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This work derives an interaction integral for the computation of mixed-mode stress intensity factors
(SIFs) in three-dimensional (3D) nonhomogeneous materials with continuous or discontinuous proper-
ties. The present method is based on a two-state integral by the superposition of actual and auxiliary
fields. In 3D domain formulation of the interaction integral derived here, the integrand does not involve
any derivatives of material properties. Furthermore, the formulation can be proved to be still valid even
when the integral domain contains material interfaces. Therefore, it is not necessary to limit the material
properties to be continuous for the present formulation. On account of these advantages, the application
range of the interaction integral can be greatly enlarged. This method in conjunction with the finite ele-
ment method (FEM) is employed to solve several representative fracture problems. According to the com-
parison between the results and those from the published lectures, good agreement demonstrates the
validation of the interaction integral. The results show that the present interaction integral is domain-
independent for nonhomogeneous materials with interfaces.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, composite materials and structures are more and
more designed and produced with nonhomogeneous properties.
Some of them have the properties varying continuously and some
of them contain large number of interfaces. For there-dimensional
(3D) curved cracks in those materials and structures, the accurate
determination of mixed-mode stress intensity factors (SIFs) re-
mains a significant problem in fracture mechanics. Irwin (1962)
first obtained an approximate solution of a semi-elliptical surface
crack problem in a homogeneous infinite plate. Then, Smith et al.
(1967), Smith (1972) and Shah and Kobayashi (1972) refined the
accuracy of the SIFs for this problem using the iteration method.
Raju and Newman (1979) employed finite element techniques to
analyze the problems on semi-elliptical surface cracks in finite-
thickness plates. The problems of a penny-shaped crack in homo-
geneous dissimilar materials bonded through an interfacial region
with graded mechanical properties were investigated by Ozturk
and Erdogan (1996). An alternative approach for analyzing 3D
curved cracks in homogeneous and functionally graded materials
(FGMs, which are the nonhomogeneous materials with properties
varying continuously) is to directly include the SIFs as unknowns
in the finite element displacement approximation (Ayhan and
ll rights reserved.
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Nied, 2002; Ayhan, 2007, 2009). Yildirim et al. (2005) employed
the displacement correlation technique (DCT) in conjunction with
the finite element method (FEM) to examine 3D surface crack
problems in functionally graded coatings subjected to mode-I
mechanical or transient thermal loading. Yu et al. (2007) used
the DCT to solve 3D rectangular penetrable crack problems in func-
tionally graded plates.

In recent decades, conservation integrals have been widely ap-
plied to solve the SIFs, among which the J-integral (Rice, 1968) has
aroused a great interest for its path-independence in homogeneous
materials. It is well-known that the J-integral is identical to energy
release rate corresponding to the extension of a crack in an elastic
body (Moran and Shih, 1987b). Under some restrictive conditions,
DeLorenzi (1982) derived a domain form of the J-integral along a
3D crack front. Shih et al. (1986) employed the domain integral
to investigate 3D cracks in a thermally stressed body. In several
applications, the contour integrals and their associated domain for-
mulations have been investigated by Moran and Shih (1987a,b).
They pointed out that due to the potential source of inaccuracy
for the evaluation of the crack tip contour integrals in numerical
studies, the integrals should be recast into finite domain forms
with the help of weighting functions. Based on the FEM coupled
with the element-free Galerkin method (EFGM), Sukumar et al.
(1997) employed a 3D domain formulation of the J-integral to
analyze 3D planar crack problems. With the development of the
extended finite element method (XFEM), Sukumar et al. (2000)
implemented the J-integral in conjunction with the XFEM to solve
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mailto:yuhongjun@hit.edu.cn
mailto:wlz@hit.edu.cn
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Crack face

Crack front Crack plane

Γ

jn

2x

1x

3x

1ξ

2ξ

3ξ

1e

2e

3e

s

0 

r
p

lc

Fig. 1. Schematic of a curved crack front and related curvilinear coordinate system.
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3D planar crack problems. Eischen (1987) proved that in nonho-
mogeneous materials with continuous and generally differentiable
properties, the stress and strain singularity near a crack tip is same
as the well-known inverse square root stress singularity in homo-
geneous materials. And Jin and Sun (2007) provided a rigorous
proof for nonhomogeneous materials that both the modified J-inte-
gral given by Eischen (1987) and the Je-integral given by Honein
and Herrmann (1997) are the potential energy release rates. These
studies permit the application of the J-integral in fracture problems
of nonhomogeneous materials with properties varying continu-
ously. Walters et al. (2004) used the domain form of the J-integral
as well as the DCT to compute the SIFs of semi-elliptical surface
cracks in FGM plates under mode-I thermomechanical loading.

In order to obtain mode-I and mode-II SIFs separately, an inter-
action (energy) contour integral method (Stern et al., 1976) is de-
rived from the traditional J-integral by considering a composition
of two admissible states (actual and known auxiliary fields). Wang
et al. (1980) introduced this method to study two-dimensional
(2D) mixed-mode crack problems in rectilinear anisotropic solids.
Nakamura (1991) used an equivalent domain expression of the
interaction integral to evaluate mixed-mode SIFs along straight
3D interface cracks. The same method was employed to deal with
curved 3D interface crack problems (Nahta and Moran, 1993; Gosz
et al., 1998). Krysl and Belytschko (1999) utilized the interaction
integral method in conjunction with the EFGM to investigate 3D
stationary and propagating crack problems. Kim et al. (2001) em-
ployed the method to extract mixed-mode SIFs along a penny-
shaped crack front. Gosz and Moran (2002) developed the interac-
tion integral method for non-planar 3D crack problems. Moës et al.
(2002) and Gravouil et al. (2002) used the method combined with
the XFEM to study non-planar 3D crack growth problems. Further-
more, Dolbow and Gosz (2002) introduced the interaction integral
method to compute mixed-mode SIFs of 2D cracks in FGMs. In
comparison with the modified J-integral for nonhomogeneous
materials, the interaction integral was found to be more conve-
nient since the evaluation of strain energy densities along the trac-
tion-free crack faces is not required. According to a series of
investigations (Kim and Paulino, 2003, 2004, 2005), Kim and Pau-
lino gave a systemical summary on three definitions of the auxil-
iary fields and discussed how to extract mixed-mode SIFs and T-
stress of 2D cracks in isotropic and orthotropic FGMs. Using the
method, Walters et al. (2005, 2006) conducted several investiga-
tions on 3D mixed-mode fracture problems for FGMs under ther-
momechanical loads. Ortiz and Cisilino (2005) determined
mixed-mode SIFs along 3D bimaterial interface crack fronts using
the interaction integral method in conjunction with the boundary
element method (BEM). Johnson and Qu (2007) extended the inter-
action integral method to calculate the SIFs of 3D curved cracks in a
homogeneous body and on a bimaterial interface subjected to non-
uniform temperature fields.

The previous work is mostly concerned with the materials with
continuous and differentiable properties. Actually, there exist more
or less material interfaces in various nonhomogeneous composite
materials, especially, in particulate reinforced composite materials
(PRCMs). It is often found that although the PRCMs can signifi-
cantly improve the strength, stiffness and wear resistance of the
structures (Leggoe et al., 1996), their fracture properties are not
improved and, on the contrary, the fracture toughness may be sig-
nificantly lower than that of the matrix material (Yang and Li,
2004). In addition, FGMs as typical nonhomogeneous materials
have many advantages that make them attractive in potential
applications, such as the improvement on residual stress distribu-
tion and mechanical durability, while actual FGMs are also two or
multi-phase particulate composites in which material composition
and microstructure vary spatially (Rahman and Chakraborty, 2007)
or the volume fraction of particles varies in one or several direc-
tions (Birman and Byrd, 2007). Therefore, the material interfaces
have to be taken into account if the fracture performance of these
materials must be concerned. In authors’ previous work (Yu et al.,
2009), the interaction integral method was extended to solve the
fracture problems in 2D nonhomogeneous materials with complex
interfaces. It has been proved that the interaction integral is still
valid when the integral domain contains material interfaces. In this
paper, the applications of the interaction integral will be discussed
for 3D curved cracks in nonhomogeneous materials when the inte-
gral domain contains arbitrary interfaces.

The outline of this paper is given as follows. An interaction inte-
gral and the method for extracting mixed-mode SIFs are given in
Section 2. Moreover, Section 2 provides the derivation of the 3D
domain form of the interaction integral which does not contain
the derivatives of material properties. Section 3 gives the proof that
the interaction integral method is still valid when there are arbi-
trarily curved interfaces in the integral domain. Section 4 presents
several representative numerical examples to demonstrate the val-
idation of the interaction integral and verify the domain-indepen-
dence for the materials with properties varying continuously and
those with complex interfaces. Finally, a summary is provided in
Section 5.
2. Interaction integral

In this section, the interaction integral will be derived for
extracting mixed-mode SIFs along 3D curved crack fronts in arbi-
trarily nonhomogeneous solids. Throughout this work, the material
is limited to linear-elastic and isotropic conditions, and small
strain kinematics is assumed.

2.1. Interaction energy contour integral

Fig. 1 shows an arbitrary 3D curved crack front. Here, C(s) is a
contour that lies in a plane passing through the point s and is per-
pendicular to the crack front, nj are the components of the unit out-
ward normal to the contour C. According to Gosz and Moran
(2002), the pointwise energy release rate at point s takes the form

JðsÞ ¼ lim
C!0

clðsÞ
Z

CðsÞ
ðWdlj � ui;lrijÞnj dC ð1Þ

where W ¼ 1
2 rijeij ¼ 1

2 Cijkleijekl ¼ 1
2 Sijklrijrkl is the strain energy den-

sity, rij is the Cauchy stress tensor, eij is the strain tensor, ui is the
displacement vector, Cijkl is the stiffness tensor, Sijkl is the compli-
ance tensor, dlj is the Kronecker delta, and cl(s) is a unit vector that
is perpendicular to the crack front and lies in the local tangent plane
to the crack surface at point s. Without specification, the variables
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marked by the subscripts i, j, k and l denote their components in the
Cartesian coordinate system. Throughout, the summation conven-
tion is implied where the subscripts take on the values 1–3. The
comma denotes partial differentiation with respect to the spatial
coordinates.

The J-integral (Rice, 1968) for the superimposed load of the ac-
tual field and the auxiliary field can be written as

JSðsÞ ¼ lim
C!0

clðsÞ
Z

CðsÞ

1
2

rik þ raux
ik

� �
eik þ eaux

ik

� �
dlj

�

� ui;l þ uaux
i;l

� �
rij þ raux

ij

� ��
nj dC ð2Þ

where raux
ij ; eaux

ij and uaux
i are the auxiliary stress, strain and dis-

placement fields defined in Appendix A. The interaction integral
(Stern et al., 1976) is the interactional part of actual and auxiliary
fields in the integral Js(s), that is

IðsÞ ¼ lim
C!0

clðsÞ
Z

CðsÞ

1
2

rikeaux
ik þ raux

ik eik

� �
dlj � ui;lraux

ij � uaux
i;l rij

� �
nj dC

ð3Þ

According to the definition of the auxiliary fields, rijeaux
ij ¼ rijSijklðxÞ

raux
kl ¼ raux

kl ekl, and hence, Eq. (3) can be rewritten as

IðsÞ ¼ lim
C!0

clðsÞ
Z

CðsÞ
Pljnj dC ð4Þ

where

Plj ¼ raux
ik eikdlj � ui;lraux

ij � uaux
i;l rij ð5Þ
2.2. Extraction of mixed-mode SIFs from the interaction integral

Similarly to the relations between the energy release rate J(s)
and the SIFs KI, KII and KIII, the interaction integral I(s) in Eq. (4)
takes the value (Walters et al., 2006)

IðsÞ ¼ 2
E0ðsÞ

K IK
aux
I þ K IIK

aux
II

� �
þ 1

lðsÞK IIIK
aux
III ð6Þ

where E0(s) = E(s) for plane stress, E0(s) = E(s)/[1 � m2(s)] for plane
strain and l(s) = E(s)/[2 + 2m(s)] is shear modulus. Substituting the
auxiliary SIFs Kaux

I ¼ 1 and Kaux
II ¼ Kaux

III ¼ 0 into Eq. (6), we can get
the value of KI(s) from the integral I(s). Similarly, KII(s) and KIII(s)
can also be obtained from Eq. (6) by setting Kaux

II ¼ 1; Kaux
I ¼

Kaux
III ¼ 0 and Kaux

III ¼ 1; Kaux
I ¼ Kaux

II ¼ 0, respectively.

2.3. Domain form of the interaction integral

Since the domain expression is naturally compatible with the fi-
nite element formulation of the field equations (Shih et al., 1986),
the domain representation of the interaction integral in Eq. (4) is
derived in this section. To begin, consider a small segment Lc on
a curved crack front around the point s as shown in Fig. 2(a) and
at a point p on it, the virtual crack advance is assumed
cL
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l
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Fig. 2. Virtual crack advance at the segment Lc on the crack front.
dnl ¼ clðpÞDaðpÞ ð7Þ

where Da(p) is the magnitude of the crack advance. It is assumed
that Da(p) only varies continuously along the segment Lc and is zero
at any point outside Lc. The total energy caused by the interaction
integral I(p) due to the crack advance dnl on the segment Lc is de-
fined as

I ¼
Z

Lc

IðpÞDaðpÞdl ð8Þ

Since the segment Lc is very small, it can be assumed that the inter-
action integral I(p) varies slowly along the segment Lc. With this
assumption, I(p) in Eq. (8) can be replaced by a constant I(s) and
thus, I(s) can be obtained by the relation

IðsÞ ¼ IR
Lc

DaðpÞdl
ð9Þ

Therefore, the integral I should be solved firstly. As shown in Fig. 3,
since the crack faces are assumed to be traction-free, it can be easily
proved that (Kim and Paulino, 2003)

IðpÞ ¼ � lim
C!0

I
C0

PljmjclðpÞ�qdC ð10Þ

Here, C0 ¼ CB þ Cþc þ C� þ C�c is a contour in n1–n2-plane (the defi-
nitions of the curvilinear coordinates n1, n2 and n3 are given in
Appendix A), where C� is the opposite integral path of C, mi is
the unit outward normal vector to the contour C0 and therefore,
mi = �ni on C, �q is an arbitrary function with values varying
smoothly from 1 on C to 0 on CB.

The area enclosed by C0 is denoted by the symbol A0. By sweep-
ing the area A0 on Lc and keeping them in n1–n2-plane, we can get a
tubular volume V0 enclosed by the surface S0 as shown in Fig. 3.
The closed surface S0 consists of four curved surfaces S; Sþc ; S�c
and SB generated by sweeping C�; Cþc ; C�c and CB on Lc, respec-
tively, and two planar surfaces S1 and S2. By substituting Eq. (10)
into Eq. (8), I can be expressed as a surface integral as follows:

I ¼ � lim
S!0

I
S0

Pljmjql dS; ql ¼ cl�qDa ð11Þ

Here, ql is a smooth test function with values varying from clDa on S
to 0 on SB.

Taking the limit S ? 0 leads to V0 ? V. When the material prop-
erties in the volume V vary continuously, applying divergence the-
orem to Eq. (11), we have

I ¼ �
Z

V
ðPljql;j þ Plj;jqlÞdV ð12Þ

Substituting Plj given in Eq. (5) into Eq. (12), one obtains

I ¼
Z

V
ui;lraux

ij ql;j þ uaux
i;l rijql;j � raux

ik eikql;l

� �
dV

þ
Z

V
ui;ljraux

ij þ ui;lraux
ij;j þ uaux

i;lj rij

�
þ uaux

i;l rij;j � raux
ij;l eij � raux

ij eij;l

�
ql dV ð13Þ

Here, the symmetry of the auxiliary stress tensor leads to
raux

ij ui;lj � raux
ij eij;l ¼ 0. And according to the equilibrium of the actual

stresses with a known body force fi, i.e., rij;j þ fi ¼ 0, I can be simpli-
fied as

I ¼
Z

V
ui;lraux

ij ql;j þ uaux
i;l rijql;j � raux

ij eijql;l

� �
dV

þ
Z

V
ui;lraux

ij;j þ uaux
i;lj rij � uaux

i;l fi � raux
ij;l eij

� �
ql dV ð14Þ

Whether the material properties are homogeneous or nonhomo-
geneous, the second term in Eq. (14) is not zero (Nahta and Moran,
1993; Gosz et al., 1998; Walters et al., 2006).
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Since the segment Lc is very small, the material properties are
assumed to vary slowly on it and therefore, the material properties
at point s are used in the definitions of the auxiliary stresses and
displacements for any point in the integral volume V. As a result
of the above analysis, it is interesting to find that compared with
the integral I given by Walters et al. (2005, 2006) for nonhomo-
geneous materials, the expression in Eq. (14) does not contain
any derivatives of the material properties. Therefore, the interac-
tion integral does not need the material properties to be differen-
tiable. Since it may be difficult to obtain the derivatives of material
properties or there are no derivatives in many actual cases, the
applicable range of the present interaction integral is wider than
that of the traditional J-integral for nonhomogeneous materials.

3. Influence of the interfaces (material discontinuities) on the
interaction integral

In the above section, it is shown that the interaction integral
method does not need the nonhomogeneous material properties
to be differentiable. However, the material properties are still re-
quired to be continuous in the above derivation. In this section,
we will discuss whether the continuity condition of material prop-
erties is necessary in the interaction integral method.

3.1. Domain form of the interaction integral for discontinuous
materials

As shown in Fig. 4(a), the integral domain V is divided by a
material interface Sinterface into two domains V1 and V2. In each do-
main, the material properties vary continuously. And the closed
surface S0 defined in the above section is cut into two unclosed sur-
faces S01 and S02. The integral in Eq. (11) can be rewritten as

I ¼ � lim
S!0

I
S01þSinterface

Pljmjql dS�
I

S02þS�interface

Pljmjql dSþ I�interface

ð15Þ
Fig. 4. The tubular integral domain cut by an arbitrarily curved interface.
where I�interface is a surface integral along the interface with the
expression shown below

I�interface ¼
Z

Sinterface

ðPljmjqlÞ
r dSþ

Z
S�interface

ðPljmjqlÞ
s dS ð16Þ

Here, the variables or expressions on the interface marked by the
superscripts r and s means that they belong to the domains V1

and V2, respectively.
According to the definitions of auxiliary fields in Appendix A, it

can be observed that the auxiliary stresses and displacements and
their derivatives are continuous on the interface. Therefore,

raux
ij

� �r

¼ raux
ij

� �s

¼ raux
ij and uaux

i;l

� �r

¼ uaux
i;l

� �s

¼ uaux
i;l . Since

the interface S�interface is the opposite surface of Sinterface and accord-
ing to the definition of Plj in Eq. (5), I�interface can be rewritten as

I�interface ¼
Z

Sinterface

raux
ij er

ij � es

ij

� �
mlql � rr

ij � rs

ij

� �
uaux

i;l mjql

h
� raux

ij ur

i;l � us

i;l

� �
mjql

i
dS ð17Þ

The value of I�interface will be given in the following part. By applying
divergence theorem to the first and second integrals in Eq. (15),
respectively, we have

I ¼ �
Z

V1

ðPljql;j þ Plj;jqlÞdV �
Z

V2

ðPljql;j þ Plj;jqlÞdV þ I�interface ð18Þ
3.2. Interface integral I�interface

Without loss of generality, an arbitrarily curved material inter-
face Sinterface is shown in Fig. 5 and its mathematical description can
be written as
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Fig. 5. An arbitrarily curved interface and an orthogonal curvilinear coordinate
system associated with it.
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f ðx1; x2; x3Þ ¼ 0 ð19Þ

At a point p on the interface, an orthogonal curvilinear coordinate
system is defined. The vector m is the unit outward normal vector
to the surface Sinterface at point p. The straight line where the vec-
tor m lies is denoted by the symbol l1. We select two mutually
perpendicular planes containing the line l1 and let the symbols
l2 and l3 denote the curves generated by the intersection of the
surface Sinterface and the two planes. Then, three orthotropic curvi-
linear coordinates g1, g2 and g3 are defined on the lines l1, l2 and
l3, respectively. Here, g1 gives the signed distance of a point to the
surface Sinterface. The natural base vectors hi corresponding to the
coordinates are defined by

hi ¼
oxk

ogi
ik ð20Þ

where xk are the Cartesian coordinates and ik are the corresponding
base vectors. For convenience, we define the orthogonal unit base
vectors ei by

ei ¼
hi

Ai
ð21Þ

where Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hi � hi

q
and the underlined subscript i denotes no sum

on i. It is obvious from the above definitions that e1 = m and the
scale factor A1 = 1 (Gosz and Moran, 2002). In this subsection, the
variables or expressions marked by the subscripts i, j, k and l denote
their components in (g1,g2,g3) coordinate system.

The integral I�interface in Eq. (17) can be rewritten in tensor form as

I�interface ¼
Z

Sinterface

	
raux : er � es

� �
q �m�m � rr � rs

� �
� uauxrð Þ

� q�m � raux � urð Þr � ðurÞs
h i

� q



dS ð22Þ

where r is the gradient operator expressed by (Gosz and Moran,
2002)

r ¼ e1
1
A1

o

og1
þ e2

1
A2

o

og2
þ e3

1
A3

o

og3

	 

ð23Þ

According to the equilibrium condition on the bimaterial interface,
the tractions on both sides of the interface should be equal. That is

m � rr ¼m � rs ð24Þ

Since the interface is perfectly bonded, the derivatives of actual dis-
placements with respect to the curvilinear coordinates g2 and g3 are
equal on both sides of the interface, i.e.,

ou
og2

� �r

¼ ou
og2

� �s

;
ou
og3

� �r

¼ ou
og3

� �s

ð25Þ

Since the stress raux is a symmetrical tensor, by applying the strain–
displacement relations of actual fields, the first integrand in Eq. (22)
can be written as

raux : er � es
� �

q �m ¼ raux : ruð Þr � ruð Þs
h i

q �m ð26Þ

In (g1,g2,g3) coordinate system, m1 = 1 and m2 = m3 = 0. Therefore,
q �m = q1 and Eq. (26) can be written as

raux : ðer � esÞq �m ¼ raux
lj ej �

1
Al

ou
ogl

� �r

� ou
ogl

� �s
" #

q1 ð27Þ

The detailed derivations of Eq. (27) are given in Appendix B. Substi-
tuting Eq. (25) and A1 = 1 into Eq. (27), we have

raux : ðer � esÞq �m ¼ raux
1j ej �

ou
og1

� �r

� ou
og1

� �s
" #

q1 ð28Þ
According to Eq. (24), the second integrand in Eq. (22) is

m � rr � rs
� �

� uauxrð Þ � q ¼ 0 ð29Þ

The third integrand in Eq. (22) can be written as

m � raux � urð Þr � urð Þs
h i

� q

¼ miraux
ij ej �

1
Al

ou
ogl

� �r

� ou
ogl

� �s
" #

ql ð30Þ

Substituting A1 = 1, m1 = 1, m2 = m3 = 0 and Eq. (25) into Eq. (30),
one obtains

m � raux � urð Þr � ðurÞs
h i

� q

¼ raux
1j ej �

ou
og1

� �r

� ou
og1

� �s
" #

q1 ð31Þ

Substituting Eqs. (28), (29) and (31) into Eq. (22) yields

I�interface ¼ 0 ð32Þ

Similarly, the same result can be obtained for the interface which
passes through the crack faces as shown in Fig. 4(b). If the interface
intersects with the crack front in the segment Lc which is cut into
two parts L1

c and L2
c as shown in Fig. 2(b), the crack advance Da(p)

only varies on L1
c which contains the point s and remains zero on

L2
c . Actually, the above treatment means that the segment Lc is re-

placed by L1
c .

3.3. Discussion on the interaction integral

Substituting Eq. (32) and Plj given in Eq. (5) into Eq. (18), the
same expression as Eq. (14) is obtained. It implies that Eq. (14) is
still valid for nonhomogeneous materials with material interfaces
in the integral domain. By substituting Eq. (14) into Eq. (9), the
interaction integral is obtained as

IðsÞ ¼

R
V ui;lraux

ij ql;j þ uaux
i;l rijql;j � raux

ij eijql;l

� �
þ ui;lraux

ij;j þ uaux
i;lj rij � fiuaux

i;l � raux
ij;l eij

� �
ql

h i
dVR

Lc
DaðpÞdl

ð33Þ

For the numerical examples in this paper, no body force is assumed
(i.e., fi = 0) and the finite element discretization of Eq. (33) without
body force is given in Appendix C.

The interaction integral in Eq. (33) does not require the material
properties to be continuous and hence, its applicable range is
greatly enlarged. Moreover, the expression in Eq. (33) can facilitate
the numerical implementation for the materials with complicated
material interfaces around the crack tip since the integral domain
can be chosen arbitrarily.
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If the crack faces in the integral domain V are curved as shown
in Fig. 6, the interaction integral is

IðsÞ ¼

R
V ui;lraux

ij ql;j þ uaux
i;l rijql;j � raux

ij eijql;l

� �
þ ui;lraux

ij;j þ uaux
i;lj rij � fiuaux

i;l � raux
ij;l eij

� �
ql

h i
dV þ IcrackfaceR

Lc
DaðpÞdl

ð34Þ

where Icrackface is a surface integral on the crack faces. According to
Gosz and Moran (2002), the surface integral Icrackface is

Icrackface ¼
Z

Sþc þS�c þSþAþS�A

Pljmjql dS ð35Þ

where SþA is a fictitious crack face tangent to the crack front and S�A is
its opposite surface. Since the auxiliary displacement components
and certain auxiliary stress and strain components are discontinu-
ous across the surfaces SþA and S�A , the surface integral on
SþA and S�A of Icrackface appears.
4. Numerical examples and discussions

In order to demonstrate the accuracy of the interaction integral
method and verify the convergence of the method, we will present
several numerical examples on the 3D fracture problems for the
materials with continuous nonhomogeneous properties and dis-
continuous properties, respectively.
(c)

integral 

(a)

2h

t

0σ
2x

a

1E

x
2c

1x

2E

2L

t

Fig. 7. A functionally graded plate with a semi-elliptical surface crack: (a) geometry and
(d) cross-section of the integral domain.
4.1. Example 1: functionally graded plate with a semi-elliptical surface
crack

Fig. 7(a) shows a 3D functionally graded plate of length 2L,
width 2h and thickness t under tension load. The plate contains a
semi-elliptical surface crack of half-length c and depth a. The prob-
lem of a plate with such a configuration was investigated by Walt-
ers et al. (2004). In order to simulate infinite plate, both the length
2L and the width 2h of the plate remain fixed at 10 times of the
thickness t. The tension load r0 is applied along the top and the
bottom edges of the plate. The Young’s modulus E varies only in
the thickness (x1) direction from E1 = E(x1 = 0) to E2 = E(x1 = t) and
the Poisson’s ratio m is constant. The following data and expressions
are used for numerical analysis: L ¼ h ¼ 1000; t=h ¼ 0:2; a=t ¼
0:5; a=c ¼ 1; Eðx1Þ ¼ E1ebx1 ; b ¼ 1

t lnðE2=E1Þ; E2=E1 ¼ ð0:2;1;5Þ; m ¼
0:25; r0 ¼ 1. The SIFs are normalized by K0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
, where

Q = 1 + 1.464(a/c)1.65 for a/c 6 1 and Q = 1 + 1.464(c/a)1.65 for a/
c > 1 (Walters et al., 2004).

Symmetry permits modeling of only one half plate and Fig. 7(b)
and (c) shows the mesh configuration. Twenty-node hexahedral
elements are used over most of the mesh and sixteen 20-node,
quarter-point, hexagonal elements with collapsed faces surround-
ing each crack front as shown in Fig. 8(a). The crack front is divided
into 16 elements in n3 direction from / = 0 to / = p/2, where the
angle / is shown in Fig. 7(a). The mesh consists of 10,848 hexahe-
dral and 256 hexagonal elements, with a total of 11,104 elements
(b) 

(d)

domain 
eR

2c

3

a

φ

boundary conditions; (b) finite element mesh; (c) mesh around the crack front; and



integration point 

crack front 

node 

(b) (a) 

Fig. 8. Schematic of finite elements and integration points: (a) a 20-node, quarter-
point, hexagonal element; (b) a 20-node hexahedral element with integration
points for nonhomogeneous materials.
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and 49,156 nodes. In order to improve numerical precision, the ra-
tio of the radial edge length Re of the elements at the crack front to
the crack depth a is Re/a = 0.003. In this subsection, three-layer ele-
ments around the crack tip are adopted for the calculation of the
interaction integral as shown in Fig. 7(d). Since material properties
are nonhomogeneous, as shown in Fig. 8(b), actual material prop-
erties at integration points are adopted when the element stiffness
matrix is formed (Yu et al., 2007). For all examples in this paper, we
use 3 � 3 � 3 Gauss quadrature in FEM computation and 2 � 2 � 2
Gauss quadrature in the calculation of the interaction integral. The
comparison between the normalized SIFs computed by Eq. (33)
(a) 

/ 3I eR R =  
6 

IR  

IC  

Fig. 9. Cross-section of se

Table 1
Normalized SIFs KI/K0 along the crack front in FGM plate under tension (Example 1: a/t =

2/
p

Present results
E2/E1

Walters et al. (
E2/E1

0.2 1.0 5.0 0.2

0.000 1.346 1.243 0.903 1.351
0.125 1.248 1.210 0.973 1.238
0.250 1.170 1.155 1.027 1.161
0.375 1.121 1.122 1.083 1.109
0.500 1.084 1.101 1.134 1.071
0.625 1.055 1.088 1.177 1.041
0.750 1.033 1.080 1.208 1.019
0.875 1.020 1.074 1.226 1.004
1.000 1.016 1.073 1.232 0.997
and the results in Walters et al. (2004) is shown in Table 1. The
geometry, loading and material property variations lead to mode-
I conditions on the crack plane and thus, only mode-I normalized
SIFs KI/K0 are listed along the crack front from the angle / = 0 to
/ = p/2. It can be found that the relative errors of the mode-I nor-
malized SIFs are all within 0.6% for homogeneous materials and 2%
for FGMs. Excellent agreement demonstrates that the present
method is valid for the fracture problem of nonhomogeneous
materials with continuous properties.

It should be pointed out that near the free surface, the stress
singularity (r�k) becomes weaker (k < 1/2) and the mode-I SIF tends
toward zero at / = 0 (Pook, 1994). Nakamura and Parks (1988) gave
the estimation of the influence region of free surface on the singu-
larity in semi-elliptical surface cracks nearly to be 0.03a2/c. Since
the present study does not focus on the region near free surface,
the mesh near free surface is not refined and 2D plane-strain
asymptotic solution (Kim et al., 2001) are chosen to be the auxil-
iary fields to solve the SIFs at all points.

Subsequently, we select seven cylindrical integral domains with
different radial sizes to verify the domain-independence of the
interaction integral. In order to select the integral domains, we
define RI to be the radius of the referenced cylindrical surface CI

by which the integral domain is determined as shown in Fig. 9.
In details, the integral domain consists of the elements cut by CI

and the elements surrounded by CI. Table 2 lists the mode-I
normalized SIFs along the crack front for the ratio RI/Re =
(3,6,12,24,36,48,60). In order to estimate the dispersion of interac-
tion integral, the relative error is defined as
(b) 

12 60 24 36 48 

ven integral domains.

0.5; a/c = 1; E(x1) = E1ebx1; b ¼ 1
t lnðE2=E1Þ; m = 0.25; K0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
).

2004) Relative errors (%)
E2/E1

1.0 5.0 0.2 1.0 5.0

1.240 0.907 �0.37 0.24 �0.44
1.209 0.965 0.80 0.08 0.82
1.155 1.019 0.77 0.00 0.78
1.124 1.075 1.07 �0.18 0.74
1.101 1.125 1.20 0.00 0.79
1.087 1.166 1.33 0.09 0.93
1.078 1.197 1.35 0.18 0.91
1.070 1.212 1.57 0.37 1.14
1.067 1.213 1.87 0.56 1.54



Table 2
Normalized SIFs KI/K0 along the crack front for different integral domains (Example 1: a/t = 0.5; a/c = 1; E(x1) = E1ebx1; b ¼ 1

t lnðE2=E1Þ; m = 0.25; K0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
).

E2
E1

2/
p

RI/Re Mean Err (%)

3 6 12 24 36 48 60

1.0 0.125 1.2113 1.2109 1.2112 1.2115 1.2119 1.2119 1.2121 1.2115 0.10
0.250 1.1567 1.1561 1.1567 1.1569 1.1571 1.1570 1.1573 1.1568 0.10
0.375 1.1241 1.1236 1.1241 1.1243 1.1245 1.1244 1.1246 1.1242 0.09
0.500 1.1031 1.1025 1.1030 1.1032 1.1034 1.1033 1.1035 1.1031 0.09
0.625 1.0898 1.0893 1.0898 1.0899 1.0901 1.0900 1.0902 1.0899 0.08
0.750 1.0815 1.0809 1.0814 1.0816 1.0818 1.0817 1.0819 1.0815 0.09
0.875 1.0763 1.0758 1.0763 1.0764 1.0766 1.0765 1.0767 1.0764 0.08
1.000 1.0748 1.0743 1.0748 1.0749 1.0751 1.0750 1.0752 1.0749 0.08

0.2 0.125 1.2480 1.2491 1.2495 1.2499 1.2502 1.2502 1.2505 1.2496 0.20
0.250 1.1702 1.1714 1.1720 1.1722 1.1725 1.1724 1.1727 1.1719 0.21
0.375 1.1211 1.1223 1.1228 1.1230 1.1233 1.1233 1.1235 1.1228 0.21
0.500 1.0839 1.0851 1.0856 1.0858 1.0861 1.0861 1.0864 1.0856 0.23
0.625 1.0551 1.0562 1.0567 1.0570 1.0572 1.0573 1.0575 1.0567 0.23
0.750 1.0336 1.0348 1.0353 1.0356 1.0358 1.0359 1.0361 1.0353 0.24
0.875 1.0201 1.0212 1.0218 1.0220 1.0223 1.0223 1.0226 1.0218 0.24
1.000 1.0160 1.0170 1.0175 1.0177 1.0180 1.0180 1.0183 1.0175 0.23
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Fig. 10. An annular-fiber-reinforced cylinder with a penny-shaped crack: (a) geometry and boundary conditions; (b) finite element mesh.

/ 9I eR R = 18 36 27 45 54 63 

fiber 

crack front 

Fig. 11. Cross-section of seven integral domains around the crack front in the fiber-
reinforced cylinder.
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Err ¼
Kmax � Kmin

Kmean










� 100% ð36Þ

where Kmax, Kmin and Kmean denote the maximum, minimum and
mean of the SIFs, respectively, at a point s. The results show that
the relative errors (Err) of the mode-I normalized SIFs for every
point on the crack front are all within 0.10% for E2/E1 = 1 and within
0.25% for E2/E1 = 0.2. It implies that the interaction integral in Eq.
(33) is domain-independent for a 3D curved crack in the material
with the properties varying continuously.

4.2. Example 2: domain-independence for the materials with interfaces

In order to check the influence of the interface on the interac-
tion integral, we investigate an annular-fiber-reinforced cylinder
with a penny-shaped crack under uniform tension r0 as shown
in Fig. 10(a). The cylinder has a radius R and total length 2L. The
crack of radius a is located in the center of the cylinder and the
crack front coincides with the midline of the fiber which has a ra-
dius Rf. In the cylinder, the Young’s modulus E(x2) varies only in the
length (x2) direction from E1 at the bottom surface to E2 at the top
surface and the Poisson’s ratio m is constant. For the fiber, the
Young’s modulus Ef and the Poisson’s ratio m are both constant.
The following data and expressions are used for numerical analy-
sis: L = R = 200; a = 100; Rf = 10; E(x2) = E1eb(x2 + L); b ¼ 1

2L lnðE2=E1Þ;



Table 3
Normalized SIFs of a penny-shaped crack in a fiber-reinforced cylinder under uniform tension (Example 2: R = L = 200; a = 100; Rf = 10; K0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
).

E2
E1

Ef
E1

SIFs RI/Re Mean Err (%)

9 18 27 36 45 54 63

1 10 KI/K0 3.2565 3.2558 3.2546 3.2535 3.2520 3.2534 3.2527 3.2541 0.14
100 KI/K0 4.9869 4.9849 4.9826 4.9748 4.9638 4.9698 4.9645 4.9753 0.46

10 100 KI/K0 4.3294 4.3282 4.3265 4.3237 4.3197 4.3231 4.3234 4.3248 0.22
KII/K0 0.1322 0.1310 0.1296 0.1292 0.1314 0.1296 0.1317 0.1308 2.29

100 100 KI/K0 2.9528 2.9526 2.9520 2.9511 2.9500 2.9513 2.9517 2.9517 0.10
KII/K0 0.2899 0.2886 0.2870 0.2862 0.2872 0.2869 0.2895 0.2879 1.04

Fig. 12. Finite element mesh configuration of one half of the cylinder.
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Fig. 13. Normalized SIFs along crack front in a cylinder under a centralized force.
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Fig. 14. Relative errors Err of the mixed-mode SIFs obtained in different integral
domains along the crack front in a cylinder under a centralized force.
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E2/E1 = (1,10,100); Ef/E1 = 100; m = 0.25; r0 = 1; K0 ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
;

Q = 2.464.
Fig. 10(b) shows the mesh configuration corresponding to a

quarter of the cylinder. The mesh consists of 7612 elements and
33,715 nodes. The ratio of the radial edge length Re of the elements
at the crack front to the crack radius a is Re/a = 0.003. Seven differ-
ent integral domains (RI/Re = 9,18,27,36,45,54,63) are selected to
test the stability of the numerical results and the latter four do-
mains contain the interface as shown in Fig. 11.
Table 3 lists the mixed-mode normalized SIFs for the cases of
homogeneous and nonhomogeneous matrix materials. Only
mode-I normalized SIFs for E2/E1 = 1 are listed since the symmetry
leads to pure mode-I conditions. The results show that the relative
errors (Err) defined in Eq. (36) are all within 0.46% for KI/K0 and
within 2.29% for KII/K0. Compared with KI/K0, the values of KII/K0

are very small for E2/E1 = 10 and E2/E1 = 100. Although the relative
errors of KII/K0 are a little large, the absolute errors of KII/K0 is not
larger than those of KI/K0. In order to show the influences of the
integral domains on the SIFs of different modes better, a new
example with the mode-I, mode-II and mode-III SIFs of the same
magnitude will be given in the following.
4.3. Example 3: three-dimensional mixed-mode SIFs

The model shown in Fig. 10(a) is still used while the load and
boundary conditions are different. A centralized force F1 = 1 is ap-
plied on the center of the top surface of the cylinder and the dis-
placement boundary conditions are prescribed such that
u1 = u2 = u3 = 0 on the bottom surface. The following data and
expressions are used for numerical analysis: L = R = 200; a = 100;
Rf = 10; E(x2) = E1eb(x2 + L); b ¼ 1

2L lnðE2=E1Þ; E2/E1 = 100; Ef/E1 = 100;
m = 0.25; K0 ¼ rF

ffiffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
; rF ¼ F1

pR2.
Symmetry permits modeling of half cylinder as shown in Fig. 12.

The mesh consists of 5792 elements and 25,728 nodes. Since the
influence of the interface on the SIFs is focused, five domains
(RI/Re = 27,36,45,54,63) shown in Fig. 11 are selected to compute
the SIFs and only one of them does not contain the interface.

As shown in Fig. 13, the normalized SIFs KI/K0 and KII/K0

obtained at the angle / and those at the angle p � / are



H. Yu et al. / International Journal of Solids and Structures 47 (2010) 2178–2189 2187
anti-symmetric, and KIII/K0 at / and those at p � / are symmetric.
It should be noted that the obtained mode-I SIFs KI are negative
when / < p/2, which implies two crack faces have been closed.
According to Guo et al. (2008), only the positive KI are meaningful
and, however, the negative KI can also be used in superposition
with a positive KI that results from another type of loading pro-
vided that the net KI is positive. Therefore, presentation of the neg-
ative KI can shed some light on the degree of closure occurring near
the crack front region. In order to show the differences of the
mixed-mode SIFs obtained in different integral domains clearly,
the relative errors Err defined in Eq. (36) are shown in Fig. 14. It
can be found that for all points along the crack front, the relative
errors Err are within 0.15%, 0.85% and 0.90% for KI/K0, KII/K0 and
KIII/K0, respectively.

From Examples 2 and 3, it can be found that the material inter-
faces in the integral domain have almost no influence on the inter-
action integral, i.e., the interaction integral is domain-independent.
The above three examples should be enough to illustrate the vali-
dation of the interaction integral method for extracting the SIFs in
nonhomogeneous materials with complex interfaces.
5. Summary

In this paper, a new 3D domain expression of the interaction
integral for extracting SIFs is derived. This expression does not con-
tain any derivatives of material property parameters, and is still
valid even when the integral domain contains material interfaces.
This point is significant for solving the crack problems of nonho-
mogeneous materials with complex interfaces. The interaction
integral method is combined with the FEM to analyze several rep-
resentative fracture examples. It is found that the numerical results
are in good agreement with those appearing in published papers.
Moreover, the results show that interaction integral is domain-
independent when the integral domain contains nonhomogeneous
materials with continuous and discontinuous properties.
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Appendix A

In the local curvilinear coordinate system as shown in Fig. 1, we
select an arbitrary point p with the Cartesian coordinates (x1,x2,x3)
and its three curvilinear coordinates n1, n2 and n3 are defined by the
following relations:

n1 ¼ r � e1; n2 ¼ r � e2; n3 ¼
Z s

0
dl ðA1Þ

where the point s is on the crack front with minimum distance to
point p, r is a position vector from the point s to p, e1 is a unit vector
which is in the crack plane and perpendicular to the crack front, and
e2 is a unit vector which is perpendicular to the crack plane. The
corresponding natural base vectors gi are defined by

gi ¼
oxk

oni
ik ðA2Þ

The orthogonal unit base vectors ei can be obtained by

ei ¼ gi=Bi; Bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gi � gi

p ðA3Þ

where e3 is a unit vector tangent to the crack front.
The components of the auxiliary fields raux ¼ raux
ij eiej; eaux ¼

�
eaux

ij eiej and uaux ¼ uaux
i eiÞ in (n1,n2,n3) coordinate system can be

defined as (Walters et al., 2006)

raux
11 ¼

1ffiffiffiffiffiffiffiffiffi
2pr
p Kaux

I cos
h
2

1� sin
h
2

sin
3h
2

� ��

� Kaux
II sin

h
2

2þ cos
h
2

cos
3h
2

� ��
ðA4Þ
raux
22 ¼

1ffiffiffiffiffiffiffiffiffi
2pr
p Kaux

I cos
h
2

1þ sin
h
2

sin
3h
2

� �
þKaux

II sin
h
2

cos
h
2

cos
3h
2

� �
ðA5Þ
raux
12 ¼ raux

21

¼ 1ffiffiffiffiffiffiffiffiffi
2pr
p Kaux

I sin
h
2

cos
h
2

cos
3h
2
þKaux

II cos
h
2

1� sin
h
2

sin
3h
2

� �� �
ðA6Þ
raux
13 ¼ raux

31 ¼ �
Kaux

IIIffiffiffiffiffiffiffiffiffi
2pr
p sin

h
2
; raux

23 ¼ raux
32 ¼

Kaux
IIIffiffiffiffiffiffiffiffiffi
2pr
p cos

h
2

ðA7Þ
raux
33 ¼

mðsÞ raux
11 þ raux

22

� �
plane strain

0 plane stress

(
ðA8Þ
uaux
1 ¼ 1

2lðsÞ

ffiffiffiffiffiffi
r

2p

r
� Kaux

I cos
h
2

j0 � 1þ 2 sin2 h
2

� ��

þ Kaux
II sin

h
2

j0 þ 1þ 2 cos2 h
2

� ��
ðA9Þ
uaux
2 ¼ 1

2lðsÞ

ffiffiffiffiffiffi
r

2p

r
� Kaux

I sin
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2

j0 þ 1� 2 cos2 h
2
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� Kaux
II cos

h
2

j0 � 1� 2 sin2 h
2

� ��
ðA10Þ
uaux
3 ¼ 1

lðsÞ

ffiffiffiffiffi
2r
p

r
� Kaux

III sin
h
2

ðA11Þ

Here, j0 = 3 � 4m(s) for plane strain and j0 = [3 � m(s)]/[1 + m(s)] for
plane stress at the point s on the crack front. Finally, the auxiliary
strain fields are defined as
eaux

ij ¼ SijklðxÞraux
kl ðA12Þ

From the above definitions, the material properties used in the aux-
iliary stresses and displacements for any points are all identical to
those evaluated at point s.

Appendix B

The details regarding Eq. (27) are as follows:

raux : ðer � esÞq �m ¼ raux : ruð Þr � ruð Þs
h i

q �m

¼ raux
ij eiej :

el

Al

oðukekÞ
ogl

� �r

� oðukekÞ
ogl

� �s
( )

q1

¼ raux
ij ej �

dil

Al

oðukekÞ
ogl

� �r

� oðukekÞ
ogl

� �s
( )

q1

¼ raux
lj ej �

1
Al

ou
ogl

� �r

� ou
ogl

� �s
" #

q1 ðB1Þ
Appendix C

The numerator in Eq. (33) without body force can be written in
tensor form as

I ¼
Z

V
ru � raux þruaux � r� raux : eI½ � : ðqrÞf

þ ru � raux � rð Þ þ ruauxrð Þ : r�rraux : e½ � � qgdV ðC1Þ
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Since the auxiliary fields are defined in (n1,n2,n3) coordinate system
in Appendix A. In order to employ the interaction integral in finite
element computations, Eq. (C1) is discretized in (n1,n2,n3) coordi-
nate system as

I ¼
XeV

e¼1

Xpe

p¼1

rluiraux
ij þrluaux

i rij

� �
qlrj � raux

ij eijqlrl

n

þ rluiraux
ij rj þ rluaux

i rj
� �

rij �rlraux
ij eij

h i
ql

o
p
jJjpwp ðC2Þ

Here, eV is the number of elements in the integral domain V; pe is
the number of the integration points in one element; jJjp represents
the determinant of Jacobian matrix; wp is the corresponding weight
factor at the integration point p. Here, the variables marked by the
subscripts i, j, k and l denote their components in (n1,n2,n3) coordi-
nate system.

In this paper, the unit vector cl(p) is in n1 direction, i.e., c1 = 1,
c2 = c3 = 0. The nodal values qnI

l of ql on node nI are given first and
ql is interpolated from their known nodal values qnI

l by the expres-
sions (Kim et al., 2001)

q1ðnÞ ¼
X20

I¼1

NIðnÞqnI
1 ; q2 ¼ 0; q3 ¼ 0 ðC3Þ

The value q1 varies linearly in n1 direction. The partial derivatives of
ql are

oq1ðnÞ
onj

¼
X20

I¼1

oNIðnÞ
onj

qnI
1 ;

oq2

onj
¼ 0;

oq3

onj
¼ 0 ðC4Þ

Therefore, the gradient of ql is

qlrj ¼
1
Bj

oql

onj
þ qi

Bj
Cij;l ðC5Þ

where Bj is given in Appendix A and Cij,l is defined by

oei

onj
¼ Cij;lel ðC6Þ

Similarly to the gradient of ql in Eq. (C5), the gradients of auxiliary
fields and actual fields (rluaux

i ; rluaux
i rj; rlraux

ij and rlui) can be
solved.

According to Eq. (11), the denominator in Eq. (33) can be ob-
tained byZ

Lc

DaðpÞdl ¼
Z

Lc

q1 dl: ðC7Þ
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