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The mechanical behavior of high damping rubber bearings (HDRBs) is investigated under horizontal cyc-
lic shear deformation with a constant vertical compressive load. On the basis of experimental observa-
tions, an elasto-viscoplastic rheology model of HDRBs for seismic analysis is developed. In this model,
the Maxwell model is extended by adding a nonlinear elastic spring and an elasto-plastic model
(spring-slider) in parallel. In order to identify constitutive relations of each element in the rheology
model, an experimental scheme comprised of three types of tests, namely a cyclic shear (CS) test, a
multi-step relaxation (MSR) test, and a simple relaxation (SR) test, are carried out at room temperature.
HDRB specimens with the standard ISO geometry and three different high damping rubber materials are
employed in these tests. A nonlinear viscosity law of the dashpot in the Maxwell model is deduced from
the experimental scheme, and incorporated into the rheology model to reproduce the nonlinear rate
dependent behavior of HDRBs. Finally, numerical simulation results for sinusoidal loading are presented
to illustrate capability of the proposed rheology model in reproducing the mechanical behavior of HDRBs.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Destructive earthquakes and wind-induced vibrations always
remind us to the need for better and more effective ways of miti-
gating these hazards. Recent earthquakes occurred in Northridge,
USA in 1994 and Kobe, Japan in 1995, etc., which have shown
the inadequacy of the design of existing structures, led engineers
rethink widely on how to design structures against earthquakes.
At present, in the seismic design and retrofit of structures, a seis-
mic isolation approach is widely adopted owing to its economical
efficiency. In this approach, the ductility demand of structural ele-
ments can be reduced thereby installing isolation devices between
the superstructure and the substructure. The isolation devices are
basically classified into sliding bearings and laminated rubber
bearings. The sliding bearings are introduced to filter out the
imparting earthquake forces by providing frictional sliding. On
the other hand, the laminated rubber bearings with high flexibility
are meant to shift the natural period of structures so as to avoid the
resonance with excitations; they are usually endowed/accompa-
nied with some damping properties to prevent the isolated struc-
tures from overdisplacing.
ll rights reserved.
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The laminated rubber bearings have seen more and more appli-
cations in recent years as seismic isolation devices in bridges.
Three types of laminated rubber bearings are widely used for this
purpose: natural rubber bearing (NRB), lead rubber bearing (LRB),
and high damping rubber bearing (HDRB). Of these bearings, the
use of HDRB as the seismic isolation device in bridges is increased
due to its enhanced dissipation property. HDRB is composed of
alternating layers of rubbers and steel shims, and the rubber layers
are reinforced by the steel shims. The reinforcing steel shims con-
strain the rubber layers from lateral expansion and provide high
vertical stiffness, but have no effect on the shear stiffness (Salomon
et al., 1999; Skinner et al., 1993).

Some guide specifications (AASHTO, 2000; JRA, 1996, 2002) for
the seismic design of bridges with HDRBs have been developed. In
these specifications, the nonlinear characteristics of HDRBs are ex-
pressed in terms of a bilinear model. However, the past investiga-
tion conducted by some authors (Dall’Asta and Ragni, 2006; Hwang
et al., 2002) have indicated that the mechanical behavior of HDRBs
is characterized by strain-rate-dependent hysteresis property. As
an example, typical shear stress–strain responses of a HDRB are
presented in Fig. 1, where the strain-rate dependency of hysteresis
is clearly illustrated. Relatively strong strain-rate dependency is
observed in loading than in unloading. Furthermore, the strain
hardening behavior is also illustrated in Fig. 1 (see also Abe et al.,
2004a). The current bilinear model used in design practice cannot
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Fig. 1. Typical shear stress–strain responses of HDRB from CS tests. Shear stress (s) is the horizontal force (Fh) applied at the top of the bearing divided by the area (A) of the
cross-section and the shear strain (c) is the relative horizontal displacement between top and bottom of the bearing divided by the total thickness of the rubber layers.
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represent these aspects, since the bilinear model is rate-indepen-
dent with a constant second stiffness.

To improve the deficiency of the bilinear model for HDRB, Sano
and Di Pasquale (1995) have proposed a rate-independent model
based on the Davienkov–Martine law to reproduce change of stiff-
ness as well as of equivalent damping in a cyclic load for a wide
range of strains. Kikuchi and Aiken (1997) have developed a rate-
independent model for HDRB by employing both bilinear and
Ramberg–Osgood models. More recently, Abe et al. (2004b) have
proposed a bi-directional elasto-plastic model with hardening.
These models account for some aspects of HDRB behavior, such
as strain hardening and change in equivalent damping in sinusoi-
dal loading. However, they are still rate-independent, and accord-
ingly cannot reproduce change in stress response under different
strain rates.

Few works have been reported in the development of the rate-
dependent models of HDRBs. In the recent past, Hwang et al.
(2002) have developed an analytical model to describe the damp-
ing and restoring forces of HDRBs. Both stiffness and damping coef-
ficients are expressed in terms of a higher order polynomial
function of the relative displacement and velocity of the bearing.
All parameters of the model are determined from the cyclic loading
tests of a particular bearing by utilizing the nonlinear least-square
method. However, the physical basis of the mathematical model
incorporating the rate-dependence to describe the stiffness and
the damping coefficients is not clearly explained. Tsai et al.
(2003) have developed a rate-dependent analytical model of
HDRBs by extending the Wen’s hysteretic model (Wen, 1976) in
an incremental form. This model has described the restoring force
in terms of the strain as well as velocity induced forces. However,
the physical basis for separating the velocity induced forces from
the other part of the total restoring force is not clearly stated in
the model. Dall’Asta and Ragni (2006) have conducted cyclic shear
tests and simple relaxation tests to identify the rate-dependent
mechanical properties of HDRBs. On the basis of the experimental
results, they have proposed a rate-dependent analytical model of
HDRBs. The physical basis of the mathematical model describing
the elasticity behavior of HDRBs is ambiguous. Moreover, the
mathematical model used for the viscosity behavior in loading
and unloading cannot adequately describe for a general loading
condition. Two other analytical models for HDRBs have been pro-
posed by Hwang and Ku (1997); Hwang and Wang (1998); Koh
and Kelly (1990) based on the results of the shaking table tests
of seismically isolated bridge decks. In their proposed models,
the fractional derivative of the relative displacement has replaced
the relative velocity term of the equation of motion. These models
are established using the fractional derivative of linear Kelvin and
Maxwell models based on the sinusoidal test results. Hence, these
models cannot reproduce the nonlinear mechanical behavior of
HDRBs accurately.

A number of experimental and numerical works on high damp-
ing rubber (HDR) materials have been performed in the past (Amin
et al., 2002, 2006; Hwang et al., 2002; Spathis and Kontou, 2008).
These works show that the mechanical properties of HDR materials
are dominated by the nonlinear rate-dependence including other
inelastic behavior. Moreover, the different viscosity behavior in
loading and unloading has been identified (Amin et al., 2002,
2006; Bergstrom and Boyce, 1998, 2000), and also incorporated
in some analytical models through an Eyring type equation (Spa-
this and Kontou, 2008).

In order to develop a rate-dependent model suitable for seismic
analysis of a bridge, the authors have conducted an experimental
scheme comprised of multi-step relaxation (MSR) tests, cyclic
shear (CS) tests, and simple relaxation (SR) tests. The objective of
MSR, CS, and SR tests was to identify the equilibrium response,
instantaneous response, and nonlinear viscosity behavior of
HDRBs, respectively. On the basis of the experimental results, a
rate-dependent (elasto-viscoplastic) model is proposed. A struc-
tural configuration of the proposed model is presented in
Fig. 2(a). The basic ideas are the additive decompositions of shear
stress and strain as shown in Fig. 2(b). A parameter identification
scheme is proposed to identify the parameters involved in different
branches of the proposed model. In addition, an analytical scheme
to identify nonlinear viscosity behavior of HDRBs in loading and
unloading using the experimental data is discussed. The parameter
identification scheme is successfully applied to the three speci-
mens to show capability of the proposed model in reproducing
the mechanical behavior of HDRBs. Finally, the adequacy of the
proposed rheology model and parameter identification scheme is
verified with experimental data obtained using sinusoidal loading
history.

2. Mechanical behavior of the bearings

In order to investigate the mechanical behavior of HDRBs, an
experimental scheme was applied to three specimens referred to



Fig. 2. Rheology model. Superimposed stress response s = sep + see + soe, where sep, see, and soe represent the rate independent elasto-plastic stress, nonlinear elastic stress and
the nonlinear viscoelastic overstress, respectively.
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as HDR1, HDR2, and HDR3. Due to space limitation, experimental
results of HDR2 are presented only; however, other bearings’ re-
sults (HDR1and HDR3) are considered in discussion and compara-
tive assessment. The geometry and material properties of three
specimens are given in Table 1 and Fig. 3. The dimensions of the
test specimens are based on ISO standard (ISO, 2005).

Fig. 4 presents a flow diagram describing an outline for identi-
fication of parameters of the rheology model. The rheology model
comprises of a number of parameters to be determined from
experimental observations. In order to identify the model’s param-
eters from the experimental data, MSR tests, CS tests, and SR tests
were conducted in the proposed experimental scheme. MSR tests
were conducted to identify the equilibrium response parameters
of A, B, and S elements; CS tests to identify the instantaneous re-
sponse parameter of C element, and a series of SR tests were car-
ried out to identify the viscosity parameters of D element shown
in Fig. 2(a). The equilibrium and instantaneous responses are the-
oretically defined as the responses under infinitely slow and fast
loading rate, respectively. When the rate of loading is very slow,
i.e. the dashpot Element D is not active as virtually no force is
transmitted through it, and as a result A, B, and S elements are
Table 1
Dimension and material properties of HDR bearings.

Particulars Specifications

Cross-section (mm2) 240 � 240
Number of rubber layers 6
Thickness of one rubber layer (mm) 5
Thickness of one steel layer (mm) 2.3
Nominal shear modulus (MPa) 1.2

Fig. 3. Size of laminated rubber bearing used in experiment (a
remaining, which constitutes the equilibrium response of the mod-
el. On the other hand, when the rate of loading is very high, i.e. the
dashpot Element D is blocked since it has no sufficient time to de-
form and thereby A, B, C, and S elements are left over, which con-
structs the instantaneous response. The equilibrium and
instantaneous responses thus obtained can be idealized as the elas-
to-plastic responses.

Due to presence of softening behavior in virgin rubber material,
the first cycle of a stress–strain curve differs significantly from the
shape of the subsequent cycles (Mullins, 1969). In order to remove
the Mullins softening behavior from other inelastic phenomena, all
specimens were preloaded before the actual tests. In the present
study, the preloading was applied before MSR and SR tests only.
The preloading was done by treating 11 cycles of sinusoidal load-
ing at 1.75 strain and 0.05 Hz until a stable state of the stress–
strain response is achieved, i.e. that no further softening occurs.
The experimental results of MSR and SR tests are discussed in Sec-
tions 2.1 and 2.3 for virgin specimens, and in Section 4 for preload-
ing specimens. Moreover, the effects of the preloading on
equilibrium and viscosity parameters of the bearings are discussed
in Section 4.

All specimens were tested under shear deformation with an
average constant vertical compressive stress of 6 MPa. This mode
of deformation is regarded as the most relevant one for application
in base isolation. All tests were carried out with new specimens
and using a computer-controlled servo hydraulic testing machine.
The displacement was applied along the top edge of the specimen
and the force response was measured by two load cells. All tests
were carried out at around 23 �C. All data were recorded using a
personal computer. Throughout this paper, to express the experi-
mental results, the average shear stress and shear strain are calcu-
lated using the following two equations
) plan and side view [mm], (b) detail of side view [mm].
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c ¼ u
h
; ð1aÞ

s ¼ Fh

A
; ð1bÞ

where u and Fh denote the relative horizontal displacement and ap-
plied force, respectively; h stands for the total thickness of rubber
layers and A is the area of the cross-section.

2.1. Multi-step relaxation test (MSR test)

Due to the inherent viscosity property in rubber material, it is
practically impossible to identify the equilibrium response by
applying infinitely slow loading rate. Hence, the MSR test was em-
ployed with the primary objective to identify the equilibrium re-
sponse of HDRBs. Another objective of the MSR test was to
investigate the viscosity property during loading and unloading,
since the different strain rate sensitivity was clearly visible in load-
ing and unloading of HDRBs (Fig. 1). The similar approach was also
employed by Amin et al. (2002); Bergstrom and Boyce (1998,
2000); Lion (1996, 1997) to identify the equilibrium response of
rubber materials. The shear strain history applied in MSR test is
presented in Fig. 5, where a number of relaxation periods of
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20 min during which the applied strain is held constant are in-
serted in loading and unloading at a constant strain rate of 5.5/s.

Fig. 6(a) shows the resultant stress histories obtained in HDR2,
in which the trend of convergence of the stress history to an almost
constant state at the end of each relaxation period was demon-
strated. The convergence of the stress responses is identified in
an asymptotic sense (Lion, 1996). The shear stress–strain relation-
ship in the equilibrium state can be obtained by connecting all the
asymptotically converged stress values at each strain level as
shown in Fig. 6(b). The difference of the stress values between
loading and unloading at a particular shear strain level corresponds
to the equilibrium hysteresis, which can be easily visualized in
Fig. 6(b). This behavior may be attributed as an irreversible slip
process between fillers in the rubber microstructures (Kilian
et al., 1994; Mullins, 1969), which is the resulting phenomenon
of breaking of rubber-filler bonds (Bueche, 1960). Using the stress
history data of Fig. 6(a), the overstress can be estimated by sub-
tracting the equilibrium stress response from the current stress re-
sponse at a particular strain level. While comparing between the
overstresses in loading and unloading of Fig. 6(a), the overstress
in loading is seen higher than in unloading. This property may be
associated with different viscosity behavior in loading and unload-
 20000  30000
e (sec)

istories [MSR tests]

in rate of 5.5/s was maintained at each strain step.
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Fig. 6. Typical MSR test results (a) stress history, (b) equilibrium stress response; equilibrium response at a particular strain level shows the response, which is asymptotically
obtained from the shear stress histories of MSR test.

1782 A.R. Bhuiyan et al. / International Journal of Solids and Structures 46 (2009) 1778–1792
ing. The similar phenomena with different magnitudes were de-
picted also in HDR1 and HDR3.

2.2. Cyclic shear test (CS test)

The instantaneous response can be ideally obtained, when a vis-
cous solid is loaded at an infinitely fast loading rate. From an
experimental point of view, however, there exists an upper limit
of the stroke rates for any displacement controlled loading ma-
chine. Hence, it is practically impossible to arrive at this loading
rate in a viscous solid. In order to estimate the instantaneous re-
sponse of HDRBs, a series of CS tests were conducted in this study.
Three specimens were used in the experiments at different strain
rates up to an absolute maximum strain of 1.75. The constant
strain rates were maintained in each CS test within a range of
0.05/s–5.5/s as shown in Fig. 7.

Fig. 8 shows the rate-dependent shear stress–strain responses
observed in CS tests along with the equilibrium responses obtained
from MSR tests of HDR2. The shear stress responses observed in
Fig. 8 are found to be nonlinear at all strain levels. A comparison
of the stress responses at different strain rates indicates that the
strong strain-rate dependence exists in loading, whereas much
weaker strain-rate dependence is observed in unloading. The dif-
ferent viscosity property in loading and unloading is attributed
to this typical experimental observation. The similar phenomena
were observed in other two bearings.

The basic strength elements of rubber are very long chain mol-
ecules, which are cross-linked with each other at some points to
form a network (Treloar, 1975). Two types of linkages are occurred
in rubber: physical linkages and chemical linkages. Due to the
inherent properties of building up the physical and chemical link-
ages of rubber, the physical linkages are much weaker in stability
and strength compared with the chemical linkages (Besdo and
Ihlemann, 2003; Ihlemann, 1999). The physical linkages have small
energy capacity, which are easily broken; however, the chemical
linkages have higher energy capacity, which require external en-
ergy to be broken. In loading at a particular strain rate, some of
the physical and chemical linkages are broken, however, in unload-
ing at the same strain rate; the breaking up the physical linkages is
more prominent than the chemical linkages. These phenomena
may be associated with the different viscosity behavior in loading
and unloading (see for example Fig. 6(a)).

Another comparison of hysteresis loops observed at different
strain rates shows that the size of the hysteresis loops increases
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with the increase of strain rates; see for example Fig. 8. While com-
paring among the three bearings, HDR2 demonstrates a bigger hys-
teresis loop in compared with the other two bearings. This typical
behavior can be attributed that HDR2 inherits relatively higher vis-
cosity property than that in HDR1 and HDR3. To illustrate the rate-
dependent hysteresis properties of HDRBs, the equilibrium hyster-
esis loop obtained from MSR test results was compared with the
experimental results of CS tests as shown in Fig. 8.

The strain-rate dependence during loading of HDR2 was illus-
trated in Fig. 9. The shear stress response increased with increase
of strain rates, however, at higher strain rates, a diminishing trend
of the stress responses was observed indicating the neighboring
state of the instantaneous response. Hence, the stress responses
obtained at nearly 5.5/s can be considered as the neighboring state
of the instantaneous response.

2.3. Simple relaxation test (SR test)

The multi-step relaxation test and cyclic shear tests described in
Sections 2.1 and 2.2 have illustrated the methods of estimating the
equilibrium and instantaneous responses of HDRBs. The remaining
part of the work is to investigate the viscosity property in HDRBs.
To this end, a series of SR tests at different strain levels were car-
ried out in this study. Fig. 10 shows the strain history of SR tests
at three different strain levels of c = 100, 150, and 175% with a
strain rate of 5.5/s. The stress histories obtained in SR tests of
HDR2 are presented in Fig. 11. A rapid stress relaxation was dis-
played in the first few minutes; after while it approached asymp-
totically towards a converged state of responses (Fig. 11). The
amount of stress relaxation in loading and unloading of HDR2
was found much higher than those of HDR1 and HDR3. The larger
stress relaxation in HDR2 has the direct conformity with the re-
sults of CS tests (see for example Fig. 8). The stress response ob-
tained at the end of the relaxation can be regarded as the
equilibrium stress response. The deformation mechanisms associ-
ated with relaxation are related to the long chain molecular struc-
ture of the rubber. In the relaxation test, the initial sudden strain
occurs more rapidly than the accumulation capacity of molecular
structure of rubber. However, with the passage of time the mole-
cules again rotate and unwind so that less stress is needed to main-
tain the same strain level.

Fig. 13 shows the stress histories obtained under two different
strain histories shown in Fig. 12. Although the maximum over-
stresses are different depending on the strain rates in loading
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and unloading regimes, the relaxation curves are almost identical
to each other (Fig. 13). It can be concluded that the relaxation
behavior is not dependent on the maximum overstress.

3. Rheology model

3.1. General motivation and model structure

In this paper, a set of experimental data as discussed in Section
2 is utilized to design the proposed rheology model of HDRBs. The
mechanical behavior of HDRBs exhibits the rate-dependent
response accompanied by rate-independent responses. These
mechanical responses motivate to design the basic structures of
the elasto-viscoplastic rheology model as presented in Fig. 2.

In this model, the total stress is decomposed into three
branches as shown in Fig. 2:

s ¼ sepðcaÞ þ seeðcÞ þ soeðccÞ; ð2Þ

where sep is the stress in the first branch composed of a spring (Ele-
ment A) and a slider (Element S); see denotes the stress in the sec-
ond branch with a spring (Element B); soe does that in the third
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branch composed of a spring (Element C) and a dashpot (Element
D). The first and second branches represent the rate-independent
elasto-plastic behavior, while the third branch introduces the
rate-dependent behavior.

In addition to the stress decomposition, the strain is decom-
posed into two different ways:

c ¼ ca þ cs ¼ cc þ cd; ð3Þ

where ca and cc stand for the strains in Element A and C, respec-
tively; cs and cd are the strains for the slider (Element S) and the
dashpot (Element D), respectively. In the subsequent sections,
rate-independent part of the rheology model will be discussed fol-
lowed by parameter identification for rate-dependent part.

3.2. Equilibrium hysteresis

From MSR test data, an equilibrium hysteresis loop with strain
hardening is visible in each bearing; see for example Fig. 6(b) for
HDR2). This equilibrium hysteresis loop can be suitably repro-
duced by combining the nonlinear elastic response with ideal elas-
to-plastic response.
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Table 2
Elasticity parameters of HDR bearings.

Type of rubber
bearing

C1

(MPa)
scr

(MPa)
C2

(MPa)
C3

(MPa)
C4

(MPa)
m

HDR1 2.40 0.205 0.535 0.00177 2.80 8.18
HDR2 2.50 0.247 0.653 0.00620 3.25 6.62
HDR3 2.10 0.296 0.595 0.00241 2.65 7.42
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Accordingly, spring A is assumed as linear spring:

sep ¼ C1ca; ð4Þ

where C1 is a spring constant for spring A.
The friction slider will be active, when the stress level in the sli-

der reaches a critical shear stress scr, i.e.

_cs–0 for jsepj ¼ scr

_cs ¼ 0 for jsepj < scr

�
ð5Þ

In order to express the hardening at higher strain levels, a nonlinear
spring is used for Element B:

see ¼ C2cþ C3jcjmsgnðcÞ ð6Þ

where C2, C3, and m (m > 1) are constants with

sgnðxÞ ¼
þ1 : x > 0
0 : x ¼ 0
�1 : x < 0

8><
>: ð7Þ

Now, let us identify the parameters for the rate-independent equi-
librium response. The critical shear stress, scr is determined by
using the equilibrium hysteresis loop; see for example Fig. 6(b).
The difference between loading and unloading stresses in the equi-
librium hysteresis loop at each strain level corresponds to 2scr.
Accordingly, scr can be determined from the half of the arithmetic
average values of the stress differences. Next, the parameter C1 cor-
responding to the initial stiffness can be determined by fitting the
initial part as well as the switching parts from loading and unload-
ing in the equilibrium hysteresis loop. Finally, the parameters for
the nonlinear spring (Element B) will be identified. The subtraction
of the stress sep of Eq. (4) from the equilibrium stress obtained from
MSR test gives the stress see corresponding to Eq. (6). By using the
standard least square method, parameters C2, C3, and m are deter-
mined. The obtained critical stresses and the equilibrium response
parameters C2, C3, and m for all bearings are given in Table 2. The
equilibrium responses obtained using the proposed model with
the identified parameters, and the experimental results are pre-
sented in Fig. 14.

3.3. Instantaneous response

At the instantaneous state, the structure of the rheology model
can be reduced into the same model without the dashpot element
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Fig. 14. Identification of equilibrium response parameters; the experimental results are
using s = see + sep with parameters given in Table 2.
(Element D), because the dashpot is fixed ð _cd ¼ 0Þ owing to infi-
nitely high strain rate loading. Consequently, the instantaneous re-
sponse of the rheology model can be obtained by adding soe

without Element D and the responses obtained from the other
two branches. From CS test results, a diminishing trend of the
stress responses with increasing strain rates was observed in all
bearings; see for example Fig. 9. Hence, an instantaneous stress–
strain curve can be obtained at the neighborhood of the stress–
strain curve at a strain rate of 5.5/s, which is the maximum strain
rate in the current CS tests. The instantaneous stress–strain curve,
and accordingly the spring C seems to be nonlinear even in loading
regime (Fig. 8). For simplicity, however, a linear spring model is
employed for Element C:

soe ¼ C4cc; ð8Þ

where C4 is the spring constant for Element C.
The parameter C4 is determined so that the instantaneous

stress–strain curve calculated from the rheology model (s = see +
sep + soe (without the dashpot element)) can envelop the stress–
strain curves obtained from CS tests. Fig. 15 shows comparison be-
tween the instantaneous stress–strain curve from the rheology
model and those from CS tests at different strain rates up to 5.5/s
in loading regime of HDR2. The obtained parameters C4 for all bear-
ings are listed in Table 2.

3.4. Nonlinear viscosity

This section describes the procedure to identify the constitutive
relationship of the dashpot (Element D) in the rheology model. To
this end, the experimental results obtained from MSR and SR tests
are analyzed to procure the relationship between the overstress
soe and the dashpot strain rate _cd. A schematic diagram to identify
soe— _cd relationship is presented in Fig. 16. From the stress relaxation
0 0.5 1 1.5 2
 strain

teresis [HDR2]

obtained from MSR tests in asymptotic sense and the model results are determined
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the experimental results represented by different lines are obtained from CS tests at four strain rates of 0.05, 0.5, 1.5, and 5.5/s in loading regimes.
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results of MSR and SR tests, we have the time histories of the to-
tal stress s and the total strain c. Assuming that the asymptotic
stress response at the end of each relaxation period is the equilib-
rium stress seq at a particular strain level, the overstress history in
each relaxation period is obtained by subtracting the equilibrium
stress from the total stress. Then, the time history of the elastic
strain for Element C is calculated from cc = soe/C4 in Eq. (8), and
consequently the time history of the dashpot strain can be deter-
mined as cd = c � cc using Eq. (3). The history of the dashpot
strain has been evaluated using a special scheme before taking
the time derivative of experimental data, which usually contain
scattering due to noise. In this regard, a moving averaging tech-
nique is adopted before taking the time derivative of the experi-
mental data (Wolfram, 2005).

Fig. 17 shows the relationships between the overstress and the
dashpot strain rates obtained from SR test results. In SR tests, the
total strains were assigned from 0 to 100, 150, 175% for loading,
and then the strains were reduced to 0 for unloading; see Fig. 10
for the strain history. The values in the legend stand for the total
strain in respective relaxation processes, and 100, 150, 175% cor-
respond to relaxation process after loading, and 0% after unload-
ing. This figure demonstrates nonlinear dependence of the
Fig. 16. Schematic diagram to determine the analytical relation
overstress on the dashpot strain rate. Since the gradient of
soe— _cd curves represents the viscosity, the viscosity decreases
with increasing dashpot strain rates. Furthermore, it is found that
these relationships depend on the strain levels in the relaxation
tests after loading; i.e. the overstress, and accordingly the viscos-
ity, increases with increasing the total strain. The same tendency
is also visible for MSR test data in Fig. 18. In this figure, the po-
sitive overstress indicates relaxation after loading, while the neg-
ative one does after unloading. It should be noted that the
dependence of the overstress on the total strain level after
unloading is not noticed as significant as that observed after load-
ing; see for example Fig. 18.

In order to describe the nonlinear viscosity of the dashpot, first
we have to distinguish loading and unloading with respect to the
dashpot. We define the loading and unloading condition for the
dashpot as follows:

d
dt
jcdj > 0 for loading;

d
dt
jcdj < 0 for unloading:

This loading–unloading condition is identical with
.

.

ship between the overstress and the dashpot strain rates.
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soecd > 0 for loading;
soecd < 0 for unloading:

Based on the soe— _cd relationships obtained form MSR and SR test
data shown in Figs. 17 and 18, the dashpot’s constitutive model is
expressed by

soe ¼ Al expðqjcjÞsgn _cdð Þ
_cd

_co

����
����
n

for loading; ð9aÞ

soe ¼ Ausgn _cdð Þ
_cd

_co

����
����
n

for unloading; ð9bÞ

where _co ¼ 1 (s�1) is a reference strain rate of the dashpot; Al, Au, q
and n are constants for nonlinear viscosity.

In MSR and SR tests, the loading/unloading condition changes
clearly (e.g. Figs. 5 and 10). However, under general loading/
unloading histories, the loading/unloading condition may change
gradually. To avoid abrupt change in viscosity due to a shift in
the loading and unloading condition, a smooth function is intro-
duced into the over stress expression, and Eq. (9) can be rewritten
in a more compact form

soe ¼ A
_cd

_co

����
����
n

sgnð _cdÞ ð10aÞ

with

A ¼ 1
2
ðAl expðqjcjÞ þ AuÞ þ

1
2
ðAl expðqjcjÞ � AuÞ

� tanh ðnsoecdÞ; ð10bÞ

where n is the smoothing parameter to switch viscosity be-
tween loading and unloading. Now, in the subsequent para-
graphs, the procedure for determining the viscosity constants
(Al, Au, q and n) will be discussed followed by the smoothing
parameter (n).



Table 3
Viscosity and smoothing parameters of HDR bearings.

Type of rubber material Al (MPa) Au (MPa) q n n

HDR1 0.58 0.75 0.53 0.20 1.22
HDR2 1.12 1.02 0.34 0.22 1.25
HDR3 0.86 0.85 0.35 0.21 1.24

Table 4
Viscosity and smoothing parameter used in the simulation of HDR bearings.

Type of rubber material Al (MPa) Au (MPa) q n n

HDR1 0.30 0.20 0.53 0.20 1.22
HDR2 0.35 0.27 0.34 0.22 1.25
HDR3 0.40 0.24 0.35 0.21 1.24
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Using the strain histories of the SR tests at different strain levels
(Fig. 10), the overstress–dashpot strain rate relationships are deter-
mined (Fig. 17), which correspond to EqS. (9a) and (9b) for loading
and unloading, respectively. A standard method of nonlinear
regression analysis is employed independently in EqS. (9a) and
(9b) to identify the viscosity constants for loading and unloading,
respectively. As motivated by the relationships of the overstress–
dashpot strain rates obtained in the SR test results (e.g.Fig. 17),
the value of n is kept the same in loading and unloading. The non-
linear viscosity parameters obtained in this way are presented in
Table 3. Fig. 17 presents the overstress–dashpot strain rate rela-
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tionships obtained using the proposed model and the SR test
results.

A sinusoidal loading history is utilized to determine the
smoothing parameter of the model. The sinusoidal loading history
corresponds to a horizontal displacement history applied at the top
of the bearing at a frequency of 0.5 Hz and the absolute strain
amplitude of 1.75 (half amplitude). An optimization method based
on the Gauss–Newton algorithm (Venkataraman, 2002) is em-
ployed in Eq. (10) to determine the smoothing parameter. The opti-
mization problem is mathematically defined as minimizing the
error function presented as
0  0.5  1  1.5  2
 strain

teresis [HDR2]

oading specimens; filled circular points indicate the equilibrium response using the
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oints indicate the relations between soe and _cd as calculated from SR test data using
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Minimize Eðn; tÞ ¼
XN

n¼1

ðsexp;n � sm;nÞ2
( )

ð11Þ

where N represents the number of data points of interest, sexp,n and
sm,n correspond to the shear stress responses at any time instant tn ob-
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Fig. 21. Numerical simulations of sinusoidal loading data (a) HDR1, (b) HDR2, and (c)
remove the Mullins softening effect.
tained from the experiment and the model, respectively, and n stands
for the parameter to be identified. Using a standard method, the error
function shown in Eq. (11) is minimized and the corresponding values
of n are determined for the specified loading condition. The values of n
for the three bearings are presented in Table 3.
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HDR3; the 4th cycle stress responses are considered in the simulations to simply
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4. Numerical simulations and discussions

The experimental results presented in Section 2 revealed the
viscosity induced rate-dependent behavior along with other
inelastic properties of HDR bearings. Section 3 was devoted to de-
velop the rheology model along with a scheme for determining the
parameters utilizing the experimentally observed behavior of HDR
bearings. In this Section, the rheology model is used to simulate the
experimental results obtained using the sinusoidal loading data. In
order to remove the Mullin’s softening effect (Mullins, 1969) of the
HDR material, the 4th cycle shear stress–strain responses are used
in the simulation. The elasticity and viscosity parameters used for
this purpose are presented in Tables 2 and 4. The equilibrium re-
sponses do not depend on the specimens’ condition, i.e. whether
it is virgin or preloading specimen, which is typically displayed
in Fig. 19 for HDR2. From this figure, it is clearly seen that the equi-
librium responses in both conditions follow the similar shape. Con-
sidering this fact, the same equilibrium response parameters have
been used for simulating the 4th cycle stress responses. To illus-
trate the effect of the preloading on the viscosity behavior of the
bearings, the soe— _cd relationships obtained from SR test data with
a strain level of 1.75 using the virgin and the preloading specimens
are typically presented in Fig. 20 for HDR2. The similar behavior
was also observed in other two bearings (HDR1 and HDR3). From
these figures, it has been clearly observed that the shapes of the
soe— _cd curves in both virgin and preloading specimens during
loading and unloading remain similar, i.e. the values of q and n
can be kept the same in both conditions. However, the magnitude
of the overstress in the virgin specimens was seen larger than that
in the preloading specimens at corresponding dashpot strain rates
during loading/unloading. The same tendency has been also ob-
served at other strain levels. Taking this fact into account, the val-
ues of Al and Au are modified in the simulation as shown in Table 4.
In this simulation, the sinusoidal loading data, a different loading
history from that used in the parameter identification, is used to
illustrate capability of the proposed model in predicting the
mechanical behavior of HDR bearings. Fig. 21(a–c) present the sim-
ulated stress responses of sinusoidal loading experiments for the
three bearings. The results are comparable very closely with the
experiments in predicting the stress responses in loading and
unloading. Furthermore, a smooth shifting of the stress response
from the loading to unloading and vice-versa is also predicted well.
5. Concluding remarks

An experimental scheme was performed in order to investigate
the mechanical behavior of HDR bearings under horizontal cyclic
shear deformation with a constant vertical compressive load. The
equilibrium response of the bearings can be asymptotically identi-
fied from MSR test results. The neighborhood of the instantaneous
response of the bearings can be approximated by conducting a ser-
ies of CS tests at different strain rates. These two experimental re-
sults represent the rate-independent response of the bearings. The
rate-dependent behavior of the bearings can be obtained from SR
and MSR tests results. The different rate-dependence is also ob-
served in loading and unloading of MSR tests. On the basis of
experimental results, an elasto-viscoplastic model capable of
describing the mechanical behavior in the range of interest for seis-
mic applications (JRA, 1996 and JRA, 2002) is developed. The model
can adequately represent the equilibrium response of the bearings.
However, due to a linear assumption in deriving the stress–strain
relationship of the overstress (Eq. (8)), the instantaneous response
could not be closely predicted by the model. After the equilibrium
and instantaneous response parameters of the bearings are esti-
mated, the viscosity parameters are identified utilizing the SR test
results. A comparison carried out between the simulations and the
experimental results shows that the proposed model is well capa-
ble of predicting the nonlinear viscosity in loading and unloading
of the HDR bearings in addition to other inelastic behavior. This
permits overcoming limitations of the previous seismic analysis
models based on the elasto-plastic hysteresis behavior. However,
the present work has suggested for development of a rheology
model of HDR bearings incorporating the Mullins softening behav-
ior. It is the current interest of the authors to address this aspect.
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