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In the first part (Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for
out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-
plane stresses and 3 bending moments), to which six components are added representing the gradient of
the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily
layered plates of the Reissner–Mindlin plate theory which appears as a special case when the plate is
homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot
be reduced to a Reissner–Mindlin model. In this paper, the Bending-Gradient theory is applied to lami-
nated plates and its predictions are compared to those of Reissner–Mindlin theory and to full 3D (Pagano,
1969) exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflec-
tion, shear stress distributions and in-plane displacement distributions in any material configuration.
Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-
order approximation of the exact solution as the slenderness ratio L/h goes to infinity.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated plates are widely used in engineering applications.
For instance angle-ply carbon fiber reinforced laminates are com-
monly used in aeronautics. However, these materials are strongly
anisotropic and the plate overall behavior is difficult to capture.
The most common plate theory is the Kirchhoff–Love plate model.
However, it is well-known that, when the plate slenderness ratio L/
h (h is the plate thickness and L the span) is not large enough,
transverse shear stresses which are not taken into account in the
Kirchhoff–Love theory have an increasing influence on the plate
deflection.

In recent decades many suggestions have been made to im-
prove the estimation of transverse shear stresses. Reddy (1989),
Noor and Malik (2000), and Carrera (2002) provided detailed re-
views for these models. Two main approaches can be found:
asymptotic approaches and axiomatic approaches. The first one is
mainly based on asymptotic expansions in the small parameter
h/L (Caillerie, 1984; Lewinski, 1991a,b,c). However, higher-order
terms yield only intricated ‘‘Kirchhoff–Love’’ plate equations and
no distinction between relevant fields and unknowns was made.
The second main approach is based on assuming ad hoc displace-
ment or stress 3D fields. These models can be ‘‘Equivalent Single
Layer’’ or ‘‘Layerwise’’. Equivalent Single Layer models treat the
ll rights reserved.
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whole laminate as an equivalent homogeneous plate. However,
when dealing with laminated plates, these models lead systemati-
cally to discontinuous transverse shear stress distributions through
the thickness as indicated by Reddy (1989). In layerwise models,
all plate degrees of freedom are introduced in each layer of the
laminate and continuity conditions are enforced between layers.
The reader can refer to Reddy (1989) and Carrera (2002) for de-
tailed reviews of kinematic approaches and to Naciri et al.
(1998), Diaz Diaz et al. (2001, 2007), Hadj-Ahmed et al. (2001), Car-
on et al. (2006), and Dallot and Sab (2008) for static approaches.
Layerwise models lead to correct estimates of local 3D fields. How-
ever, their main drawback is that they involve a number of degrees
of freedom proportional to the number of layers. The limitation is
immediately pointed out with functionally graded materials,
where the plate constituents properties vary continuously through
the thickness (Nguyen et al., 2008a,b).

In the first part of this work (Lebée and Sab, 2010a) we revisited
the use of 3D equilibrium in order to derive transverse shear stress
as Reissner (1945) did for homogeneous plates. Thanks to standard
variational tools, this led us to an Equivalent Single Layer plate the-
ory which takes accurately into account shear effects and does not
require any specific constitutive material symmetry: the Bending-
Gradient theory. This plate theory is identical to the Reissner–
Mindlin plate theory in the case of homogeneous plates. However,
for laminated plates, shear forces are replaced by the gradient of
the bending moment R ¼M� $. Hence, this theory belongs to
the family of higher-order gradient models. The mechanical
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http://dx.doi.org/10.1016/j.ijsolstr.2011.06.005
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meaning of the bending gradient was identified as self-equilibrated
static unknowns associated to warping functions in addition to
conventional shear forces.

The purpose of the present paper is to derive closed-form solu-
tions for the Bending-Gradient model in the case of cylindrical
bending and compare them to the exact solutions from Pagano
(1969, 1970a,b) and to other approaches commonly used.

This paper is organized as follows: First, in Section 2, notations
are briefly introduced. Then, in Section 3, the Bending-Gradient
model is recalled, Voigt notation is introduced and the influence
of material symmetries is also considered. In Section 4, cylindrical
bending closed-form solutions are derived and applied to lami-
nates. Finally, comparison with approximations based on Reiss-
ner–Mindlin theory and discussion on results are provided in
Section 5.
2. Notations

Plate models involve 2-dimensional (2D) tensors of several or-
ders. Vectors and higher-order tensors are boldfaced and different
typefaces are used for each order: vectors are slanted: T, u. Second
order tensors are sans-serif: M, e. Third order tensors are in type-
writer style: , . Fourth order tensors are in calligraphic style
D; c. Sixth order tensors are double stroked ; . For instance,
the fourth-order tensor c ¼ cabcd with Greek indexes a, b, c.. = 1,
2, denotes the plane-stress elasticity tensor. The identity for in-
plane elasticity is iabcd ¼ 1

2 ðdacdbd þ daddbcÞ, where dab is Kronecker
symbol (dab = 1 if a = b, dab = 0 otherwise). The transpose operation
t� is applied to any order tensors as follows: (tA)ab. . .wx = Axw. . .ba.

Three contraction products are defined, the usual dot product
(a � b = aaba), the double contraction product (a :b = aabbab) and a
triple contraction product (A ) B = AabcBcba). In these definitions
Einstein’s notation on repeated indexes is used. It should be no-
ticed that closest indexes are summed together in contraction
products. Thus, � n = abcnc is different from n � = na abc.

The derivation operator $ is also formally represented as a vec-
tor: a � $ ¼ aabrb ¼ aab;b is the divergence and a� $ ¼ aabrc ¼ aab;c

is the gradient. Here � is the dyadic product.
In this paper, Voigt notation is also introduced. Brackets [�] are

used to denote that a tensor is considered in a matrix form. More-
over, matrices and vectors of several dimensions are defined. Vec-
tors and matrices are 2D by default. In other cases, a tilde e� denotes
dimension 3: eU denotes a 3D vector and ~f denotes a 3 � 3 matrix.
The related components are indexed with Latin indexes, i, j,k. . . = 1,
2, 3: fij. A hat b� denotes dimension 6: bP denotes a 6 � 6 matrix.

Finally, the integration through the thickness is noted h�i:R h
2

�h
2

f ðx3Þdx3 ¼ hf i.

3. The Bending-Gradient plate model

3.1. Summary of the plate model

We consider a linear elastic plate of thickness h which mid-
plane is the 2D domain x � R2 (Fig. 1). Cartesian coordinates
(x1,x2,x3) in the reference frame ð~e1; ~e2; ~e3Þ are used. The local stiff-
Fig. 1. The plate configuration.
ness tensor Cijklðx3Þ is assumed to be invariant with respect to
translations in the (x1,x2) plane and the plate is loaded exclusively
with the out-of-plane distributed force ~p ¼ p3~e3.

The membrane stress N, the bending moment M, and shear
forces Q are related to the actual 3D local stress by the following
equations:

Nabðx1; x2Þ ¼ hrabi ðaÞ
Mabðx1; x2Þ ¼ hx3rabi ðbÞ
Qaðx1; x2Þ ¼ hra3i ðcÞ

8><>: ð1Þ

Moreover, we introduce the gradient of the bending moment
R = M � $. The 2D third-order tensor R complies with the following
symmetry: Rabc = Rbac. It is possible to derive shear forces Q from R
as: Q ¼ i ) R.

Equilibrium equations and boundary conditions involving stress
fields were derived in Part I and are gathered in the set of statically
compatible fields:

N � $ ¼ 0 on x ðaÞ
M� $�R ¼ 0 on x ðbÞ
ði ) RÞ � $ ¼ �p3 on x ðcÞ
N � n ¼ Vd on @xs ðdÞ
M ¼Md on @xs ðeÞ
ði ) RÞ � n ¼ Vd

3 on @xs ðfÞ

8>>>>>>>>><>>>>>>>>>:
ð2Þ

where @xs is the portion of edge on which static boundary condi-
tions apply: eV d is the force per unit length and Md the full bending
moment enforced on the edge. This set of equations is almost iden-
tical to Reissner–Mindlin equations where shear forces have been
replaced by the bending gradient R.

Generalized stresses N, M, and R work respectively with the
associated strain variables: e, the conventional membrane strain,
v the curvature and the generalized shear strain. These strain
fields must comply with the following compatibility conditions
and boundary conditions:

e ¼ i : ð$� UÞ on x ðaÞ
v ¼ � $ on x ðbÞ
¼ þ i � $U3 on x ðcÞ
� n ¼ Hd on @xk ðdÞeU ¼ eU d on @xk ðeÞ

8>>>>>><>>>>>>:
ð3Þ

where eU is the average through the thickness of the 3D displace-
ment of the plate and is the generalized rotation. and are
2D third-order tensors with the following symmetry: abc = bac.
Moreover, @xk is the portion of edge on which kinematic boundary
conditions apply: eU d is a given displacement and Hd is a symmetric
second-order tensor related to a forced rotation on the edge. These
fields are almost identical to Reissner–Mindlin kinematically com-
patible fields where the rotation pseudo-vector is replaced by the
generalized rotation .

Finally, for constitutive material following local monoclinic
symmetry with respect to (x1,x2) plane (uncoupling between R
and (N,M)) the Bending-Gradient plate constitutive equations are
written as:

N ¼ A : eþB : v ðaÞ
M ¼ tB : eþD : v ðbÞ
¼ ) R; where ðI� ) Þ ) ¼ 0 ðcÞ

8><>: ð4Þ

where conventional Kirchhoff–Love stiffnesses are defined as
ðA;B;DÞ ¼ 1; x3; x2

3

� �
cðx3Þ

� �
. The 2D sixth order tensors1 and
1 fabcd�f follows major symmetry: fabcd�f ¼ ff�dcba and minor symmetry
fabcd�f ¼ fbacd�f . Thus there are only 21 independent components.
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are the generalized shear compliance and stiffness. Their definition is
detailed in Section 4.2 of the present work. Moreover, I is the related
identity tensor ðIabcd�f ¼ iab�fdcdÞ. The solution of the plate model
must comply with the three sets of Eqs. (2)–(4). The compliance
is positive. However when is not definite, there is a set of solutions,
up to a self-stress field.

3.2. Voigt notations

In this section, we introduce Voigt notation in order to turn con-
traction products into conventional matrix products. Brackets [�]
are used to denote that a tensor is considered in a matrix form.
Thus [�] is a linear operator, reallocating tensor components.

For instance, the bending moment is reallocated in a vector
form:

½M� ¼
M11

M22ffiffiffi
2
p

M12

0B@
1CA ð5Þ

as well as N, e and v, and the fourth-order compliance tensor d is
reallocated in a matrix form so that constitutive equation (4b) be-
comes a vector–matrix product:

½d� ¼
d1111 d2211

ffiffiffi
2
p

d1211

d2211 d2222

ffiffiffi
2
p

d1222ffiffiffi
2
p

d1211

ffiffiffi
2
p

d1222 2d1212

0B@
1CA ð6Þ

as well as the stiffness tensor D. This is also done to the other Kir-
chhoff–Love compliances a; b, and stiffnesses A;B and also to the
plane-stress stiffness tensor c.

The same procedure is applied to shear variables and the corre-
sponding constitutive equation. Shear static unknowns are reallo-
cated in a vector form,

½R� ¼

R 111

R221ffiffiffi
2
p

R121

R112

R222ffiffiffi
2
p

R122

0BBBBBBBB@

1CCCCCCCCA
ð7Þ

as well as and ; and the constitutive sixth-order tensor is turned
into a 6 � 6 matrix:

½ � ¼

f111111 f111122

ffiffiffi
2
p

f111121 f111211 f111222

ffiffiffi
2
p

f111221

f221111 f221122

ffiffiffi
2
p

f221121 f221211 f221222

ffiffiffi
2
p

f221221ffiffiffi
2
p

f121111

ffiffiffi
2
p

f121122 2f121121

ffiffiffi
2
p

f121211

ffiffiffi
2
p

f121222 2f121221

f112111 f112122

ffiffiffi
2
p

f112121 f112211 f112222

ffiffiffi
2
p

f112221

f222111 f222122

ffiffiffi
2
p

f222121 f222211 f222222

ffiffiffi
2
p

f222221ffiffiffi
2
p

f122111

ffiffiffi
2
p

f122122 2f122121

ffiffiffi
2
p

f122211

ffiffiffi
2
p

f122222 2f122221

0BBBBBBBBB@

1CCCCCCCCCA
ð8Þ

Finally, when using Voigt matrices components, the same typeface is
used. The number of indexes indicates unambiguously whether it is
the tensor component or the matrix component: f222221 is the tensor
component of and f56 ¼

ffiffiffi
2
p

f222221 is the matrix component of ½ �.

3.3. Symmetries

The effects of material symmetries on uncouplings have been
presented in Part I. The main result is that (N,M) and bending gra-
dient (R) are uncoupled when the local elasticity tensor Cijklðx3Þ fol-
lows monoclinic symmetry with respect to (x1,x2) plane for all x3.
Under this assumption, which is valid for most of applications
involving laminated materials, it is possible to point out the influ-
ence of the invariance of the plate’s overall configuration on the
constitutive equations. Regarding the Kirchhoff–Love constitutive
equation, we just recall that when the plate is overall symmetric
with respect to its mid-plane there is uncoupling between mem-
brane stresses and bending moments: B ¼ 0. This symmetry is of-
ten called mirror symmetry. Regarding the generalized shear
constitutive equation, the in-plane transformations of f are identi-
cal to those for in-plane strain-gradient elasticity. Auffray et al.
(2009) give a detailed analysis of this issue. We provide here a very
brief description of their conclusions.

Let us consider an isometry of the (x1,x2) plane, P: tP � P = d. The
transformation of by P; 	 is given by:
	
abcd�f ¼ PagPbhPciPdjP�kPfl ghijkl ð9Þ

It can be rewritten with Voigt notation as:

½ �	 ¼ bP � ½ � � t bP ð10Þ

where bP is a 6 � 6 matrix which components are explicitly known
in terms of the components of P. For a rotation, Pr ¼

cos h � sin h
sin h cos h

� �
, and bPr is the 6 � 6 matrix:

bPr ¼

c3 cs2 �
ffiffiffi
2
p

c2s �c2s �s3
ffiffiffi
2
p

cs2

cs2 c3
ffiffiffi
2
p

c2s �s3 �c2s �
ffiffiffi
2
p

cs2ffiffiffi
2
p

c2s �
ffiffiffi
2
p

c2s ðc2 � s2Þc �
ffiffiffi
2
p

cs2
ffiffiffi
2
p

cs2 �ðc2 � s2Þs
c2s s3 �

ffiffiffi
2
p

cs2 c3 cs2 �
ffiffiffi
2
p

c2s

s3 c2s
ffiffiffi
2
p

cs2 cs2 c3
ffiffiffi
2
p

c2sffiffiffi
2
p

cs2 �
ffiffiffi
2
p

cs2 ðc2 � s2Þs
ffiffiffi
2
p

c2s �
ffiffiffi
2
p

c2s ðc2 � s2Þc

0BBBBBBBBB@

1CCCCCCCCCA
where c and s stand respectively for cosh and sinh. When P is a

reflection through e2 normal plane, Pm ¼ 1 0
0 �1

� �
and we have:

bPm ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 �1 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
If the laminated plate is invariant with respect to an isometry P,
then we have the following 21 linearly dependent equations:

½ � ¼ bP � ½ � � t bP
Isotropy. A plate configuration is isotropic if its constitutive equa-
tion is both invariant by any planar rotation ðbPrÞ and reflection
ðbPmÞ. With this assumption, four independent constants still remain
ðf11; f12; f22; f26Þ and is positive definite:

½ � ¼

f11 f12 0 0 0 f11�f22ffiffi
2
p � f26

f12 f22 0 0 0 f26

0 0 f11þf22
2 � f12 f26

f11�f22ffiffi
2
p � f26 0

0 0 f26 f22 f12 0
0 0 f11�f22ffiffi

2
p � f26 f12 f11 0

f11�f22ffiffi
2
p � f26 f26 0 0 0 f11þf22

2 � f12

0BBBBBBBBBB@

1CCCCCCCCCCA
ð11Þ

It is possible to simplify further this constitutive equation when
a laminate is a stack of plies with different isotropic constitutive
materials (this symmetry is also valid for some functionally graded
materials, Nguyen et al., 2008a,b). We use the spectral decomposi-
tion of plane stress stiffness:

cðx3Þ ¼
2mðx3ÞEðx3Þ
1� m2ðx3Þ

jþ Eðx3Þ
1þ mðx3Þ

i
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where E is the Young modulus, m Poisson’s ratio and jabcd ¼
1=2dabdcd. Deriving directly the constitutive equation (29) with this
decomposition enables us to demonstrate that f26 ¼ �f12. Three
independent constants f11; f12; f22 still remain and is no more
invertible:

¼ ðf11 þ f22 þ 2f12Þi � i� 2ðf22 þ f12Þðj � iþ i � jÞ þ f22j � j ð12Þ

Finally, for a plate with a homogeneous and isotropic constitu-
tive material, we have demonstrated that the Bending-Gradient
model is turned into a Reissner–Mindlin plate model and that
f ¼ 6

5Gh i � i in Part I. This is rewritten as

½ � ¼ 6
5Gh

1 0 0 0 0 1=
ffiffiffi
2
p

0 0 0 0 0 0

0 0 1=2 0 1=
ffiffiffi
2
p

0

0 0 0 0 0 0

0 0 1=
ffiffiffi
2
p

0 1 0

1=
ffiffiffi
2
p

0 0 0 0 1=2

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
ð13Þ

In this case: f11 ¼ 6
5Gh and f12 ¼ f22 ¼ 0 which is different from the

general case of a layered plate made of different isotropic constitu-
tive materials (Eq. (12)). Consequently, even for these laminates, the
Bending-Gradient model is a priori not a Reissner–Mindlin model.
This is mainly because the different Poisson’s ratios in each layer
generates warping. When Poisson’s ratio is uniform through the
thickness, the constitutive equation is such that f12 ¼ f22 ¼ 0 and
for conventional isotropic materials, the warping effect remains
very limited, leading to a quasi homogeneous constitutive equation.
4. Closed-form solution for Pagano’s configuration

4.1. Plate closed-form solution

Pagano (1969) gives an exact solution for cylindrical bending of
simply supported composite laminates. We choose the same con-
figuration for the Bending-Gradient model. The plate is invariant
and infinite in x2 direction. It is out-of-plane loaded with
p3(x1) = �p0 sinjx1 where k ¼ 1=j ¼ L

np ;n 2 INþ	 is the wavelength
of the loading (Fig. 2).

The plate is simply supported at x1 = 0 and x1 = L with traction
free edges:

U3ð0Þ ¼0; U3ðLÞ ¼ 0; Mð0Þ ¼ 0; MðLÞ ¼ 0;

Nð0Þ � e1 ¼0; NðLÞ � e1 ¼ 0 ð14Þ

In these boundary conditions, M22(0) = M22(L) = 0 is the additional
boundary condition compared to the Reissner–Mindlin plate model.
This boundary condition is very similar to the one which applies to
the bimoment on a free section in Vlasov (1961) beam theory. It
takes into account free edge effects similar to those described in
Lebée and Sab (2010b) for periodically layered laminate.
Fig. 2. Pagano’s (1969) cylindrical bending configuration (n = 1).
The solution is obtained as follows: First, the x2-invariance leads
to several simplifications and some unknowns vanish. Second, rel-
evant equations and unknowns are gathered into a differential sys-
tem and the closed-form solution is derived.

4.1.1. Simplifications related to x2-invariance
Membrane solution. Since (N,M) fields are uncoupled from shear

fields, it is possible to solve separately the membrane part of the
plate model. Hence, the x2-invariance in the membrane strain def-
inition (3a) enforces e22 = U2,2 = 0. Moreover, boundary conditions
(2d) and equilibrium equation (2a) for membrane stresses lead
easily to N11 = N12 = 0. However, N22, e11 and e12 remain
undetermined.

Curvatures. Curvatures are defined by Eq. 3: vab = Uabc,c. Taking
into account x2 invariance leads to:

½v� ¼
v11

v22ffiffiffi
2
p

v12

0B@
1CA ¼ U111;1

U221;1ffiffiffi
2
p

U121;1

0B@
1CA ¼ U1;1

U2;1

U3;1

0B@
1CA ð15Þ

Kirchhoff–Love constitutive equation. Kirchhoff–Love constitutive
equations (4a) and (4b) are written with Voigt notation in the in-
verse form as:

½e� ¼ ½a� � ½N� þ ½b� � ½M� ð16aÞ
½v� ¼ t ½b� � ½N� þ ½d� � ½M� ð16bÞ

where ½a�; ½b� and ½d� are Kirchhoff–Love compliance matrices.
Taking into account N11 = N12 = 0 and e22 = 0 enables us to re-

write Kirchhoff–Love constitutive equation in a compact form as:

½v� ¼ ½d�	 � ½M� ð17Þ

where

d	ij ¼ dij �
b2ib2j

a22

is the effective flexural stiffness taking into account e22 = 0 con-
straint. N22, e11 and e12 are then derived directly from the bending
moment using equations:

ei ¼ bij �
ai2b2j

a22

� �
Mj and N2 ¼ �

b2i

a22
Mi ð18Þ

Equilibrium. The x2 invariance in the bending gradient equilibrium
equation (2b) enforces:

R1

R2

R3

R4

R5

R6

0BBBBBBBB@

1CCCCCCCCA
¼

M11;1

M22;1ffiffiffi
2
p

M12;1

0
0
0

0BBBBBBBB@

1CCCCCCCCA
ð19Þ

and transverse loading equilibrium equation (2c) becomes:

M11;11 ¼ �p3ðx1Þ ð20Þ

Shear constitutive equation. Taking into account R4 = R5 = R6 = 0,
U3,2 = 0 and generalized shear strain definition (3c), Shear constitu-
tive equation (4c) is rewritten in two parts.

A first part with unknowns involving active boundary
conditions:

U1

U2

U3

0B@
1CA ¼ f11 f12 f13

f12 f22 f23

f13 f23 f33

0B@
1CA � M11;1

M22;1ffiffiffi
2
p

M12;1

0B@
1CA� U3;1

0
0

0B@
1CA ð21Þ

and a second part which enables the derivation of U4, U5, U6 on
which no boundary condition applies:
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U4

U5

U6

0B@
1CA ¼ f41 f42 f43

f51 f52 f53

f61 f62 f63

0B@
1CA � M11;1

M22;1ffiffiffi
2
p

M12;1

0B@
1CA� 0

0
U3;1=

ffiffiffi
2
p

0B@
1CA ð22Þ
4.1.2. Resolution
Final System. Finally, combining Eqs. (14), (15), (17), (20) and

(21), leads to the following set of equations which fully determines
the problem:

M11;11 ¼ p0 sinjx1 ðaÞ

½d�	 � ½M� � ~f � ½M�;11 ¼
U3;11

0
0

0B@
1CA ðbÞ

½M� ¼ 0 for x1 ¼ 0 and x1 ¼ L ðcÞ
U3 ¼ 0 for x1 ¼ 0 and x1 ¼ L ðdÞ

8>>>>>>>><>>>>>>>>:
ð23Þ

where for convenience, ~f is the 3 � 3 submatrix of ½ �:

~f ¼
f11 f12 f13

f12 f22 f23

f13 f23 f33

0B@
1CA

Once [M] is derived, the non-zero unknowns are derived using Eqs.
(18), (19) and (22).

Solution. Since ~f is positive and [d]⁄ is positive definite, the dif-
ferential system 23 is well-posed and the solution is the sum of a
particular solution and hyperbolic solutions of the homogeneous
equation. Boundary conditions applied to M vanish hyperbolic
solutions. There remains the particular solution:

½M� ¼
�1

g�1 � g

� �
p0k

2 sin jx1 and U3 ¼ �p0k
4ðg11 � tg � g�1 � gÞ sin jx1

ð24Þ

where

~g ¼ ½d�	 þ j2~f; g ¼
g22 g23

g23 g33

� �
; g ¼

g12

g13

� �
ð25Þ

The matrix ~g appears to be the effective flexural stiffness for cylin-
drical bending, corrected with shear effects. When j! 0; ~g ¼ ~d	

which yields exactly the Kirchhoff–Love solution.

4.2. Localization

Once the generalized stresses are derived, it is possible to recon-
struct local 3D fields, using the localization procedure described in
Part I. The local 3D stress ~rBG is the sum of three terms depending
linearly on the generalized stresses:

~rBG ¼ esðNÞ : Nþ esðMÞ : Mþ esðRÞ ) R ð26Þ

where

s
ðNÞ
ab�fðx3Þ ¼ cabcdðx3Þðadc�f þ x3bf�cdÞ and s

ðNÞ
i3�f ¼ 0 ðaÞ

s
ðMÞ
ab�fðx3Þ ¼ cabcdðx3Þðbdc�f þ x3ddc�fÞ and s

ðMÞ
i3�f ¼ 0 ðbÞ

s
ðRÞ
a3gf�ðx3Þ ¼ �

R x3

�h
2
cagcdðzÞðbdc�f þ zddc�fÞdz; sðRÞabgf� ¼ 0 and s

ðRÞ
33gf� ¼ 0 ðcÞ

8>>><>>>:
ð27Þ

and cðx3Þ is the local plane-stress stiffness tensor.
It is possible to rewrite Eq. (26) with Voigt notations as follows:

~rBG;nn ¼
rBG

11

rBG
22ffiffiffi

2
p

rBG
12

0B@
1CA ¼ ~sðNÞ � ½N� þ ~sðMÞ � ½M�
rBG;? ¼ rBG
13

rBG
23

 !
¼ sðRÞ � ½R�
where

~sðNÞðx3Þ ¼ ½c�ðx3Þ � ð½a� þ x3
t ½b�Þ

~sðMÞðx3Þ ¼ ½c�ðx3Þ � ð½b� þ x3½d�Þ

sðRÞðx3Þ ¼ �
Z x3

�h
2

scðzÞ : ðbþ zdÞtdz

~sðNÞ and ~sðMÞ are 3 � 3 matrices and sðRÞ is a 2 � 6 matrix. Straight
double stroked brackets s�t denote here the following matrix repre-
sentation of a fourth-order tensor:

sLt ¼
L1111 L1122

ffiffiffi
2
p

L1121 L1211 L1222

ffiffiffi
2
p

L1221

L2111 L2122

ffiffiffi
2
p

L2121 L2211 L2222

ffiffiffi
2
p

L2221

0@ 1A ð28Þ

This reallocation is also useful for the derivation of the shear
compliance tensor derived in Part I:

½ � ¼
Z h

2

�h
2

Z x3

�h
2

tscðzÞ : ðbþ zdÞtdz � Sðx3Þ �
Z x3

�h
2

scðzÞ : ðbþ zdÞtdz dx3

ð29Þ

where Sabðx3Þ ¼ 4Sa3b3ðx3Þ is the out-of-plane shear compliance
tensor.

Since is not always invertible, we introduce Moore–Penrose
pseudo inverse for the shear stiffness tensor :

¼ lim
j!0
ð ) þ j Þ�1

)

which is used in the constraint on generalized shear strain in Eq.
(4c).

Finally, the in-plane displacement localization was suggested in
Part I as:

uBG ¼ U � x3$U3 þ tðRÞ ) R ð30Þ

where

tðRÞa ¼
Z x3

�h
2

SafðzÞsðRÞf3bcdðzÞdzþ k
ðRÞ
abcd

 !
ð31Þ

and kðRÞ is chosen such as uðRÞa

D E
¼ 0. This is rewritten with Voigt

notation as:

uBG ¼ U � x3$U3 þ tðRÞ � ½R�

where

tðRÞðx3Þ ¼ �
Z x3

�h
2

SðzÞ �
Z z

�h
2

scðuÞ : ðbþ udÞtdudzþ skðRÞt
4.3. Application to laminates

4.3.1. Plate configuration
We consider angle-ply laminates. Each ply is made of unidirec-

tional fiber-reinforced material oriented at h relative to the bend-
ing direction x1. All plies have the same thickness and are
perfectly bounded. A laminate is denoted between brackets by
the successive ply-orientations along the thickness. For instance
[0�,90�] denotes a 2-ply laminate where the lower ply fibers are
oriented in the bending direction. When the laminate follows mir-
ror symmetry described in Section 3.3, only half of the stack is gi-
ven and the subscript s is added. Thus [30�,�30�]s means
[30�,�30�,�30�,30�].

The constitutive behavior of a ply is assumed to be transversely
isotropic along the direction of the fibers and engineering con-
stants are chosen similar to those of Pagano (1969):



Fig. 3. Bending gradient localization shear distributions through the thickness for a [0�,�45�,90�,45�]s laminate.
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EL ¼ 25� 106 psi; ET ¼ EN ¼ 1� 106 psi; GLT ¼ GLN ¼ 0:5� 106 psi

GNT ¼
ET

2ð1þ mNTÞ
¼ 0:4� 106 psi; mLT ¼ mLN ¼ mNT ¼ 0:25

where GNT has been changed to preserve transversely isotropic sym-
metry. L is the longitudinal direction oriented in the (x1,x2) plane at
h with respect to ~e1; T is the transverse direction and N is the normal
direction coinciding with ~e3.

Pagano (1969, 1970a,b) derived exact 3D elasticity solution of
this problem for a laminate loaded only on the upper face and free
on the lower face. In the present work we assume the plate is iden-
tically loaded on its upper and lower face to comply with the plate
model: Tþ3 ¼ T�3 ¼

p3
2 where T
3 is the normal traction on the upper

and lower face of the plate.
Table 1
The criterion DRM/BG for several laminates.

Stack [0�] [0�,90�] [0�,90�,0�,90�,0�,90�,0�,90�,0�] [0�,�45�,90�,45�]s

DRM/

BG
0 16.0% 4.63% 12.4%
4.3.2. Localization fields
Shear forces are related to the bending gradient as follows:

Q1 = R111 + R122 and Q2 = R121 + R222. Thus we suggested in Part I
the following signification for the bending gradient components:

R111 � R1: Cylindrical Bending part of Q1.
R221 � R2: Pure warping.
R121 � R3: Torsional part of Q2.
R112 � R4: Pure warping.
R222 � R5: Cylindrical Bending part of Q2.
R122 � R6: Torsional part of Q1.

In Fig. 3 are plotted localization shear stress distributions sðRÞ

derived in Section 4.2 corresponding to each components of R in
both directions for a quasi-isotropic laminate [0�,�45�,90�,45�]s.
All stress distributions are continuous and fulfill traction free
boundary conditions on the upper and lower faces of the plate.
For each direction there are four self-equilibrated stress distribu-
tion (hra3i = 0) associated to R2, R3, R4 and R5 for Direction 1 and
R1, R2, R4 and R6 for Direction 2. This explains the suggested signi-
fication for shear variables. We draw the reader’s attention to the
fact that, even if there are self-equilibrated stress distributions,
all distributions have comparable amplitude and none can be
neglected at this stage. Moreover, it is clear that torsion generates
different distributions than pure cylindrical bending, except in the
homogeneous case.
4.3.3. Distance between the Reissner–Mindlin and the Bending-
Gradient model

In Part I we introduced the relative distance between the Bend-
ing-Gradient model and a Reissner–Mindlin model, DRM/BG:

DRM=BG ¼ kf
Wk

k RMk
ð32Þ

where

k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ½ � : ½ �

p
ð33Þ

is the norm for Bending-Gradient compliance tensors and W is the
pure warping part of :

½ �W ¼ ½f� � 4
9

tsit � sit � ½ � � tsit � sit ð34Þ

DRM/BG gives an estimate of the pure warping fraction of the shear
stress energy. When the plate constitutive equation is restricted
to a Reissner–Mindlin one we have exactly DRM/BG = 0.

In Table 1, are given the values of DRM/BG for the laminates con-
sidered in this work. For a single ply, the criterion is zero since in
Part I we demonstrated that the Bending-Gradient model is exactly
a Reissner–Mindlin model in this case. However, when there are
several plies, the distance can be greater than 10%. Thus with these
laminates, the shear constitutive equation cannot be reduced to a
Reissner–Mindlin behavior.



Fig. 4. Finite element undeformed and deformed mesh for an anisotropic laminate.

Fig. 5. Normalized shear distribution r13 at x1 = 0 for a [0�,90�,0�,90�,0�,90�,
0�,90�,0�] laminate, L/h = 4, (r23 = 0: symmetry). (Ex: exact, BG: Bending-Gradient,
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5. Comparison with other single equivalent layer approaches

5.1. Other single equivalent layer approaches

5.1.1. The Reissner–Mindlin model with the approach from Whitney
(1972)

Closed-form solutions using the Reissner–Mindlin model were
derived in order to compare them with the Bending-Gradient.
The resolution of the cylindrical bending problem is quite similar
so it will not be detailed here. The work of Whitney (1972) was
used for deriving transverse shear stress distributions and shear
correction factors were taken into account into the shear constitu-
tive equation of the Reissner–Mindlin plate model.

Let us recall briefly the method. Whitney (1972) assumes the
plate is under cylindrical bending: Q1 = M11,1, Q2 = M12,1, e22 = 0
and v22 = 0 and derives transverse shear distribution ~rðQÞ;Wðx3Þ fol-
lowing a procedure almost identical to the one proposed in Part I.
Then he computes the shear correction factor defined as:

k2
1 ¼

fFSDT
11

h~rQ1 : eSðx3Þ : ~rQ1 i

where fFSDT
11 is the First Order Shear Deformation Theory shear com-

pliance: fFSDT = (FFSDT)�1 where FFSDT
ab ¼ hCa3b3ðx3Þi. The shear correc-

tion factor in the second direction k2 is derived in the same way
while rotating the plate of p/2. Once shear correction factors are de-
rived, the corrected shear stiffness FRM,W is defined as follows:

FRM;W ¼ k � FFSDT � k ð35Þ

where k ¼ k1 0
0 k2

� �
.

5.1.2. Finite element analysis
A comparison with a finite elements solution was also per-

formed on ABAQUS (2007). Since the Bending-Gradient is an Equiv-
alent Single Layer theory, conventional shell elements were chosen
(3 displacements and 3 rotations). Transverse shear fields with
conventional shell elements in ABAQUS (2007) are derived using
an approach very similar to Whitney (1972) where it is further-
more assumed that the plate overall constitutive equation is ortho-
tropic with respect to the main bending direction. S4, linear
quadrangle with full integration elements, were used. A conver-
gence test was performed comparing the FE mid-span deflection
URM,FE to the exact solution from Pagano (1969) UEx which ensures
that the FE error increment is 1/1000 of the error with the exact
solution ((URM,FE � UEx)/UEx). This study enforced the typical size
of an element lchar = h/5 where h is the plate thickness. For instance
when the slenderness is L/h = 4 there are 20 elements. Fig. 4 shows
a typical deformation of this mesh. Periodicity was enforced on lat-
eral edges of the strip in Fig. 4 by equating corresponding rotations
and displacements. Finally 61 section points were required as out-
put and section integration is performed during the analysis. The
number of section points is only an output parameter and has no
incidence on the convergence.

5.2. Error estimates

Two error estimates are introduced: the first one for the trans-
verse shear part of the stresses for which we introduce the follow-
ing seminorm:

krk2 ¼
Z L

0

Z h
2

�h
2

ra3Sa3b3rb3 dx3 dx1

and we define the relative error as:

DðrÞ ¼ kr
Ex � rk
krExk
where rEx is the exact shear stress distribution from Pagano (1969,
1970a,b). The second one is the mid-span deflection relative error:

DðU3Þ ¼
UEx

3 ðL=2Þ � U3ðL=2Þ
UEx

3 ðL=2Þ

where UEx
3 ðx1Þ ¼

uEx
3 ðx3Þh i

h is the plate deflection taken for the exact
solution.

5.3. Results

5.3.1. [0�, 90�, 0�, 90�, 0�, 90�, 0�,90�,0�] ply
In this section, we consider first a symmetric cross ply

[0�,90�,0�,90�,0�,90�,0�,90�,0�] laminate. In this case, the plate
configuration fulfills the assumptions made for the finite elements
approximation (orthotropic laminate). In Fig. 5, shear stress distri-
bution at x1 = 0 in Direction 1 is plotted for the exact solution from
Pagano (1969) rEx, the Bending-Gradient solution r(R), (Whitney’s,
RM, FE: finite elements, RM, W: Whitney (1972)).



Fig. 6. In-plane displacement distribution u1 at x1 = 0 for a [0�,90�,0�,90�,0�,90�,
0�,90�,0�] laminate, L/h = 4, (u2 = 0: symmetry). Fig. 8. Deflection error versus slenderness ratio for a

[0�,90�,0�,90�,0�,90�,0�,90�,0�] laminate (BG: Bending-Gradient, RM, FE: finite
elements, RM, W: (Whitney (1972)), KL: Kirchhoff–Love).
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1972) shear distribution r(Q),W and the finite elements solution
r(Q),FE. The slenderness ratio is set to L/h = 4 as conventionally done
when benchmarking plate models. The reader is referred to Whit-
ney (1972), Noor and Malik (2000), Yu et al. (2002), Nguyen et al.
(2005), Carrera (2003) among others. The three approximate solu-
tions yield the same distribution. The discrepancy with the exact
solution is well-known and associated to edge effects.

In Fig. 6 is plotted the in-plane displacement at x1 = 0 in Direc-
tion 1. The displacement is normalized with the mid-span Kirch-
hoff–Love deflection, UKL

3 . The Bending-Gradient approximation
follows closely the exact solution.

In Fig. 7 the transverse shear stress distribution error D(r) ver-
sus the slenderness ratio L/h is plotted for the Bending-Gradient
solution (BG), the finite elements solution (RM,FE) and the
closed-form Reissner–Mindlin solution (RM,WE). In Fig. 8 the
mid-span deflection error is also plotted versus the slenderness ra-
tio. Kirchhoff–Love deflection is also plotted as reference. The three
approximate solutions yield almost the same error both for deflec-
Fig. 7. Shear stress distribution error versus slenderness ratio for a
[0�,90�,0�,90�,0�,90�,0�,90�,0�] laminate, (BG: Bending-Gradient, RM, FE:finite
elements, RM, W: Whitney (1972)).

Fig. 9. Normalized shear distribution r13 at x1 = 0 for a [0�,90�] laminate, L/h = 4,
(r23 = 0: symmetry).
tion and transverse shear stress and converge as DðrBGÞ / h
L

� �2
with

the slenderness ratio.
5.3.2. [0�, 90�] ply
We consider now a non-symmetric cross ply [0�,90�] laminate.

The plate configuration still fulfills the assumptions made for the
finite elements approximation. In Fig. 9, shear stress distribution
in Direction 1 is plotted. Again, the three approximate solutions
yield the same distribution.

In Fig. 10 is plotted the in-plane displacement in Direction 1.
The Bending-Gradient approximation follows some trends of the
exact solution. However, there is a small discrepancy with the ex-
act solution.

In Fig. 11 the transverse shear stress distribution error D(r) ver-
sus the slenderness ratio L/h is plotted. In this case, (Whitney,
1972)’s solution converges with L/h whereas finite elements and
Bending-Gradient approximations do not converge and lead to
small residual errors (’10�3). In Fig. 12 the mid-span deflection er-
ror is also plotted versus the slenderness ratio. Again the three
approximate solutions yield almost the same error.



Fig. 10. In-plane displacement distribution u1 at x1 = 0 for a [0�,90�] laminate, L/
h = 4, (u2 = 0: symmetry).

Fig. 11. Shear stress distribution error versus slenderness ratio for a [0�,90�]
laminate.

Fig. 12. Deflection error versus slenderness ratio for a [0�,90�] laminate.
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5.3.3. [45�,�45�, 45�,�45�, 45�,�45�, 45�,�45�, 45�]ply
Now we take the initial 9-ply configuration and simply rotate it

45� with respect to the bending direction. It becomes a symmetric
and non-orthotropic [45�,�45�,45�,�45�,45�,�45�,45�,�45�,45�]
laminate. This configuration does not comply with the assump-
tions made for the finite elements approach. In Fig. 13 shear distri-
butions are compared to the exact solution. The Bending-Gradient
solution remains close to the exact solution. However finite ele-
ments and Whitney’s (1972) solution yield a different distribution
which is not as accurate as the Bending-Gradient. More precisely,
in Direction 2, the FE solution does not capture the change of slope
associated to the change of ply orientation.

In Fig. 14 is plotted the in-plane displacement in both direc-
tions. The Bending-Gradient approximation matches accurately
the exact solution. Especially, in Direction 2 the distribution fol-
lows a Zig-Zag shape. Thus the Bending-Gradient approximation
is able to capture this well-known feature of laminates displace-
ment fields.

In Fig. 15 the transverse shear stress distribution error versus
the slenderness ratio is plotted. Contrary to the finite elements
solution and Whitney’s (1972) solution, the Bending-Gradient
solution converges when the plate is slender. In Fig. 16 the mid-
span deflection error is also plotted versus the slenderness ratio.
The Bending-Gradient solution is the most accurate one for con-
ventional slenderness.

5.3.4. [45�,�45�] ply
Again we take the [0�,90�] ply and rotate it with respect to the

bending direction. This lead to a non-symmetric and non-orthotro-
pic ply [45�,�45�] and this configuration does not comply with the
assumptions made for the finite elements approach. The compari-
son is made in Fig. 17 for transverse shear stress. The Bending-Gra-
dient solution remains close to the exact solution and Whitney’s
(1972) solution yields acceptable results (except a mismatch for
rðQÞ;W23 ). However in this case, finite elements yields inappropriate
results: in Direction 1 the stress distribution does not respect mac-
roscopic equilibrium rFE

13

� �
– Q 1. We checked nevertheless that FE

nodal forces fulfills macroscopic equilibrium.
In Fig. 18 is plotted the in-plane displacement in both direc-

tions. The Bending-Gradient approximation matches accurately
the exact solution in Direction 1. In Direction 2 there is an offset
between the Bending-Gradient approximation and the exact solu-
tion, however the overall shape of the displacement is captured.

The inaccuracy of finite element and Whitney’s (1972) solutions
is again clear in Fig. 19 showing the transverse shear stress distri-
bution error versus the slenderness ratio whereas the Bending-
Gradient converges as DðrBGÞ / h

L

� �2
and both the (Whitney,

1972) and finite elements solutions lead to non negligible errors.
Again, in Fig. 20, the deflection error indicates that FE are too com-
pliant and that the Bending-Gradient is more accurate than the
Reissner–Mindlin solution.

5.3.5. Influence of the bending direction
As already mentioned, the finite elements approach makes

assumption on the overall plate configuration (orthotropy). How-
ever, in standard engineering application, even if the plate is ortho-
tropic, the bending direction does not often correspond to the
orthotropy axis. In order to illustrate this, we consider here the
cross ply [0�,90�] laminate with fixed slenderness L/h = 4 and we
rotate the bending directions (the plate’s overall configuration is
rotating relative to x3 axis). In Fig. 21 we plotted the deflection er-
ror with respect to the bending direction for the different approx-
imations. It is clear that the bending direction has a great influence
on the accuracy of the deflection. Even for the Reissner–Mindlin
approximation, the error can be four times greater than the error
for the Bending-Gradient.



Fig. 14. In-plane displacement distribution at x1 = 0 for a [45�,�45�,45�,�45�,45�,�45�,45�,�45�,45�] laminate, L/h = 4, (a) u1 and (b) u2.

Fig. 15. Shear stress distribution error versus slenderness ratio for a [45�,�45�,
45�,�45�,45�,�45�,45�,�45�,45�] laminate.

Fig. 16. Deflection error versus slenderness ratio for a [45�,�45�,45�,�45�,45�,
�45�,45�,�45�,45�] laminate.

Fig. 13. Normalized shear distribution in both directions at x1 = 0 for a [45�,�45�,45�,�45�,45�,�45�,45�,�45�,45�] laminate, L/h = 4, (a) r13 and (b) r23.
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Fig. 18. In-plane displacement distribution at x1 = 0 for a [45�,�45�] laminate, L/h = 4, (a) u1 and (b) u2.

Fig. 19. Shear stress distribution error versus slenderness ratio for a [45�,�45�]
laminate. Fig. 20. Deflection error versus slenderness ratio for a [45�,�45�] laminate.

Fig. 17. Normalized shear distribution in both directions at x1 = 0 for a [45�,� 45�] laminate, L/h = 4, (a) r13 and (b) r23.
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Fig. 21. Deflection error versus bending direction for a [0, 90�] laminate, L/h = 4.
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5.4. Discussion

We have numerically compared three approaches for deriving
an approximation of the exact solution for cylindrical bending sug-
gested by Pagano (1969, 1970a,b) applied to two cross-ply config-
urations (one mirror-symmetric and one non-symmetric) and in
two bending directions.

The first main observation which comes out of this analysis is
the critical influence of the assumption of orthotropy with respect
to the bending direction. When this assumption is fullfilled, the
three approximations lead to almost identical results. Otherwise,
both Whitney’s (1972) and Finite Element approximations lead
to poor estimation of transverse shear stress distribution and
deflection. In the case of finite elements this is because we do
not respect the assumption of the model. In the case of Whitney
(1972), the main reason for this discrepancy comes from the
assumption of cylindrical bending. This assumption neglects the
influence of the pure warping unknowns included in the bending
gradient: R112 and R221 and generates the difference in shear stress
distribution and therefore in deflection.

The second observation is that a simple rotation of the plate
with respect to the bending direction leads to very different trans-
verse shear stress distribution. This shows clearly the necessity to
distinguish between torsion and cylindrical bending components
in the gradient of the bending moment. In most plate models they
are mixed into shear forces (Q1 = R111 + R122), whereas, as illus-
trated in Section 4.3.2, the components R111 and R122 lead to differ-
ent transverse shear stress distributions. This explains the
significant difference when changing the bending direction. More
generally, this raises the question of the relevence of benchmark-
ing plate models in configurations where only the cylindrical part
of the bending gradient is involved whereas laminated plate engi-
neering applications involves much more general configurations.

Finally, the Bending-Gradient solution was presented. When the
plate follows mirror symmetry, this model gives a very good
approximation of both local and macroscopic fields at a rather
low computational cost (no post-process integration through the
thickness and Reissner–Mindlin-like partial derivative equations).
Moreover, it was numerically demonstrated that the Bending-Gra-
dient solution asymptotically converges to the exact solution as
the slenderness ratio goes to infinity. Thus, with mirror-symmetric
laminates, the Bending-Gradient solution is the Saint-Venant solu-
tion for an out-of-plane loaded plate.
When the laminate is not mirror-symmetric, the Bending-Gra-
dient gives less accurate results: the transverse shear distribution
or the related in-plane displacement might not exactly converge
to the exact solution. Several explanations are currently under
investigation. Especially, in Part I we indicated that it was our
choice to neglect the contribution to the stress energy of the mem-
brane stress gradient, N� $. Neglecting this contribution explains
the discrepancy observed when the membrane stress in not zero,
which occurs when the plate is not mirror-symmetric.

Finally, in Part I we pointed out that the relevance of introduc-
ing the full bending gradient might be questionable since the
Bending-Gradient is sometimes turned into a Reissner–Mindlin
model. In the present paper, we provide answers. On the one hand,
when dealing with highly anisotropic laminates, it is clear that all
localization fields are relevant (see Section 4.3.2) and the distance
with Reissner–Mindlin presented in Section 4.3.3 fully justifies the
use of the Bending-Gradient. Furthermore, in upcoming work, the
Bending-Gradient theory will be applied to periodic plates. It ap-
pears that the distance between Reissner–Mindlin and Bending-
Gradient models is almost up to 80% with very common patterns.
On the other hand, when studying the influence of isotropy on the
shear constitutive equation in Section 3.3 we indicated that only
Poisson’s effect has an influence on warping. Since most conven-
tional materials have almost identical Poissons’s ratios, it is more
relevant to use a Reissner–Mindlin model in these cases. Eventu-
ally, the distance between Reissner–Mindlin and Bending-Gradient
models is an efficient tool for deciding which model is the most
relevant.
6. Conclusion

In the present paper, we provided first applications using the
Bending-Gradient plate theory. We introduced Voigt notation
which enables easier analytical computations and prepares finite
elements implementation. Then the influence of material symme-
tries was associated to in-plane strain gradient elasticity. Closed-
form solutions for cylindrical bending were fully derived, applied
to laminates and compared to Reissner–Mindlin and finite ele-
ments approximations. The main conclusion is that the Bending-
Gradient gives good predictions of both deflection and shear stress
distributions in many material configuration. It is also the Saint-
Venant solution when membrane stresses are fully uncoupled from
bending moments and generalized shear stresses. Finally, with
usual laminated plates, we demonstrated that the Bending-Gradi-
ent cannot be reduced to a Reissner–Mindlin plate model.

Several outlooks are under consideration. First, this plate theory
can be extended to periodic plates such as sandwich panels (Lebée
and Sab, 2010c; Lebée and Sab, 2010d). Second, the estimation of
the influence of the membrane stress gradient on the quality of
the shear stress estimation should be studied in detail. Finally,
since we have a Saint-Venant solution, it is worth analyzing the
shift with more refined approximations such as layerwise models
or even full 3D finite elements when it is necessary to locally refine
the analysis as illustrated in Amini et al. (2009) among others.
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