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The displacement field in an intact Brazilian disc under the influence of a parabolically varying radial
pressure distribution acting along two symmetric arcs of its periphery is studied. The specific loading
type closely approaches the actual load-distribution as obtained by considering the specimen and the
load platen as a system of two elastic bodies in contact. The problem is solved adopting the complex
potentials method and a closed form full-field solution is proposed. The results of the theoretical analysis
for discs made either from Dionysos marble or PMMA are considered in juxtaposition to the respective
ones obtained for uniform radial pressure as well as for concentrated point load. Critical points related
to the variation of the displacement field in the immediate vicinity of the load platen-specimen interface
are enlightened. The accuracy of the solution is assessed by comparing the analytic results with the
experimental ones obtained from series of Brazilian-disc tests carried out using the standardized device
suggested by the international society for rock mechanics. The specimens were made from PMMA and
the 3D digital image correlation technique was employed for measuring the components of the displace-
ment field developed. It is proved that the experimental results are in very good qualitative and quanti-
tative agreement with the theoretical predictions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The most popular substitute of the direct tension test, especially
for specimens made from brittle geomaterials, is perhaps the Bra-
zilian-disc test, i.e. the diametral compression of short cylinders.
The test was introduced independently and almost simultaneously
(Machida, 1975; Fairbairn and Ulm, 2002) by Carneiro (1943) and
Akazawa (1943).

Two approaches are widely adopted nowadays for the standard-
ized laboratory execution of the test, i.e. the one suggested by the
international society for rock mechanics (ISRM, 1988) and that
suggested by the American society for testing and materials (ASTM,
1988). In the first one the disc is squeezed between curved metallic
jaws, of predefined curvature, representing a curve-to-curve con-
tact problem while in the latter the disc is compressed between
plane jaws corresponding to a curve-to-plane contact problem.

From the theoretical point of view the vast majority of studies
about the Brazilian-disc test do not take into consideration the
interaction between the loading platens and the specimen. In most
cases the disc is considered either under compressive point forces
across a diameter (Muskhelishvili, 1963; Colback, 1967; Claesson
ll rights reserved.
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rkoulis).
and Bohloli, 2002; Tong et al., 2007; Jianhong et al., 2009) or under
uniform pressure (radial or not) acting along two symmetric arcs of
arbitrarily predefined ‘‘small’’ length (Hondros, 1959; Fairhurst,
1964; Vardar and Finnie, 1975; Markides et al., 2010). It is exactly
the adoption of these two assumptions (point- or uniform-load and
constant length of the loaded arc) that jeopardizes the validity of
these approaches, although they are widely applied for practical
purposes with more or less satisfactory results. This is due to the
fact that the stress field at the center of the disc is more or less
insensitive to the exact variation of the external load applied along
the contact arc (Lavrov and Vervoort, 2002; Markides et al., 2011).
Obviously this is not the case in the immediate vicinity of the load
application area. Here the local stress field strongly depends not
only on the magnitude of the contact length but, also, on the exact
distribution of the radial pressure and perhaps friction, inevitably
appearing in case the specimen’s and jaw’s materials have different
elastic properties (Hooper, 1971; Wijk, 1978).

In this context an attempt is described here to cure (at least
partly) the above weaknesses by taking into account the ‘‘actual’’
distribution of radial pressure exerted on the disc by the metallic
jaw (loading platen) as it is obtained when the disc and the jaw
are considered as a system of two mutually interacting elastic
bodies in contact. Attention is focused to the test standardized
by ISRM which is based on the apparatus, shown in Fig. 1. The
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Fig. 1. Photo of the ISRM suggested device for the standardized realization of the
Brazilian-disc test, for discs with R = 50 mm.
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apparatus consists of two identical metallic jaws of curvature ra-
dius Rjaw equal to 1.5R (R is the disc-shaped specimen’ radius). It
is evident that in case the own weight of the jaws is ignored the
contact is initially realized along a mathematical line, i.e. the com-
mon generatrix of the two cylindrical surfaces. However, due to the
inevitable deformability of the jaw’s (which cannot be ignored
especially for specimens with elastic modulus comparable to that
of the jaws) and disc’s materials, as the external load exerted by
the loading frame increases the contact is realized along a curved
surface the projection of which on the disc’s cross section corre-
sponds to the contact arc (symmetric with respect to the vertical
axis of symmetry of the arrangement).

The present study is carried out taking advantage of a recent
paper (Kourkoulis et al., 2012) which provided an analytic solution
for the exact variation of the radial pressure along the contact arc
in terms of the disc’s and jaw’s radii, the elastic properties of the
specimen’s and jaw’s materials and the external load. Clearly the
configuration of a Brazilian disc under the above determined type
of radial pressure, acting along two predefined arcs of its periphery,
corresponds to a first fundamental problem of elasticity which is
here solved using the complex potentials method (Muskhelishvili,
1963) and assuming that the contact between the disc and the jaw
is smooth (i.e. ignoring any influence of friction stresses). The
solution of this problem provides the displacement field in closed
form for any point of the disc’s surface.

The solution obtained is considered in juxtaposition to the
familiar ones for diametral point-load and uniform distribution
of radial pressure, assuming static equivalence between the overall
loads. It is concluded that at the disc’s center the displacement
field is indeed completely insensitive to the exact load application
mode. On the contrary as the loaded rim is approached the situa-
tion changes dramatically, the solutions deviate from each other
and erroneous conclusions are drawn in case the actual loading
type is not taken into account.

The theoretically obtained field of displacements is compared
with the respective one obtained from a series of experiments real-
ized using the ISRM standardized device and the digital image cor-
relation (DIC) technique, which provides the displacements all over
the tested disc. Once the displacements are determined one can
calculate the strain field and then (assuming linear elasticity) the
components of the stress field. The specimens used in the experi-
mental protocol were made from Poly-Methyl-Meth-Acrylate
(PMMA) since its mechanical behaviour closely resembles that of
a linear elastic material. It is proved that the theoretical results
are in very good agreement (both qualitative and quantitative)
with the experimentally obtained ones both for displacements
and strains. The same is true for the extent of the contact rim,
although it is to be mentioned here that a convenient standardized
technique for the experimental measure of this quantity is not yet
available.

2. Theoretical preliminaries

2.1. The load distribution and the contact length

Consider a system composed of two linearly elastic bodies i.e.
the disc shaped specimen and the metallic jaws of the apparatus
proposed by ISRM (Fig. 1). Under the assumption of smooth contact
between disc and jaw the above configuration corresponds to a
plane mixed fundamental problem of classic linear elasticity. In
this context, employing Muskhelishvili’s complex potentials meth-
od for the familiar Hertz problem, Kourkoulis et al. (2012) obtained
the radial pressure distribution, P(s), exerted by the jaw to the disc
as (Fig. 2a):

PðsÞ ¼ 1
3RK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2

p
; K ¼ j1 þ 1

4l1
þ j2 þ 1

4l2
ð1aÞ

In Eq. (1a) indices 1 and 2 stand for the disc and the jaw, respec-
tively. R represents the disc’s radius while j1, j2 and l1, l2 are
the Muskhelishvili’s constants and the shear moduli of the disc’s
and jaw’s materials, respectively. The actual contact angle, xo, (or
equivalently the actual contact length, l,) was found equal to:

xo ¼
ffiffiffiffiffiffiffiffiffiffiffi
6KPo

pR

r
; 2‘ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6RKPo

p

r
ð1bÞ

Po is the load exerted by the loading frame, Pdev, normalized over
the disc’s thickness, w.

As it is seen from Eq. (1a) the interaction between jaw and disc
represents a radial pressure distribution corresponding to a circu-
lar arc (Fig. 2a). Its extent depends on the specimen’s radius, the
external load and the elastic properties of the disc and jaw’s
materials.

Given the variation of the radial pressure and the extent of the
arcs along which it acts one could proceed to the determination of
the displacement field in the disc. However, it is seen that for the
specific distribution of P(s) given by Eq. (1a) a closed form solution
can not be obtained. Therefore an alternative distribution, very clo-
sely resembling that of Eq. (1a), is introduced here (Fig. 2b) as:

PðsÞ ¼ p‘
8RK

1� s
‘

� �2
� �

ð2Þ

The distribution of Eq. (2) is statically equivalent to that of Eq. (1a)
since:Z þ‘

�‘

p‘
8RK

1� s
‘

� �2
� �

ds ¼
Z þ‘

�‘

1
3RK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 � s2

p
ds ¼ Po

Introducing now a Cartesian reference system at the center of the
disc (Fig. 2b) the following geometrical simplifications (for small
values of xo) can be adopted:

‘ � ‘0 ¼ R sin xo; s � s0 ¼ R cos#; xo ¼ Arc sin

ffiffiffiffiffiffiffiffiffiffiffi
6KPo

pR

r
; ð3aÞ

Then in the new coordinates system the pressure distribution of Eq.
(2) can be rewritten as:

Pð#Þ ¼ Pc 1� cos2 #

sin2 xo

� �
; Pc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3pPo

32KR

r
ð3bÞ

A circular disc (Fig. 3a) loaded by the radial pressure given by Eq.
(3b) along two finite arcs of its periphery (symmetric with respect
to its center) represents a first fundamental problem of classic



(a)

(b)

Fig. 2. (a) The contact problem: definition of symbols and the actual (cyclic) distribution of the radial pressure imposed by the jaw on the disc along the actual contact length
(�‘, + ‘). (b) The Brazilian disc under the parabolic radial pressure distribution considered in the present study.
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elasticity. The boundary conditions for the stresses on the disc
periphery L read as:

rþrrð#Þ ¼ �Pð#Þ ¼ �Pc 1� cos2 #

sin2 xo

� �
on the loaded rims of L; ð4aÞ

rþrrð#Þ ¼ 0 on the unloaded part of L ð4bÞ

Sign (+) indicates boundary values taken on L from the interior of
the disc.

2.2. The complex potentials

Following Muskhelishvili’s (1963) technique, based on the com-
plex potentials method, the disc is considered lying in the complex
planez = rei# (Fig. 3a). Points z on the disc’s periphery L are denoted
as t = Rei#. The end points of the loaded rims are denoted as tj j = 1,
2, 3, 4. The problem is first solved for the unit disc in the complex
plane f = qei#, Fig. 3(b). Points tj of L through the conformal map-
ping z = Rf correspond to points sj on the unit circle c, with s = ei#

the arbitrary point f on it. Eq. (4) are now rewritten for c as:

rþqqð#Þ ¼ �Pð#Þ ¼ �Pc 1� cos2 #

sin2 xo

� �
on the loaded rims of c;ð5aÞ

rþqqð#Þ ¼ 0 on the unloaded part of c ð5bÞ

The complex potentials for the problem of the unit disc are written
as (Markides et al., 2010):

UðfÞ ¼ 1
2pi

Z
c

rþqqðsÞ
s� f

ds� 1
4p

Z 2p

0
rþqqð#Þd# ð6Þ

WðfÞ ¼ 1
f2 UðfÞ þ 1

f2 U
1
f

� �
� 1

f
U0ðfÞ ð7Þ

Taking now into account that cos# ¼ ðsþ �sÞ=2 Eq. (5a) becomes:



Fig. 3. The conformal mapping.
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rþqqðsÞ ¼ �Pc 1� 1

4 sin2 xo

2þ s2 þ 1
s2

� �� �
ð8Þ

Combination of Eqs. (5) and (8) with Eq. (6) provides (after some
lengthy algebra) U(f) as:

UðfÞ¼ Pc

4pisin2 xo

f4þ1
2f2 þcos2xo

 !
‘n

s2
2�f2

s2
1�f2�

1
f2þcos2xo

� �
2ixo

" #

ð9Þ

Introducing U(f) from Eq. (9) in Eq. (7) gives for W(z):
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ð10Þ

For the real disc the complex potentials are obtained through the
conformal transformations f = z/R, sj = tj/R as:

UðzÞ¼ Pc
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2R2z2
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 !
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ð11Þ
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#
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3. The displacement field

Integrating the expressions of Eqs. (11) and (12) for U(z) and
W(z) the following formulae for u(z) and w(z) are obtained:
uðzÞ¼ Pc

4pisin2 xo

cos2xozþz4�3R4

6R2z

 !
‘n

t2
2�z2

t2
1�z2

þ iC‘n
t1�z
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"

�iC‘n
t2�z
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þ2i
sin2xo

3
�xo cos2xo

� �
zþ2ixoR2

z
�8ipRsin3 xo

3

#
ð13Þ

wðzÞ ¼ � Pc

4pi sin2 xo

3z4 þ R4

3z3 ‘n
t2

2 � z2

t2
1 � z2

þ iC‘n
t1 � z
t1 þ z

� iC‘n
t2 � z
t2 þ z

"

� 4ixoR4

3z3 þ 2iR2 sin 2xo

3z
þ 8ipR sin3 xo

3

#

ð14Þ

Concerning the constant C appearing in Eqs. (13) and (14) it holds
that:

C ¼ 4R
3
ðcos3 xo þ i sin3 xoÞ ð15Þ

In order for the above obtained u(z) and w(z) to provide a displace-
ment field compatible to the demand that the disc’s center must re-
main fixed (respecting the configuration of Fig. 3), the constant
term:

D ¼ 2PcR sinxo

3
ð16Þ

must be added to both of them in accordance to the concept of the
arbitrariness of the solution (Muskhelishvili, 1963).

Substituting u(z) and w(z) from Eqs. (13) and (14) in the famil-
iar polar expression for the displacements:

2lður þ iu#Þ ¼ e�2i#½juðzÞ � zu0ðzÞ � wðzÞ� ð17Þ

and taking under consideration Eq. (16), closed form expressions
can be obtained for the displacements in polar form. In compact
form, i.e. holding for both regions I and II of Fig. 3a, these expres-
sions read as:
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ur ¼
Pc

8plsin2 xo

ðj�3Þr3

6R2 þ ðjþ 1ÞR2

2r
þ3r4 � R4

3r3

" #(

� sin 2#‘n
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4. Comparative study of the displacement field for characteristic
load distributions

In order to quantitatively explore the main features of the above
solution two materials are considered for the disc: (a) Dionysos
marble with ED = 80 GPa and mD = 0.25 and (b) Poly-methyl-meth-
acrylate (commercially known as PMMA or Plexiglass) with
EP = 3.19 GPa and mP = 0.36). The specimens are cylindrical discs
of radius R = 0.05 m and width w = 0.01 m. Both cases are consid-
ered for the same external load equal to 11 kN. The load level
was selected based on experimental results (Kourkoulis et al.,
1999) indicating that for Dionysos marble the fracture stress under
tensile load is equal to about 7 MPa. According to the familiar for-
mula rtensile = (Pdev)/(pRW) it corresponds (for the specific geomet-
rical features) to a load equal to about 11 kN. Assuming for the
steel jaws an elastic modulus equal to Es = 210 GPa the ‘‘relative
deformability’’ (i.e. the ratio of the elastic moduli of the jaws over
that of the specimen) is equal to dD = 2.63 for Dionysos marble and
dP = 65.83 for the PMMA.

The results of the present solution concerning the displace-
ments due to the parabolic radial pressure distribution are consid-
ered in juxtaposition to the respective results of the solutions for
the two loading types most widely adopted in international litera-
ture: (i) concentrated (point or line in two or three dimensions,
respectively) load and (ii) uniformly distributed radial pressure.

For the point load and for Po = Pdev/w the displacement field
components are expressed (by just particularizing Muskhelishvili’s
(1963) general solution) as:

ur¼
Po

4pl
r
R

jþ R4�r4

R4þr4þ2r2R2 cos2#

 !
þ 2rRðR2 cos2#þr2Þ

R4þr4þ2r2R2 cos2#

"

�ðjþ1Þsin#‘n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þr2þ2rRsin#
R2þr2�2rRsin#

s

þðj�1Þcos# tan�1 Rþrsin#
rcos#

þ tan�1 R�rsin#
rcos#

�p
� ��

ð20Þ

u#¼
Po

4pl
2rRðr2�R2Þsin2#

R4þr4þ2r2R2 cos2#
�

"
ðjþ1Þcos#‘n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þr2þ2rRsin#
R2þr2�2rRsin#

s

�ðj�1Þsin# tan�1 Rþrsin#
rcos#

þtan�1 R�rsin#
rcos#

�p
� ��

ð21Þ

For the uniformly distributed radial pressure, Pc, the components of
the displacement field were given in closed form by Markides et al.
(2010) for Pc = Po/2Rxo = Pdev/(2Rwxo). The three loading cases con-
sidered are schematically represented in Fig. 4.

Concerning the loading angles (contact length) for the specific
load they are estimated (according to Eq. (3a)) equal to about
xo,D = 2.1� for Dionysos marble and xo,P = 8.8� for PMMA.

The results of the analysis for the radial displacements, ur, along
the disc’s periphery are plotted in Fig. 5 while those for the trans-
verse (hoop), uh, displacements are plotted in Fig. 6. As it is seen
from Fig. 5 all three loading types (parabolic, uniform and point
load) yield more or less identical results for the radial displace-
ments for the major part of the disc’s perimeter (small figures
embedded in Fig. 5(a,b)). ur is positive (directed outwards from
the disc) in the region 0� < h < hcr � 45� for marble (Fig. 5(a)) and
in the region 0� < h < hcr = 50� for PMMA (Fig. 5(b)) and becomes
negative (directed inwards to the disc) in the region hcr < h < 90�.
Significant differences between the results corresponding to the
three load cases appear only while closely approaching the loaded
rim. Indeed for 90� �xo < h < 90� the solutions start deviating from
each other. The radial displacement due to the point load gradually
exceeds the respective values due to the distributed loads and
as h approaches 90� ur becomes infinite. On the contrary the



Fig. 4. The loading types comparatively considered.
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displacements due to the uniform and parabolic load distribution
remain finite even for h = 90�. As it is perhaps expected for
h = 90� the radial displacement ur for the parabolic load exceeds
that for the uniform load both for Dionysos marble and PMMA.
The absolutely maximum values of the radial displacement due
to the distributed loads vary between 3.3 � 10�5 m and
3.6 � 10�5 m for marble and between 4.9 � 10�4 m and
5.5 � 10�4 m for PMMA; in other words there is a difference higher
than one order of magnitude.

Concerning now the transverse (hoop) displacements, uh, it is
seen from Fig. 6 that the solutions for the three loading types con-
sidered are again almost identical for the major part of the disc’s
periphery for both materials (small figures embedded in
Fig. 6(a,b)). Differences are again detectable only as one ap-
proaches the loaded rims. In the case of marble, loaded by either
uniform or parabolic load distributions, the transverse displace-
ments are negative for 0 < h < 77.2� and then they become positive
reaching a maximum value at an angle h � 88� (the end point of
the loaded rim), equal to about 3.1 � 10�6 m (Fig. 6(a)). Then the
displacements start decreasing reaching zero at h = 90�. The dis-
placements due to the point load significantly exceed those of both
the uniform and the parabolic load distributions reaching their
maximum value (equal to about 6.1 � 10�6 m) at an angle tending
to h = 90�. For PMMA (Fig. 6(b)) the overall behaviour is almost
identical, from a qualitative point of view. The main difference is
the behaviour for the uniform load distribution: The transverse
displacements are constantly negative for the whole disc’s
periphery.

The last conclusion becomes very important in case one intends
to consider friction effects between the disc and the loading plat-
ens. Indeed, as it schematically shown in Fig. 7, the tendency mo-
tion for marble in the loaded rim is inwards for both load
distributions (uniform and parabolic) and therefore friction is di-
rected outwards (Fig. 7a). On the contrary for PMMA the tendency
motion for the parabolic distribution (Fig. 7b1) is again inwards
(therefore friction is directed outwards) while for the uniform dis-
tribution (Fig. 7b2) the tendency motion is outwards (and there-
fore friction is directed inwards). It was found that increasing
further the load intensity (increasing also the extent of the loaded
rim) the inwards motion tendency for the parabolic load is in-
verted and the motion is directed outwards for both uniform and
parabolic distributions. It can be said therefore that it is not possi-
ble to a-priori decide about the direction of friction forces based
exclusively on the relative deformability of disc and platens
(Lavrov and Vervoort, 2002) but rather it is imperative to know
both the loading type and also the intensity of the external load.

5. Experimental study

5.1. Experimental procedure

In order to further assess the above analytic solution standard-
ized Brazilian-disc tests were carried out. The components of the
displacement-field developed were measured using a novel 3D
digital image correlation (DIC) system by LIMESS. DIC is a contact-
less video-based technique the theoretical foundation of which is
dated back to ’80s (Chu et al., 1985). A thorough description of
the background of DIC technique and its broad applications field
are given by Sutton et al. (2000). The main requirement that has
to be met for the successful use of DIC is that the specimen surface
must be covered with a speckle pattern which will provide the nec-
essary features for the matching process.

The specimens were cylindrical discs (radius R = 0.05 m, thick-
ness w = 0.01 m) made from PMMA. The choice of PMMA was



Fig. 7. Schematic representation of the displacements’ direction for (a) Marble and (b) PMMA under parabolic (b1) and uniform (b2) radial pressure distribution.
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based on the fact that its mechanical behaviour approaches in a
satisfactory manner that of a linear elastic material. After mechan-
ically shaping the specimens one of their lateral surfaces was
painted with white paint and then it was sprayed with a black aer-
osol until a uniform speckle pattern was produced (Fig. 8a).

Six experiments were executed using the standardized ISRM
apparatus mounted to a 50 kN electromechanical INSTRON loading
frame (Fig. 8b). A semi-spherical head interposed between the
upper jaw and the moving traverse of the frame ensured normality.
The experiments were quasi-static under displacement control
mode at a rate of 0.01 mm/min. The resulting compression force
was measured using a 25 kN load cell calibrated with a verified
Wykeham Farrance compression ring of sensitivity 10.62 N. The re-
sponse of the cell was linear throughout the whole load range of
interest and the deviation did not exceed 0.2%. In addition the dis-
placement rate was calibrated using a verified high mag micromet-
ric calibrator. Again the response was linear and the deviation did
not exceed 0.4%.
The ‘‘undeformed’’ specimen state was considered when it was
placed within the jaws before applying any external load. There-
fore in the ‘‘undeformed’’ state the specimen was in fact loaded
by the own weight of the upper jaw which is 58.85 N. During load-
ing, images of the deformed specimen were taken for load levels
ranging from 1 kN to 20 kN with an 1 kN interval. The maximum
load was kept relatively far from the fracture load to ensure that
the material indeed behaves linearly at least at regions far from
the loaded rim.

The scattering between the results of the six tests concerning
the displacements was almost negligible.

5.2. Experimental results

The variation of the Cartesian components of the displacement
field, ux and uy, all over the specimen’s surface for a load level equal
to 20 kN are shown in Fig. 9. In both figures the rigid body displace-
ments have been removed, using appropriate software. Then, in



Fig. 8. (a) Typical specimen as it is seen from the two cameras of the DIC system
after the speckle pattern is produced. (b) Overview of the experimental set-up.
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order for the analytically obtained results to be directly compara-
ble with the experimental ones, the latter were ‘‘corrected’’ by
removing the displacements corresponding to the vertical motion
of the x-axis (horizontal) of symmetry. Indeed according to the the-
oretical configuration the load is applied symmetrically on both
jaws and therefore x-axis remains fixed. On the contrary during
the experimental procedure only the upper jaw is moving (down-
wards) and therefore the displacements along y-axis are not sym-
metric with respect to the horizontal axis of symmetry unless the
above mentioned ‘‘correction’’ is realized. From Fig. 9, besides the
(expected) symmetry of ux-component with respect to y-axis and
that of uy-component with respect to x-axis, some interesting
quantitative data are obtained concerning the maximum values
of the displacements reached: for the ux-component (Fig. 9(a))
the extreme values are of the order of 0.25 mm while for the uy-
component (Fig. 9(b)) the respective value slightly exceeds
1.0 mm, i.e. it is about five times higher from ux.

The variation of the displacement components along the radii
with h = 0� and h = 90� (normalized over the disc’s radius, R) are plot-
ted in Fig. 10, together with the respective results of the analytic
solution, introduced above for the parabolic radial pressure
distribution. The plots are again realized for a load level equal to
20 kN. The agreement between theory and experiment is almost
excellent for the displacement developed along the h = 0� radius
(i.e. for the ur � ux component). Concerning the displacement along
the h = 90� radius (i.e. for the ur � uy component) it is observed that
the agreement is qualitatively satisfactory, however some quantita-
tive discrepancies appear. Namely, the experimental results system-
atically exceed the analytic ones. The maximum deviation, equal to
about 8%, is observed for r ? R. This discrepancy could be attributed
to the assumption of linear elasticity adopted in the analytic solu-
tion: In the immediate vicinity of the area where contact between
disc and platen is realized the material does not behave linearly
(even for low level loads) and therefore the actual displacements
are higher than those predicted by the analytic solution.

The polar variation of both the radial and the transverse (hoop)
displacement components along the disc’s periphery is plotted in
Fig. 11. Only the first quadrant (0� < h < 90�) is considered due to
the double symmetry of the displacements field (with respect to
both x- and y-axes). In fact the plots are realized along a quarter
of a circle of radius r = 0.95 R. This is dictated by practical restric-
tions since as r/R ? 1 the accuracy of the DIC technique is down-
graded by optical effects due to the geometric discontinuity at
r = R (the disc is thinner than the jaws). It is seen that uh is negative
all along the specific path while ur changes sign at an angle h be-
tween 46� and 50�. The qualitative agreement between theory
and experiment is very good. From the quantitative point of view
some deviations appear. For uh the maximum deviation is observed
around h = 45� and it varies around 18%. The experimentally mea-
sured values are slightly, but systematically, higher than the
respective theoretical ones. Concerning ur the maximum deviation
is observed at h = 90� and it varies around 8%.

Based on the displacements one can obtain the respective
strain- and (knowing the constitutive law) stress-fields. In this
direction the strain components developed along the h = 0� and
h = 90� radii are plotted in Figs. 12 and 13 as obtained from the
experimentally measured displacements. In the same figures the
analytically obtained strain components are plotted for compari-
son. The analytic solution is based on the stress field developed
in a Brazilian disc under parabolic radial pressure, as proposed re-
cently by Markides and Kourkoulis (in press), using Hooke’s gener-
alized law and assuming that PMMA behaves as a linear elastic
material. The components for the stress field are included in
Appendix I. It is mentioned, also, that the scattering of the experi-
mentally obtained strains is considerably higher from that exhib-
ited by the results for the displacements. This can be attributed
to the fact that the strains are obtained indirectly by differentiating
the results for the displacements. It is expected that slope mea-
surements are much more sensitive compared to those of displace-
ments. Finally it is recalled that the experimental results are, as
previously, restricted in the 0 < r/R < 0.95 region, for practical rea-
sons related to the application of the DIC technique.

It is seen from Fig. 12 (h = 0�) that the agreement between the-
ory and experiment is very satisfactory both qualitatively and
quantitatively. Especially for the radial strain, err, the discrepancies
are almost zero. For the transverse (hoop) strain, ehh, the maximum
deviation between the experimental and the analytic results is
measured at r/R � 0.5 and varies around 20%. Similar conclusions
are drawn from Fig. 13 (h = 90�). Again the agreement for err is
excellent while for ehh some deviations appear for r/R > 0.50. These
deviations are maximized at about r/R � 0.83 and they are of the
order of 15%.

5.3. The contact length

As a last step of the experimental study an attempt was under-
taken to assess the validity of Eq. (1b) (or equivalently Eq. (3a)),
providing the extent of the contact length, or equivalently the con-
tact angle, xo. Theoretically speaking the end-points of the contact
rim could be defined as the points where the contact stress be-
comes zero. Obviously this direct definition cannot be used in
experimental practice since stresses cannot be measured directly
and even more the contact stresses cannot be isolated from the
remaining components of the stress field. Therefore one should ac-
cept a different principle which could be applied experimentally. It
appears reasonable to assume that at the end-points of the contact
rim the polar distributions of the displacements and strains should
exhibit either changes of their curvature (points of inflection) or
extreme values (local or global), respectively.

The analytically determined polar distribution of the displace-
ment components along the disc’s periphery is plotted in Fig. 14,
for an overall load of 20 kN. Attention is focused in the region very
closely to the end points of the loaded rim. The dotted lines



Fig. 9. The field of (a) horizontal, ux- and (b) vertical uy- displacements for a load level equal to 20 kN. The rigid body movement has been removed.
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represent the critical angle ho as obtained from the theoretically
calculated (using Eq. (3a)) contact arc xo (for an external load
equal to 20 kN it is found that xo = 11.88�). It is seen that both
uh = uh(h) and ur = ur(h) curves exhibit their points of inflection very
close to ho = 90� �xo = 78.12�. In fact for uh the point of inflection
is at h � 76.5� while for ur at h � 80.5� (doubly dotted lines in
Fig. 14(a,b)).

Taking into account the above results the experimentally ob-
tained polar distribution of the strain components along the disc’s
periphery is plotted in Fig. 15 for the 70� < h < 90� interval. It is
seen from this figure that in the relatively narrow band
76.5� < h < 80.5� around ho = 78.12�, defined by the above points
of inflection (dashed rectangle in Fig. 15) the curves corresponding
to the normal strains exhibit their points of inflection while the
curve corresponding to the shear strain exhibits its global
minimum.

It should be emphasized however that this is a purely experi-
mental observation which is accurate within a given degree of
approximation. In addition it can be seen that around h = 78.12�
the polar distribution of strains is strongly fluctuating and all three
strain components exhibit various characteristic points (extrema
and points of inflection) which could be used as critical quantities
for the determination of xo.

Considering the above results it can be safely concluded that in
a first approximation the contact length can be equally well esti-
mated experimentally either from the points of inflection of the
polar distributions of displacements and normal strains or from
the points of global minimum of shear strain’s polar distribution.
In this context the theoretically predicted contact length, xo, is
plotted in Fig. 16, versus the externally applied load. In the same
figure the experimentally measured contact length is plotted con-
sidering its end points either as the points of inflection of the trans-
verse (hoop) displacement’s distribution or the points
corresponding to the global extremum of the shear strain’s distri-
bution (both realized along the disc’s periphery).

The qualitative agreement is indeed excellent, while from a
quantitative point of view the approach based on shear strain
seems to slightly overestimate the magnitude of the contact length
while the approach based on the transverse displacement slightly
underestimates it. The maximum deviation for the approach based
on displacements is about 20% (for a load equal to 12 kN) while for
that based on shear strain is about 10% (for a load equal to 10 kN).
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6. Discussion

An analytic, closed form, solution for the displacement field
developed in a Brazilian disc subjected to a parabolic radial pres-
sure distribution along two symmetric arcs of its periphery was
introduced. The specific loading type was adopted based on a re-
cent study of the jaw-disc contact problem (Kourkoulis et al.,
2012). Moreover the pressure was applied along a contact rim
the length of which is not arbitrarily predefined but rather along
a rim the length of which depends on the elastic properties of
the disc’s and jaw’s materials, the geometry and the level of the
external load. The solution was assessed using the results of a short
series of experiments in which the displacements were measured
using the DIC technique.

The comparative study of three different load types (uniform
and parabolic variation of the radial pressure and point load) indi-
cated that as long as one focuses attention at the center of the disc
all three solutions yield identical results. Serious discrepancies ap-
pear only as one approaches the jaw-disc interface. Ignoring the ac-
tual load variation in this region yields erroneous results since the
differences are not only quantitative: For the transverse (hoop) dis-
placements it was indicated that the loading type adopted influ-
ences their direction or in other words the direction of the
friction forces inevitably developed at the disc-jaw interface in
case they are made from materials with different deformability.
From a physical point of view this difference could be attributed
to the fact that a load distribution more intense near the vertex
point (the case of parabolic loading) forces material points close
to the vertex to move (shrink) inwards (uh positive). This tendency
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slowly reduces along the contact rim changing to an outwards
moving tendency (uh negative). On the other hand a relatively
smooth load around the vertex point (the case of uniformly distrib-
uted loading) does not cause such an inwards contraction of the
material points but rather it causes a monotonic increasing out-
wards motion tendency (uh constantly positive) along the contact
rim as well as out of it.

It is also important to note that the direction of the transverse
displacements along the loaded rim depends also on the load level
indicating that the direction of friction developed inverses its
direction during the loading procedure.

The last point is crucial in case friction forces are to be consid-
ered at the disc-jaw interface: contrary to the common practice,
according to which the direction of friction is dictated exclusively
by the relative deformability of the disc’s and jaw’s materials
(Lavrov and Vervoort, 2002), it was revealed that an a-priori deci-
sion about the direction of friction forces is not permitted: before a
decision is made one must take into account the loading type and
the intensity of the external load.

Clearly friction is among the points that should be further stud-
ied. The displacements here obtained could be used (assuming for
example that uh is somehow related to friction) to solve the respec-
tive problem with both radial and tangential loads along the
loaded rim. The main question to be answered is the relation
between radial and tangential loads since a typical Coulomb law
is inadequate.
7. Conclusions

The experimental study indicated that the solution here intro-
duced for the displacement field approaches satisfactory the actual
field developed in the disc under parabolically varying radial pres-
sure. The same is true for the strain field which was here deter-
mined analytically based on an earlier introduced solution for
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the stress field. Some discrepancies appearing can be attributed
either to the linear elastic assumption adopted in the theoretical
analysis or to the ‘‘small-angle’’ approximation (Eq. (3a)) which
for PMMA is perhaps on the borderline of its validity.

Concerning the analytic formula for the determination of the
contact length it must be emphasized from the very beginning that
there is not a standardized experimental technique for measuring
the contact angle. Both approaches adopted here (based on the
points of inflection of the displacements’ polar distribution and
on the points of global extrema of the shear strain’s polar distribu-
tion) seem to be satisfactory. It can not be yet definitely indicated
which one is better. Of course it could be said that since displace-
ments are directly measured (contrary to strains which are indi-
rectly calculated by differentiation) they are preferable, although
they underestimate (slightly but systematically) the values pre-
dicted by the analytic solution. Clearly the specific point should
be further studied using specimens made from different (more
brittle) materials, like marble or other rock-like geomaterials and
concrete.

Before concluding it is emphasized again that the solution pre-
sented for the displacement field is caused by a parabolically vary-
ing radial pressure distribution which is not identical to the actual
circular one (Eq. (1a)) obtained from the solution of the respective
contact problem. The reason is that analytic closed form expres-
sions from the displacement field cannot be obtained for the distri-
bution of Eq. (1a). On the other hand the parabolic distribution
chosen ((Eq. (2))) not only constitutes an efficient substitute
(reducing mathematical complexities) substitute but perhaps it ap-
proaches reality better: Indeed the cyclic distribution of P is ob-
tained for an approximately straight contact segment (�‘, + ‘)
according to Muskhelishvili’s (1963) approach for locally flattened
boundaries. It appears therefore that for an initially circular contact
region (�‘, + ‘) a parabolic distribution (of slightly increased inten-
sity at the vertex and slightly reduced intensity around the end
points of the loaded rim) could be more reasonable compared to
the perfectly circular. Such a conclusion seems to be supported
by a preliminary numerical study of the problem based on the fi-
nite element method. In any case although the difference between
the two distributions (parabolic and circular) is very small it is pos-
sible that the results obtained could be of reduced accuracy in the
immediate vicinity of the end points of the distribution. Clearly the
specific point must be further studied.
Appendix A

The stress field in a Brazilian disc loaded by a parabolic radial
pressure distribution is given in polar coordinates as follows
(Markides and Kourkoulis, in press):
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