) and v2(h) are chosen as six basic
unknown variables for the problem considered. Accordingly, from (12), the components of stresses can be ex-
pressed by:
r11ðhÞ ¼ rhðhÞ þ S1ðhÞ
r22ðhÞ ¼ rhðhÞ � S1ðhÞ
r12ðhÞ ¼ S2ðhÞ

r33ðhÞ ¼ rhðhÞ þ
3

2
S3ðhÞ

ð13Þ
From (12) or (13), the Mises equivalent stress is expressed as:
req ¼
ffiffiffi
3
p

S2
1 þ S2

2 þ
3

4
S2

3

� �1=2

ð14Þ
In reference to the six basic unknown variables and using the steady-state condition (11), after a lengthy but
straightforward manipulation through the substitution of (10), (13), and (14) into the momentum balance
equation (1), the geometric relation (2), the constitutive equations (3) and (5), and the plane strain condition
(6), one obtains the asymptotic governing equations of dynamic crack-tip fields as follows:
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C11S01ðhÞ þ C12S02ðhÞ þ C13S03ðhÞ ¼ 0

C21S01ðhÞ þ C22S02ðhÞ þ C23S03ðhÞ ¼ 0

C31S01ðhÞ þ C32S02ðhÞ þ C33S03ðhÞ ¼ 0

ð15Þ
and
r0hðhÞ ¼
cos 2hS01ðhÞ þ sin 2hS02ðhÞ þ 3�m

2ð1þmÞM
2 sin2 hS03ðhÞ

1� 3�m
1þm M2 sin2 h

k ¼ 1

2rlM2 sin h½S2
1ðhÞ þ S2

2ðhÞ�
fð1�M2 sin2 hÞ½S1ðhÞS01ðhÞ þ S2ðhÞS02ðhÞ�

� r0hðhÞ½cos 2hS1ðhÞ þ sin 2hS2ðhÞ�g

v01ðhÞ ¼ �
V

lM2 sin h
½sin hðS01ðhÞ þ r0hðhÞÞ � cos hS02ðhÞ�

v02ðhÞ ¼ �
V

lM2 sin h
½cos hðS01ðhÞ � r0hðhÞÞ þ sin hS02ðhÞ�

ð16Þ
where the prime ‘‘ 0 ’’ denotes the differentiation with respect to h, i.e., d/dh. �m ¼ 1=2� m, M = V/cs is the Mach
number for measuring the speed of crack propagation, and cs ¼

ffiffiffiffiffiffiffiffi
l=q

p
is the elastic shear wave speed. In gen-

eral, the Mach number M has the range: 0 6M < 1 for dynamic crack growth (Freund, 1998). The coefficients
C11 � C33 in (15) are defined as:
C11 ¼ cos 2hg � ð1�M2 sin2 hÞ 1� 3�m
1þ m

M2 sin2 h

� �
S2

C12 ¼ sin 2hg þ ð1�M2 sin2 hÞ 1� 3�m
1þ m

M2 sin2 h

� �
S1 ð17aÞ

C13 ¼
3�m

2ð1þ mÞM
2 sin2 hg

C21 ¼ ð1�M2 sin2 hÞ 2�m
1þ m

M2 sin2 hS2 � sin 2hS3

� �

C22 ¼ �ð1�M2 sin2 hÞ 2�m
1þ m

M2 sin2 hS1 � cos 2hS3

� �
ð17bÞ

C23 ¼
3

2ð1þ mÞM
2 sin2 hg

C31 ¼ M2 sin2 hS1g þ ð1�M2 sin2 hÞ sin 2hf

C32 ¼ M2 sin2 hS2g � ð1�M2 sin2 hÞ cos 2hf ð17cÞ

C33 ¼
3

4
M2 sin2 hS3g
where the functions g and f are defined as:
gðS1; S2Þ ¼ � sin 2hS1 þ cos 2hS2

f ðS1; S2; S3Þ ¼
r3

0

ncl
3�

1þn
2

S1

r0

� �2

þ S2

r0

� �2

þ 3

4

S3

r0

� �2
" #3�n

2 ð18Þ
Using the coefficient functions C11 � C33 in (17), it can be verified that the determinant of the coefficient
matrix C of Eq. (15) has the following form:



X.-K. Zhu, K.-C. Hwang / International Journal of Solids and Structures 45 (2008) 3644–3659 3649
det C ¼ 3

2ð1þ mÞM
4 sin4 hg2D

DðS1; S2; S3; hÞ ¼ �g2 þ ð1�M2 sin2 hÞ ð1� 2�mM2 sin2 hÞðS2
1 þ S2

2Þ
�

þ 2ð1� m� �mM2 sin2 hÞf � 2�mðcos 2hS1 þ sin 2hS2ÞS3

þ 1

4
ð5� 4m� 6�mM2 sin2 hÞS2

3

�
ð19Þ
Due to symmetry, the mode-I crack problem can be discussed only on the upper plane, i.e., 0 6 h 6 p.
From (7), (8), and (13), the boundary conditions for the ordinary differential equations (15) and (16) becomes:
S1ð0Þ ¼ �
1

3
req0 �

3

4
s330

� �1=2

; S2ð0Þ ¼ 0; S3ð0Þ ¼ s330; v2ð0Þ ¼ 0;

S2ðpÞ ¼ 0; rhðpÞ ¼ S1ðpÞ
ð20Þ
where req0 = req(0), s330 = s33(0), both parameters are free unknown constants in the asymptotic analysis, but
can be determined from the full-field solutions. In general, the initial equivalent stress req0 P r0 in the plastic
zone near the crack tip for a strain hardening material.
3.2. Construction of continuous solutions

If the determinant of the coefficient matrix of equation system (15) equals zero, i.e., detC = 0, then this
ordinary differential equation system has non-zero solutions; otherwise, zero solutions only. These two sets
of solutions will form the non-constant stress and constant stress sectors in the crack-tip field. Following
the solution structure of Zhu and Hwang (2002) for the incompressible hardening materials, we can assemble
the dynamic crack-tip field here on the upper half plane using a constant sector in 0 6 h 6 h1, a non-constant
stress sector in h1 6 h 6 h2, and another constant stress sector in h2 6 h 6 p, where h1, h2 are the sector border
angles.
3.2.1. Constant stress sector � (0 6 h 6 h1)

In the first sector, detC 5 0, Eqs. (15) and (16) have zero solutions only. Accordingly, all field variables are
constants independent of h. From (15), (16), and (20), we have the constant solutions of deviatoric stresses and
particle velocities as:
s11ðhÞ ¼ �
1

3
req0 �

3

4
s330

� �1=2

� 1

2
s2

330; s12ðhÞ ¼ 0; s33ðhÞ ¼ s330

rhðhÞ ¼ rh0; k ¼ 0; v1ðhÞ ¼ v10; v2ðhÞ ¼ 0

ð21Þ
where rh0 = rh(0) is an undetermined constant. The constant v10 represents the rigid velocity component in the
x1 direction. For simplicity, v10 = 0 is set in this paper. Substitution of (21) into (12) and (13) obtains the com-
ponents of constant stresses in this sector:
r11ðhÞ ¼ rh0 �
1

3
req0 �

3

4
s330

� �1=2

r22ðhÞ ¼ rh0 þ
1

3
req0 �

3

4
s330

� �1=2

r12ðhÞ ¼ 0

r33ðhÞ ¼ rh0 þ
3

2
s330

ð22Þ
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3.2.2. Non-constant stress sector ` (h1 6 h 6 h2)

In the second sector, detC = 0, Eq. (15) has non-zero solutions and the stress components may be functions
of h. The basic stress variables can be determined using the following equivalent equations of (15):
C11S01ðhÞ þ C12S02ðhÞ þ C13S03ðhÞ ¼ 0

C21S01ðhÞ þ C22S02ðhÞ þ C23S03ðhÞ ¼ 0

DðS1; S2; S3; hÞ ¼ 0

ð23Þ
where D is a characteristic function and expressed in (19). The three equations in (23) are the governing equa-
tions of the asymptotic solutions that need to be determined in this non-constant stress sector. The other gov-
erning equations remain the same as those in (16).

Eq. (23) indicates that the solutions of deviatoric stresses in this non-constant stress sector must stay on the
surface of function D(S1,S2,S3;h) = 0. To solve this equation system, the equation D(S1,S2,S3;h) = 0 is fully
differentiated with respect to S1, S2, S3, and h, and Eq. (23) becomes
C11S01ðhÞ þ C12S02ðhÞ þ C13S03ðhÞ ¼ 0

C21S01ðhÞ þ C22S02ðhÞ þ C23S03ðhÞ ¼ 0

C41S01ðhÞ þ C42S02ðhÞ þ C43S03ðhÞ ¼ C44

ð24Þ
where the coefficients C11, C12, C13, C21, C22, and C23 are the same as those given in (17a) and (17b). The coef-
ficients C41, C42, C43, C44 are defined as the first-order partial derivatives of function D(S1,S2,S3;h) with re-
spect to S1, S2, S3, and h, i.e., C41 ¼ oD

oS1
, C42 ¼ oD

oS2
;C43 ¼ oD

oS3
, and C44 ¼ � oD

oh, and expressed as:
C41 ¼ sin 2hg þ ð1�M2
nÞ ð1� 2�mM2

nÞS1 þ ð1� m� �mM2
nÞ

of
oS1

� �m cos 2hS3

� �

C42 ¼ � cos 2hg þ ð1�M2
nÞ ð1� 2�mM2

nÞS2 þ ð1� m� �mM2
nÞ

of
oS2

� �m sin 2hS3

� �

C43 ¼ ð1�M2
nÞ ð1� m� �mM2

nÞ
of
oS1

� �mðcos 2hS1 þ sin 2hS2Þ þ
1

4
ð5� 4m� 6�mM2

nÞS3

� �

C44 ¼ �2ðcos 2hS1 þ sin 2hS2Þg þ 2�mð1�M2
nÞ M2

n cot hðS2
1 þ S2

2 þ
3

4
S2

3 þ f Þ þ gS3

� �

þM2
n cot h

h
ð1� 2�mM2

nÞð:S2
1 þ S2

2Þ þ 2ð1� m� �mM2
nÞf

� 2�mðcos 2hS1 þ sin 2hS2ÞS3 þ
1

4
ð5� 4m� 6�mM2

nÞS2
3

i

ð25Þ
where Mn = M sinh and the three partial derivatives of function f are:
of
oS1

¼ ð3� nÞr0

ncl
3�

1þn
2 S1

S1

r0

� �2

þ S2

r0

� �2

þ 3

4

S3

r0

� �2
" #1�n

2

of
oS2

¼ ð3� nÞr0

ncl
3�

1þn
2 S2

S1

r0

� �2

þ S2

r0

� �2

þ 3

4

S3

r0

� �2
" #1�n

2

of
oS3

¼ 3ð3� nÞr0

4ncl
3�

1þn
2 S3

S1

r0

� �2

þ S2

r0

� �2

þ 3

4

S3

r0

� �2
" #1�n

2

ð26Þ
Through solving (24), one obtains:
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S01ðhÞ ¼
C44

J
C12C23 � C13C22ð Þ

S02ðhÞ ¼
C44

J
C13C21 � C11C23ð Þ

S03ðhÞ ¼
C44

J
C11C22 � C12C21ð Þ

ð27Þ
where J is the determinant of the coefficient matrix of Eq. (24), and expressed as:
J ¼ C11C22C43 þ C21C42C23 þ C41C23C12 � C13C22C41 � C23C42C11 � C43C21C12 ð28Þ
Accordingly, the deviatoric stress components in this sector can be directly determined by integrating Eq. (27),
and then the in-plane mean stress and the particle velocities are determined by integrating Eq. (16) from the
sector angle h = h1 to h2.
3.2.3. Constant stress sector ´ (h2 6 h 6 p)
In this third sector, detC 5 0. Again, all field variables are constant and obtained as:
s11ðhÞ ¼ s11p; s12ðhÞ ¼ 0; s33ðhÞ ¼ s33p

rhðhÞ ¼ s11p þ s33p=2; k ¼ 0; v1ðhÞ ¼ v1p; v2ðhÞ ¼ v2p

ð29Þ
where s11p = s11(p), s33p = s33(p), v1p = v1(p), and v2p = v2(p) are undetermined constants. Substituting (29)
into (12) and (13) obtains the constant stresses components in this sector:
r11ðhÞ ¼ 2s11p þ s33p

r22ðhÞ ¼ 0

r12ðhÞ ¼ 0

r33ðhÞ ¼ s11p þ 2s33p

ð30Þ
3.3. Determination of sector border angles

The continuity condition (9) requires that all stresses, strains, and particle velocities are continuous at the
sector connections where h = h1 and h = h2. At these sector border angles, the constant solutions in (21) and
(29) specify the boundary conditions for the asymptotic governing equations (27) and (16) in the sector ` as:
S1ðh1Þ ¼ �
1

3
r2

eq0 �
3

4
s2

330

� �1=2

; S2ðh1Þ ¼ 0; S3ðh1Þ ¼ s330

rhðh1Þ ¼ rh0; v1ðh1Þ ¼ 0; v2ðh1Þ ¼ 0

ð31Þ
and
S1ðh2Þ ¼ s11p þ s33p=2; S2ðh2Þ ¼ 0; S3ðh2Þ ¼ s33p

rhðh2Þ ¼ s11p þ s33p=2; v1ðh2Þ ¼ v1p; v2ðh2Þ ¼ v2p

ð32Þ
According to (23), the initial boundary point of stresses at h = h1 must lie on the characteristic surface
defined by D (S1,S2,S3;h) = 0. Because there are two initial unknown parameters, req0 and s330, it is generally
difficult to determine the sector border angle h1. However, if the initial equivalent stress req0 is given, the val-
ues of s330 and h1 can be solved from the following equations:
DðS1ðh1Þ; 0; s330; h1Þ ¼ 0

C44ðS1ðh1Þ; 0; s330; h1Þ ¼ 0

S1ðh1Þ ¼ �
1

3
r2

eq0 �
3

4
s2

330

� �1=2
ð33Þ
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Solving the nonlinear equation system in (33) may give two ultimate values of s330, namely the maximum value
s330max and the minimum value s330min, and the corresponding border angle h1. The other border angle h2 can
be determined as the condition S2(h2) = 0 is met during the integration of Eq. (27). Note that if a full-field
solution is known, the two parameters req0 and s330 can be determined by matching the asymptotic solution
in (22) with the full-field stresses at h = 0, and then the sector border angle h1 can be solved from the first equa-
tion in (33) only.

From the analysis above, one knows that the fully continuous solution near the dynamically propagating
crack tip contains two free parameters, req0 and s330, and thus constitutes a two-parameter family of solutions.

3.4. Approximate behavior of the present solutions as m! 0.5

When the Poisson ratio m! 0.5, a compressive hardening material approaches an incompressible hardening
material, and thus the present solutions are anticipated to reduce to those for incompressible power-law mate-
rials (Zhu and Hwang, 2002). As m! 0.5 or �m! 0, from the plane strain condition (6), one has s33 = 0 at the
crack tip. And then from (17a), (18), and (19), we have:
C11 ¼ �
1

2
sin 4h s11 � ðsin2 2h�M2 sin2 hÞs12 ð34Þ

C12 ¼
1

2
sin 4h s12 þ ðcos2 2h�M2 sin2 hÞs11

Dðs11; s12; hÞ ¼ ðcos 2hs11 þ sin 2hs12Þ2 �M2 sin2 hbs2
11 þ s2

12 þ f c þ f ð35Þ

f ðs11; s12Þ ¼
r3

0

ncl
3�

1þn
2

s11

r0

� �2

þ s12

r0

� �2
" #3�n

2

ð36Þ
Moreover, it is verified that the second equation in (23) holds automatically, and thus the asymptotic govern-
ing (23) is simplified as:
C11s011ðhÞ þ C12s012ðhÞ ¼ 0

Dðs11; s12; hÞ ¼ 0
ð37Þ
and the equations in (16) are simplified as:
r0hðhÞ ¼ cos 2h s011ðhÞ þ sin 2h s012ðhÞ

k ¼ � V sin h
2lr

� cos 2h s011ðhÞ þ sin 2h s012ðhÞ
cos 2h s11ðhÞ þ sin 2h s12ðhÞ

v01ðhÞ ¼
V cot h

lM2
cos 2h s012ðhÞ � sin 2h s011ðhÞ
� �

v02ðhÞ ¼
V

lM2
cos 2h s012ðhÞ � sin 2h s011ðhÞ
� �

ð38Þ
Through comparisons, it is found that (37) and (38) are the same as the asymptotic governing (22) and (17) in
the non-constant stress sector that were given by Zhu and Hwang (2002) for the incompressible hardening
materials. Further analysis shows that for m! 0.5, the solutions (21) and (32) in the first and third constant
stress sectors are also the same as those given by Zhu and Hwang (2002). As a result, it is concluded that the
present solutions for compressible hardening materials can reduce to those developed by Zhu and Hwang
(2002) for the incompressible hardening materials in the limit of m! 0.5.

3.5. Approximate behavior of the present solutions as n!1

As similar to the discussions above, the approximate behavior of the present solutions can analyzed for
n!1. When the hardening exponent n!1, the hardening material approaches the elastic–perfectly plastic
material. It is anticipated that the present solutions can reduce to those proposed by Zhang et al. (1997). In
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fact, when n goes infinity, the Mises equivalent stress req approaches the yield stress r0 in plastic regions. Thus
from (14), the three deviatoric stress components can be expressed by:
S1 ¼ �k cos /ðhÞ cosðwðhÞ � 2hÞ
S2 ¼ k cos /ðhÞ sinðwðhÞ � 2hÞ

S3 ¼ �
2ffiffiffi
3
p sin /ðhÞ

ð39Þ
where k ¼ r0=
ffiffiffi
3
p

is the shear yield strength, w (h), and /(h) are the stress functions of h, and independent of n.
As n!1, it is found that f! 0 in (19) and the asymptotic governing (33) and (16) in the second sector can
reduce to Eqs. (3.15) and (3.5) given by Zhang et al. (1997) for the compressible elastic–perfectly plastic mate-
rials. Moreover, the solutions (21) and (32) in the first and third sectors reduce to the corresponding ones given
by Zhang et al. (1997). Therefore, the present solutions for the compressive hardening materials can reduce to
those developed by Zhang et al. (1997) for the compressive elastic–perfectly plastic materials in the limit of
n!1.

4. Numerical integrations and result analyses

4.1. Crack-tip stress fields

For a specific hardening exponent n, a Poisson ratio m, and a crack growth speed M, the three ordinary
differential equations in (27) can be solved under the boundary conditions in (31) using a numerical integration
method. However, the numerical integration depends on the initial equivalent stress req0, the initial deviatoric
stress s330 and the material constant ratio r0 /cl. The hardening relation (4) shows that the material constants
c and r0 are dependent on each other. Without loss of generality, we choose r0/cl = 1 in the numerical inte-
gration. The strategy for numerical integrations of (27) used in this work is outlined as follows:

(1) For the given values of req0, n, m, and M, two ultimate values of s330, i.e., s330max and s330min, and the
corresponding sector border angle h1 can be determined by solving the nonlinear equation system
(33). At h = h1, the boundary conditions for the ordinary differential equations in (27) are specified
by the first three stress equations of (31).

(2) Using the fourth-order Runge–Kutta method, the differential equation system (27) in sector ` is numer-
ically integrated forward starting from h1 and ending at h2, where the boundary condition S2(h2) = 0 is
satisfied. Accordingly, the variables S1(h), S2(h), and S3(h) are determined. Using the relation in (12), the
deviatoric stress components s11(h), s12(h), and s33(h) in the non-constant stress sector ` are then deter-
mined. Moreover, at the sector border angle h = h2, the deviatoric stress constants are obtained as
s11p = s11(h2) and s33p = s33(h2).

(3) With the functions of S1(h), S2(h), and S3(h) known, the in-plane mean stress rh(h) in sector ` is deter-
mined under the boundary condition rh(h2) = s11p + s33p/2 as specified in (32) through the backward
integration of the first differential equation of (16) from h2 to h1. Then the hydrostatic stress constant
is obtained as rh0 = rh(h1).

(4) In the constant stress sector � and sector ´, all components of deviatoric stresses and in-plane mean
stress can be obtained from those in sector ` at the two sector angles with consideration of the conti-
nuity condition (9).

(5) All stress components over the entire angles around the crack tip can be finally determined from (13).

It should be noted that for a known full-field solution, such as a finite element solution for a dynamic crack,
the step (1) above becomes to determine the two parameters req0 and s330 by matching the asymptotic stress
solutions in (22) with those extracted from the full-field solution at h = 0, and then to determine the sector
border angle h1 by solving the first equation in (33) only. With the value of h1, the same procedures stated
in steps (2)–(5) can be followed to determine all stress components for the asymptotic crack-tip field. However,
such analysis cannot be further demonstrated without a full-field solution for a dynamic crack.
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Let’s focus on the asymptotic crack-tip field only hereafter. If the values of the initial equivalent stress req0,
the strain hardening exponent n, the Poisson ratio m, and the Mach number M are specified, the fully contin-
uous angular variations of stresses can be determined using the numerical integration strategy stated above.
Figs. 1 and 2 show the effects of n and m on the angular variations of the deviatoric stress components s11(h),
s12(h), and s33(h), respectively, for req0 = 1, n = 3, m = 0.3, M = 0.5 and the resulted values of s330max, s330min,
and h1. Noted that the value of req0 used in all plots of this paper are normalized by the yield stress r0. The
values of s330max, s330min, and h1 can be found easily from Fig. 1(b) or Fig. 2(b). Comparing to the strain hard-
ening exponent n, these two figures indicate that the Poisson ratio has relatively small effects on the deviatoric
stress components in the asymptotic crack-tip field.

With the deviatoric stress components, all stress components r11(h), r22(h), r12 (h), r33(h), and req(h) at the
dynamic crack tip can be easily determined. Fig. 3 displays the effect of the initial deviatoric stress s330 on the
stress field for req0 = 1, n = 3, m = 0.3, and M = 0.5. It is evident from this figure that s330 has no notable effect
on the in-plane stress components and the Mises equivalent stress, and only some effect on the out-plane stress
r33. Accordingly, s330max is used only hereafter for all followed analyses. Fig. 4 plots the stress field for three
different initial equivalent stresses: req0 = 1.0, 1.5, and 2.0 with n = 3, m = 0.3, and M = 0.5, respectively.
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Unlike to the initial deviatoric stress s330, Fig. 4 shows the initial equivalent stress req0 has very strong effect on
all stress components in the asymptotic crack-tip field.

Fig. 5 depicts the angular variations of all stress components for three strain hardening exponent: n = 3, 5,
and 99 with req0 = 1, m = 0.3, and M = 0.5, respectively. Note that n = 99 is intended to approximate the non-
hardening material. This figure indicates that the results of stresses for the intermediate hardening material
with n = 5 are very close to those for the low hardening material with n = 99, but significantly different from
those for the high hardening material with n = 3. Through comparison, it is found that the stress field for the
low hardening exponent n = 99 is almost identical to that obtained by Zhang et al. (1997) for the compressible
elastic–perfectly plastic materials. This verifies our previous conclusion that the present solution reduces to
that for the corresponding elastic–perfectly plastic material in the limit of n!1.

Fig. 6 plots the angular variations of the stress components for three Poisson ratios: m = 0.2, 0.3, and 0.4
with req0 = 1, n = 3, and M = 0.5, respectively. The results of stresses for m = 0.5 obtained in Zhu and Hwang
(2002) for incompressible hardening materials are also included in Fig. 6. This figure shows that the Poisson
ratio has certain effect on the dynamic crack-tip stress field, and all stress components approaches those for
m = 0.5. This confirms our previous finding that the present solution reduces to that for the incompressible
hardening materials in the limit of m! 0.5.
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Fig. 7 shows the stress field for three Mach number M = 0.3, 0.5, and 0.8 with req0 = 1, n = 8, and m = 0.4,
respectively. As evident from this figure, the Mach number M has significant effect on the asymptotic stress
field. As a summary, from Figs. 3–7, it is observed that (a) the parameter s330 has some effect only for the
out-plane stress, (b) the Poisson ratio has intermediate effect on the stress field, (c) all other three parameters
req0, n, and M have significant effects on the stress field, (d) all three normal stresses and thus the hydrostatic
stress increase or decrease as the parameters n, m, or M decreases or increases. For all cases considered, it is
seen that the stress fields are fully continuous, and req(h) P req0 P r0 around the crack tip. As a result, no
elastic unloading occurs near the crack surfaces in the present solution.
4.2. Velocity and strain fields

With the functions of S1(h), S2(h), and rh (h) determined above from (27), the components of particle veloc-
ity and strain tensor can be obtained by integrating the last two equations of (16) and the geometrical relation
(2), respectively, along a line x2 = constant. In sector `, using the velocity boundary conditions as specified by
the last two equations in (31), we have the particle velocity and strain components as:
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v1ðhÞ ¼ �
V

lM2

Z h

h1

½ðS01ðhÞ þ r0hðhÞÞ � cot hS02ðhÞ�dh

v2ðhÞ ¼ �
V

lM2

Z h

h1

½cot hðS01ðhÞ � r0hðhÞÞ þ S02ðhÞ�dh

ð40Þ
and
e11ðhÞ ¼ �
1

V
v1ðhÞ

e22 ¼ e220 �
1

lM2

Z h

h1

cot h½cot hðS01ðhÞ � r0hðhÞÞ þ S02ðhÞ�dh

e12ðhÞ ¼
1

2lM2

Z h

h1

1

sin2 h
½S02ðhÞ � sin 2hr0hðhÞ�dh

ð41Þ
where e220 is an integration constant that can only be determined by matching the present solution to the full-
field solution. The particle velocity and strain components are uniform in sectors � and ´. The uniform values
can be determined by (40) and (41) with consideration of the continuity condition (9).

Fig. 8(a) shows the angular variations of particle velocities for three hardening exponents n = 3, 5, and 99
with req0 = 1, m = 0.3, and M = 0.5, respectively. Fig. 8(b) displays the angular distributions of particle veloc-
ities for three Poisson ratios m = 0.2, 0.3, 0.4 with req0 = 1, n = 3, and M = 0.5, respectively. Fig. 9(a) shows
the angular variations of three strain components for three hardening exponents n = 3, 5, and 99 with
req0 = 1, m = 0.3, and M = 0.5, respectively. Fig. 9(b) displays the angular distributions of three strain com-
ponents for three Poisson ratios m = 0.2, 0.3, 0.4 with req0 = 1, n = 3, and M = 0.5, respectively. It is noted
that the unknown constant e220 has been arbitrarily chosen as e220 = 1.0 in Fig. 9 for demonstrating the strain
variations. From Figs. 8 and 9, it is observed that both hardening exponent n and the Poisson ratio m have
significant effects on the asymptotic deformation fields including velocity and strain fields at the dynamically
propagating crack tip. Similar influences on the crack-tip deformation fields are found for the initial equiva-
lent stress req0 and the Mach number M, which are not shown here due to space limitation.
5. Conclusions

The present paper extends our previous work (Zhu and Hwang, 2002) for the incompressible hardening
materials to the compressible power-law hardening material so as to study the effects of material compressibil-
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ity on asymptotic fields for mode-I dynamic cracks. Our attention is focused on constructing fully continuous
asymptotic stress and strain fields under the plane strain condition. Primary results are summarized as follows:

(1) In terms of the assumption that the stresses, strains, and particle velocities at the crack tip are bounded,
the fully continuous stress and deformation fields are constructed for the mode-I dynamic cracks. There
are two free parameters req0 and s330 in the proposed asymptotic fields, and they can be determined from
the full-field solutions.

(2) Both crack-tip stress and deformation fields are affected significantly by the initial equivalent stress req0,
the hardening exponent n, the Poisson ratio m, and the Mach number M, but not by the initial deviatoric
stress s330. Both the crack-opening stress and the hydrostatic stress (i.e., stress triaxiality) ahead of the
crack tip decrease (or increase) as n, m, or M increases (or decreases).

(3) In the limit as the hardening exponent goes to infinity or n!1, the free parameter req0 approaches the
yield stress r0 and the present solutions approach those of Zhang et al. (1997) for the compressible elas-
tic–perfectly plastic materials.

(4) In the limit as the Poisson ratio goes to 0.5, i.e., m! 0.5, the present solutions approach those of Zhu
and Hwang (2002) for the incompressible power-law hardening materials.
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(5) In the proposed continuous solutions, the crack-tip fields are entirely comprised of plastic sectors, and
there is no elastic unloading zone near the crack surfaces. In this regard, the present solutions cannot
reduce to those for the quasi-static growth crack in the limit of vanishing crack speed, and are inconsis-
tent with available FEA or EFG results for the dynamic cracks. Therefore, further theoretical, numer-
ical, or experimental investigations of the crack-tip fields for the steady dynamic cracks are needed so as
to better understand the mechanics behaviors of dynamic crack-tip fields.
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