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We study the coupled thermo-mechanical problem that is obtained by combining generalized standard
materials with Fourier’s law for heat conduction. The analysis is conducted in the framework of non-
smooth mechanics in order to account for possible constraints on the state variables. This allows models
of damage and phase-transformation to be included in the analysis. In view of performing numerical sim-
ulations, an incremental thermo-mechanical problem and corresponding variational principles are intro-
duced. Conditions for existence of solutions to the incremental problem are discussed and compared with
the isothermal case. The numerical implementation of the proposed approach is studied in detail. In par-
ticular, it is shown that the incremental thermo-mechanical problem can be recast as a concave maximi-
zation problem and ultimately amounts to solve a sequence of linear thermal problems and purely
mechanical (i.e. at a prescribed temperature field) problems. Therefore, using the proposed approach,
thermo-mechanical coupling can be implemented with low additional complexity compared to the iso-
thermal case, while still relying on a sound mathematical framework. As an application, thermo-mechan-
ical coupling in shape memory alloys is studied. The influence of the loading strain-rate on the phase
transformation and on the overall stress–strain response is investigated, as well as the influence of the
thermal boundary conditions. The numerical results obtained by the proposed approach are compared
with numerical and experimental results from the literature.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This paper focuses on coupled thermo-mechanical evolutions of
dissipative solids, in the geometrically linear (small strains) setting.
The framework of generalized standard materials in non-smooth
mechanics is considered (Halphen and Nguyen, 1975; Moreau
and Panagiotopoulos, 1988; Frémond, 2002). In that framework,
the local state of the material is described by the strain e, the tem-
perature h, and an internal variable a. The constitutive laws are
determined from the Helmholtz free energy w and a convex dissipa-
tion potential U. In its original form (Halphen and Nguyen, 1975),
that framework covers a wide range of elasto–plastic models,
including limited and nonlinear hardening. Its extension to non-
smooth mechanics has been extensively studied by Frémond
(2002) and allows constraints on the internal variable a to be taken
into account in a rigorous fashion. That feature is crucial for the
modelling of such phenomena as damage or phase-transformation,
as the internal variable in such cases is typically bounded. The
thermodynamic analysis of the media considered is presented in
Section 2, leading to a boundary value problem for the mechanical
and thermal fields. As pointed out by Yang et al. (2006), the time-
discretization of the thermo-mechanical evolution problem is a
sensitive issue because of the coupling between mechanical and
thermal equations. For instance, the Euler implicit scheme leads
to an incremental thermo-mechanical problem for which existence
of solutions cannot generally be ensured. This is in contrast with the
isothermal case, for which the Euler implicit scheme provides a
well-posed incremental problem under standard assumptions of
convexity on the functions w and U.

One objective of this paper is to propose a sound time-discret-
ization scheme for coupled thermo-mechanical problems, retain-
ing some essential features displayed by the Euler scheme in the
isothermal case (most notably the consistency with the rate prob-
lem and the existence of solutions). A central idea is the use of a
variational formulation for the incremental problem. Incremental
variational principles for dissipative solids have been the focus of
a lot of attention in recent years, offering new perspectives in var-
ious topics such as finite-strains elasto-viscoplasticity (Ortiz and
Stainier, 1999), homogenization (Miehe, 2002; Lahellec and
Suquet, 2007), formation and stability of microstructures (Ortiz
and Repetto, 1999; Miehe et al., 2004). Incremental variational
principles for coupled thermo-mechanical problems have been
proposed by Yang et al. (2006) in the case where the heat flux q
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derives from a potential v in ðrhÞ=h, i.e. when the heat conduction
law takes the form q ¼ �v0ððrhÞ=hÞ. In this paper, we stick with the
standard Fourier’s law of heat conduction q ¼ �Krh, which does
not fall in the format considered by Yang et al. (2006).

In Section 3 we introduce an incremental problem for the class
of coupled thermo-mechanical problems considered, along with a
corresponding variational formulation. The variational formulation
of the incremental thermo-mechanical problem serves two pur-
poses. First, it allows the existence of solutions to be studied, as
discussed in Section 3. Second, the variational formulation leads
to a convenient and efficient way of solving the incremental ther-
mo-mechanical problem. The latter can be indeed be recast as a
concave maximization problem, for which well-known algorithms
are available. As detailed in Section 4, an advantage of that ap-
proach is that the solution of the thermo-mechanical problem
can be obtained by solving a sequence of linear thermal problems
and purely mechanical (i.e. at prescribed temperature) problems.
This calls for an easy implementation in an existing finite-element
code. A crucial point in the analysis lies in the introduction of an
auxiliary linear problem, akin to the adjoint state used in optimal
control problems (Lions, 1968).

As an application, the proposed method is used in Section 5 to
study thermo-mechanical coupling in shape-memory alloys. The
significant role of thermal effects in shape-memory alloys has
notably been put forward by Peyroux et al. (1998) and Chrysochoos
et al. (2003). The solid/solid phase transformation that occurs in
those materials is known to produce significant amounts of heat,
associated both with recoverable latent heat effects and irrevers-
ible frictional contributions. Depending on the rate of loading
and on the thermal exchange conditions, the heat produced by
the phase transformation may not have time to diffuse in the body
and the temperature field may become inhomogeneous. In such
conditions, the overall stress–strain response becomes signifi-
cantly different from its isothermal counterpart, and it is manda-
tory to take the thermo-mechanical coupling into account.
Therefore, shape-memory alloys offer a particularly relevant appli-
cation of the general methods presented in this paper. In Section 5,
the influence of thermal effects on the phase-transformation and
on the overall stress–strain curve is investigated in detail.

2. Thermo-mechanical evolutions of continuous media

2.1. Thermodynamic principles

Consider the evolution (on a time interval ½0; T�) of a continuous
medium occupying a domain X in the reference configuration. We
restrict our attention to the geometrically linear setting, defining
the strain e as e ¼ 1=2ðruþrT uÞ where u is the displacement.
The first principle of thermodynamics givesZ t0

t

_Edsþ
Z t0

t

_Kds ¼
Z t0

t
Pdsþ

Z t0

t
Q�dt for all 0 6 t 6 t0 6 T: ð1Þ

In Eq. (1), K and E are respectively the kinetic and the internal en-
ergy of the system. The internal energy E can be written in the form
E ¼

R
X edx where e is the internal energy density. In the right-hand

side of (1), P denotes the power of external loads, and Q�is the rate
of heat received by the system. The upper dot in (1) denotes left-
time derivative.1 The principle of virtual power gives the relation

_K ¼ P �
Z

X
r : _edx ð2Þ
1 In non-smooth mechanics, left- and right-time derivative of physical quantities
may not be equal. In order to respect the principle of causality, the constitutive
relations need to be written in terms of left-time derivatives (see e.g. Frémond, 2002).
where r is the stress. Expressing Q�as

�Q ¼ �
Z
@X

q:ndxþ
Z

X
rdx ð3Þ

where q is the heat flux and r a heat source, the relation (1) can be
rewritten asZ t0

t

Z
X
ð _e� r : _eþ div q� rÞdxds ¼ 0 for all 0 6 t 6 t0 6 T: ð4Þ

The relation (4) also holds when replacing X with an arbitrary sub-
domain X0 � X. Therefore, we obtain the local equation

_e� r : _eþ div q� r ¼ 0 a:e: in X� ½0; T� ð5Þ

where the abbreviation ‘a.e’ stands for ‘almost everywhere’. The
second principle of thermodynamics gives

Z t0

t

Z
X

_sdxds P
Z t0

t

Z
X

r
h
� div

q
h

dxds

where s is the entropy density and h is the local temperature. Using
a similar reasoning as above, we obtain the relation

h_s� r þ div q� q:
rh
h

P 0 a:e: in X� ½0; T�:

Making the classical assumption of separation between the intrinsic
dissipation h_s� r þ div q and the thermal dissipation �q:ðrhÞ=h, we
obtain the inequalities �q:ðrhÞ=h P 0 and

h_s� r þ div q P 0 a:e: in X� ½0; T�: ð6Þ

Eqs. (5),(6) can be rewritten in terms of the Helmholtz free energy
density w ¼ e� hs as

_wþ h_sþ s _h ¼ r : _eþ r � div q a:e: in X� ½0; T�; ð7Þ
r : _e� s _h� _w P 0 a:e: in X� ½0; T�: ð8Þ
2.2. Mechanical constitutive laws

In the framework of standard generalized materials (Halphen
and Nguyen, 1975), the local state of the material is described
by the strain e, the temperature h, and an internal variable a
living in a vectorial space denoted by A. The constitutive laws
are determined by the Helmholtz free energy wðe;a; hÞ and a
convex dissipation potential Uð _aÞ according to the following
relations:

r ¼ @w
@e

; ð9:1Þ

A ¼ � @w
@a

; ð9:2Þ

s ¼ � @w
@h

; ð9:3Þ

A 2 @Uð _aÞ; ð9:4Þ

where @ denotes the subdifferential operator. Recall (Brézis, 1972)
that the subdifferential @f of a function f : A # R is the multi-val-
ued mapping defined by

@f ðxÞ ¼ fs 2 Ajf ðyÞ � f ðxÞP s:ðy � xÞ 8y 2 Ag: ð10Þ

In the following, the dissipative behaviour is assumed to be rate-
independent. In such case, the dissipation potential U is positively
homogeneous of degree 1, i.e. satisfies

Uðk _aÞ ¼ kUð _aÞ for any k 2 Rþ and _a 2 A: ð11Þ
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The property (11) obviously implies that Uð0Þ ¼ 0. Moreover, com-
bining (11) with the convexity of U, it can easily be shown that Uð _aÞ
is positive for all _a. For latter reference, we note the following prop-
erty that is a direct consequence of (10) and (11):

@Uðk _aÞ ¼ @Uð _aÞ for any k 2 Rþ and _a 2 A: ð12Þ

Note that the constitutive laws (9) satisfy the inequality (8). From
(9) we have indeed

r : _e� s _h� _w ¼ A: _a:

Since A 2 @Uð _aÞ, the definition (10) gives

Uð0Þ �Uð _aÞP �A: _a: ð13Þ

As noted above, U is positive and vanishes at 0. The left-hand side of
(13) is thus non-positive, in compliance with the thermodynamical
principle (8).

So far we have assumed that a is unconstrained, in the sense that
a is allowed to take any value in A. In order to model such phe-
nomena as damage or phase-transformation, it is essential to con-
sider an extension of (9) to situations where the internal variable a
is constrained, in the sense that a is required to satisfy a condition
of the form

a 2 T

where T is a given (usually bounded) convex subset of A. In that
case, as notably detailed by Frémond (2002), equations (9) are mod-
ified as

r ¼ @w
@e

; A ¼ � @w
@a

; s ¼ � @w
@h

;

A ¼ Ad þ Ar
; Ad 2 @Uð _aÞ; Ar 2 @IT ðaÞ

ð14Þ

where IT ðaÞ is the indicator function of T (equal to 0 if a 2 T , and
infinite otherwise). The superscripts ‘d’ and ‘r’ in (14) stand for ‘dis-
sipative’ and ‘reversible’, respectively.

Let us verify that the constitutive Eqs. (14) are consistent with
the thermodynamic principles. From (14) we find

r : _e� s _h� _w ¼ Ad
: _aþ Ar

: _a: ð15Þ

The term Ad
: _a can be proved to be positive using the same reason-

ing as in the unconstrained case. Since aðtÞ 2 T for all t and
Ar 2 @IT ðaÞ, the definition (10) implies that

IT ðaðt � dtÞÞ � IT ðaðtÞÞP Ar
:ðaðt � dtÞ � aðtÞÞ for all dt: ð16Þ

By letting dt tend towards 0 from above, we obtain that Ar
: _a P 0

where _a is the left-time derivative. The left-hand side of (15) is thus
positive, in accordance with (8). Note from (16) that if a is time-dif-
ferentiable (i.e. both left- and right-time derivatives exist and are
equal), then Ar

: _a ¼ 0. This remark will be useful in the next section.
The property Ar: _a ¼ 0 also shows that Ar does not contribute to the
energy dissipation, which explains why Ar is referred to as a ‘revers-
ible’ term.

2.3. Boundary value problem

We now formulate the boundary value problem that governs
quasi-static evolutions of a continuous medium submitted to a
prescribed loading history. Body forces f d are applied in the do-
main X. Displacements ud are imposed on a part Cu of the bound-
ary C, and tractions Td are prescribed on CT ¼ C� Cu. The given
functions f d;ud;Td as well as the stress and state variables
ðr; e;aÞ in X, depend on the location x and the time t. However,
in order to alleviate the expressions, this dependence will be omit-
ted in the notations.

Combining the principle of virtual power (2) with the constitu-
tive laws (14) leads to the following set of relations
r 2 Kr; u 2 Ku; a 2 Ka;

r ¼ @w
@e

; A ¼ � @w
@a

; s ¼ � @w
@h

;

A ¼ Ad þ Ar
; Ad 2 @Uð _aÞ; Ar 2 @IT ðaÞ;

ð17Þ

where the sets Kr;K�;Ka are defined by

Kr ¼ frjdiv rþ f d ¼ 0 in X;r:n ¼ Td on CTg;
Ku ¼ fuju ¼ ud on Cug;
Ka ¼ fajaðxÞ 2 T 8x in Xg:

In the isothermal case, the system (17) completely determines the
evolution of the structure from a given initial state. It is important
to note that the term Ar in (17) has a profound impact on the behav-
iour of the system compared to the classical plastic case. A more de-
tailed discussion along those lines can be found in Peigney (2010).

Note that the free energy w depends on the temperature h, so
that the temperature appears implicitly in the last two equations
of (17). In the coupled thermo-mechanical case, the temperature
field hðx; tÞ is unknown and needs to be solved for. This is accom-
plished by using the energy balance Eq. (7) together with a consti-
tutive law for heat conduction. In that regard, the most classical
model of heat conduction is the Fourier’s law q ¼ �Krh, which
we adopt in the following. To simplify the presentation, the (posi-
tive) thermal conductivity K is assumed to be independent on x.
Combining the energy balance (7) with Fourier’s law yields the
heat equation

KDh� h_sþ Ad
: _aþ Ar

: _aþ r ¼ 0 a:e: in X� ½0; T�: ð18Þ

We assume in the following that aðx; tÞ is time-differentiable almost
everywhere in X� ½0; T�. As noted earlier, Eq. (16) then implies that
Ar : _a ¼ 0 a.e. in X� ½0; T�.

The Eq. (18) is complemented by thermal boundary conditions
defined as follows: the temperature is prescribed to take a given
value hdðx; tÞ on a portion Ch of the boundary @X. The heat flux is
prescribed to take a given value qdðx; tÞ on a portion Cq such that
Cq \ Ch ¼ ;. On Ch ¼ @X� Ch � Cq, we consider a convection con-
dition of the form

q:n ¼ hðh� hRÞ ð19Þ

where hR is the ambient temperature of the surrounding medium
and h is a (positive) heat transfer coefficient. The temperature field
h is thus a solution of the boundary value problem

h 2 Kh;

� Krh:n ¼ qd on Cq; �Krh:n ¼ hðh� hRÞ on Ch;

KDh� h_sþ Ad
: _aþ r ¼ 0 a:e: in X� ½0; T�;

ð20Þ

where Kh ¼ fhjh ¼ hd on Chg. The mechanical variables ða; eÞ have
an influence on the solution h of (20), both through the dependence
of the entropy s on ða; eÞ and through the dissipative term Ad

: _a. In a
similar fashion, as mentioned earlier, the solution of the mechanical
problem (17) depends on the temperature field. The systems (17)
and (20) are thus to be considered as coupled.

3. Variational formulation of an incremental problem

To solve a system such as (17)–(20), one generally resorts to a
time-discretization strategy: the time history is discretized as a se-
quence t1 < t2 < � � � < tn and one estimates successively the fields
at time ti using a finite time-step problem. That problem is an
approximation of the time-continuous problem, allowing the fields
ðr;u;a; hÞ at t0 þ dt (with dt > 0Þ to be estimated from their values
ðr0;u0;a0; h0Þ at t0. Such a time-discretization scheme is required
to be consistent with the rate problem, in the sense that the
finite-step problem coincides with the rate problem (at least
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formally) as the time increment dt tends towards 0. A second nat-
ural requirement is that the finite-step problem admits some solu-
tions. In the isothermal case, such requirements are classically
satisfied by the Euler implicit scheme. The corresponding finite-
time step problem is

r 2 Kr; u 2 Ku; a 2 Ka;

r ¼ @w
@e

;A ¼ � @w
@a

;

A ¼ Ad þ Ar
; Ad 2 @U a� a0

dt

� �
; Ar 2 @IT ðaÞ:

ð21Þ

The incremental problem (21) can easily be verified to be consistent
with the rate problem (17). Existence of solutions can be studied by
using a variational formulation attached to (21). To that purpose,
introduce the functionals F e and F d

0 defined as

F eðu;a; hÞ ¼
Z

X
wðe;a; hÞdx�

Z
X

f d:udx�
Z

CT

Td:uda;

F d
0ðaÞ ¼

Z
X

U a� a0� �
dx:

ð22Þ

The functional F e is the potential elastic energy of the system, while
F d

0 is related to the energy dissipated on the time interval
½t0; t0 þ dt�.

The functional F 0 ¼ F e þF d
0 is differentiable with respect to u

but only subdifferentiable with respect to a. The derivative of F 0

with respect to u is denoted by @F 0=@u. The subdifferential of F 0

is denoted by @aF 0 and is characterized as follows: for any
A 2 @aF 0ðu;a; hÞ, there exists a field Ad such that Ad 2 @Uða� a0Þ
and

A:ða� � aÞ ¼
Z

X

@w
@a
þ Ad

� �
:ða� � aÞdx 8a� 2 Ka:

We note that A:ða� � aÞ can be interpreted as the directional deriv-
ative of F 0 in the direction a� � a (Rockafellar, 1970).

The introduction of the functional F 0 is motivated by the fol-
lowing property: any solution of (21) is a solution of the variational
problem

Find ðu;aÞ 2 Ku �Ka and A 2 @aF 0ðu;a; hÞ such that :

0 6
@F 0

@u
:ðu� � uÞ þ A:ða� � aÞ 8ðu�;a�Þ 2 Ku �Ka:

ð23Þ

Let us justify that statement. The stationarity conditions with re-
spect to u in (23) give the equations r ¼ @w=@e and r 2 Kr. The sta-
tionarity conditions with respect to a give

�A:ða� � aÞ þ Ad
:ða� � aÞP 0 8a� 2 T ; ð24Þ

where A ¼ �@w=@a and Ad 2 @Uða� a0Þ. The Eq. (24) implies that
A� Ad 2 @IT ðaÞ, i.e. there exists Ar 2 @IT ðaÞ such that
A ¼ Ad þ Ar . h

The variational formulation (23) means that the directional
derivative of F 0 in every direction is positive. Such a condition is
notably satisfied if F 0 reaches a local minimum at ðu;aÞ. In the par-
ticular case where F 0 is convex, it is known that local minima coin-
cide with global minima, and are the only solutions of the problem
(23). In such condition, the problem (23) is equivalent to

min
ðu;aÞ2Ku�Ka

F eðu;a; hÞ þ F d
0ðaÞ ð25Þ

and admits solutions in adequate functional spaces for Ku and Ka.
This in turn ensures the existence of solutions to the isothermal
incremental problem (21).

Note that the functional F d
0 is convex. A sufficient condition for

F 0 to be convex is thus that the free energy w is convex in ðe;aÞ,
which is notably satisfied by a wide range of elastoplasticity mod-
els. We note, however, that the requirement of convexity on w is
not mandatory for (25) to have a solution. For instance, arguments
related to quasiconvexity can be used to study the existence of
solution to (25) in a more general setting (see e.g. Dacorogna,
2008).

Let us give some interpretation of (25). When there is no dissi-
pation, it is well known that the solutions of the equilibrium prob-
lem minimize the potential elastic energy F e. The relation (25) can
be interpreted as an extension of the principle of energy minimiza-
tion to dissipative evolutions: the state of the system at time
t0 þ dt is obtained by minimizing the ‘incremental energy’ F 0. In
the expression of F 0, the dissipative contribution F d

0 depends on
the state a0 of the system at time t0. Therefore, the state of the sys-
tem at time t0 þ dt also depends on a0, which reflects the path-
dependence of dissipative evolutions.

We now move to the coupled thermo-mechanical problem
(17)–(20). A natural choice is to use again the Euler implicit
scheme, which now reads:

r 2 Kr; u 2 Ku; a 2 Ka; h 2 Kh; ð26:1Þ

r ¼ @w
@e

; A ¼ � @w
@a

; s ¼ � @w
@h

; ð26:2Þ

A ¼ Ar þ Ad
; Ar 2 @IT ðaÞ; Ad 2 @U ða� a0Þ=dt

� �
; ð26:3Þ

�Krh:n ¼ qd on Cq; �Krh:n ¼ hðh� hRÞ on Ch; ð26:4Þ

KdtDh� h0ðs� s0Þ þ Ad
:ða� a0Þ þ rdt ¼ 0; ð26:5Þ

where s0 ¼ sðe0;a0; h0Þ. That incremental problem is obviously con-
sistent with the rate problem. In particular, dividing (26.5) by dt and
taking the limit dt ! 0 yields the rate form of the heat equation in
(20). However, existence of solutions to (26) cannot be proved in
general. This is essentially due to the lack of a variational formula-
tion for (26): in contrast with the isothermal problem (21), the
incremental problem (26) does not correspond to the stationarity
conditions of a certain functional.

In order to avoid such difficulties, consider instead the follow-
ing finite time-step problem:

r 2 Kr; u 2 Ku; a 2 Ka; h 2 Kh; ð27:1Þ

r ¼ @w
@e

; A ¼ � @w
@a

; s ¼ � @w
@h

; ð27:2Þ

A ¼ Ar þ h

h0 Ad
; Ar 2 @IT ðaÞ; Ad 2 @U ða� a0Þ=dt

� �
; ð27:3Þ

�Krh:n ¼ qd on Cq; �Krh:n ¼ hðh� hRÞ on Ch; ð27:4Þ

Kdt Dhþrh0

h0 :rðh0 � hÞ
" #

� h0ðs� s0Þ þ Ad:ða� a0Þ þ rdt

¼ 0: ð27:5Þ

That problem differs from (26) in two points: a factor h=h0 is added
in (27.3), and a term Kdtrh0:rðh0 � hÞ=h0 is added in the heat equa-
tion (27.5). It can be verified that – just as the more intuitive
scheme (26) – the incremental problem (27) is a consistent time-
discretization of (17)–(20). In particular, the heat equation in (20)
is again recovered by dividing 27.5 by dt and taking the limit
dt ! 0. The crucial point here is that the extra term
Kdtrh0:rðh0 � hÞ=h0 is of the second order in dt.

Motivation of the scheme (27) is that a variational formulation
can be given. The corresponding functional is an extension of (22)
to thermo-mechanics, and is given by

Fðu;a; hÞ ¼ F eðu;a; hÞ þ F dða; hÞ þ F hðhÞ
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where

F dða; hÞ ¼
Z

X

h

h0 U a� a0� �
dx;

F hðhÞ ¼
Z

X
h s0 þ dt

r

h0

� �
dx

þ dt
Z

X
K �1

2
1
h0 krhk2 þ krh0k

h0

 !2

h

0
@

1
Adx

� dt
Z

Cq

qd

h0 hda� h
dt
2

Z
Ch

ðh� hRÞ2

h0 da: ð28Þ

Note that F h is a quadratic and concave function of h. In a way sim-
ilar to the isothermal case, the functional F is differentiable with re-
spect to u and h (with partial derivatives denoted by @F=@u and
@F=@h) and only subdifferentiable with respect to a. The subdiffer-
ential of F with respect to a is the multivalued mapping character-
ized as follows: for any A 2 @aFðu;a; hÞ, there exists a field Ad such
that Ad 2 @Uða� a0Þ and

A:ða� � aÞ ¼
Z

X

@w
@a
þ h

h0 Ad
� �

:ða� � aÞdx 8a� 2 Ka:

As detailed in Appendix A, any solution of (27) is a solution of the
following variational problem

Find ðu;a;hÞ2Ku�Ka�Kh andA2@aFðu;a;hÞ such that

06
@F
@u

:ðu� �uÞþ@F
@h

:ðh� �hÞþA:ða� �aÞ 8ðu�;a�;h�Þ2Ku�Ka�Kh: ð29Þ

As in the isothermal case, the variational formulation (29) allows
the existence of solutions to (27) to be studied. Assume in particular
that the free energy w is convex in ðu;aÞ and concave in h. In such a
situation, the functional F is convex with respect to the fields ðu;aÞ
and concave with respect to h, so that a saddle point exists (in ade-
quate functional spaces for Ku;Ka and Kh, depending on the growth
behaviour of w and U at infinity). Such a saddle point ðu;a; hÞ veri-
fies (29) and therefore is a solution of the incremental problem (27).

The incremental thermo-mechanical problem (27) is an exten-
sion of an incremental problem introduced in Peigney (2006) for
a simplified thermo-mechanical setting (in which the dissipative
contribution Ad

: _a is neglected in the heat Eq. (20)).

4. A maximization approach for solving the incremental
problem

To solve a problem such as (26) or (27), a general strategy is to di-
rectly solve the local equations using for instance a Newton–Raph-
son algorithm. In such a framework, a partitioning approach is
often used: the mechanical and the thermal subproblems are decou-
pled and solved successively until convergence, as described in Algo-
rithm 1 below (see e.g. Auricchio and Petrini, 2004 for an example of
that approach). The global convergence of such methods is not en-
sured, and in practice one can face difficulties of convergence nota-
bly when the initial guess is not close enough to the solution.

Algorithm 1. Partitioning method for the thermo-mechanical
problem (26)

k 0
while residual > tolerance do

Compute ðukþ1;akþ1Þ as the solution of (26.1)–(26.3) at

h ¼ hk

Compute hkþ1 as the solution of (26.4),(26.5) at
ðu;aÞ ¼ ðukþ1;akþ1Þ
k kþ 1

end while
Observe that, in the case of (27), such strategies ignore the var-

iational nature of the problem at hand. As an alternative, using the
variational formulation of the problem, the solution of (27) can be
found by solving a concave maximization problem, as detailed in
the following. We assume that w is convex in ðu;aÞ and concave
in h, which ensures that (27) has a solution. More precisely, as ex-
plained at the end of Section 3, solutions of (27) are saddle points
of F , i.e solutions of the max–min problem

max
h2Kh

min
ðu;aÞ2Ku�Ka

F eðu;a; hÞ þ F dða; hÞ þ F hðhÞ: ð30Þ

The problem (30) can be rewritten as

max
h2Kh

JðhÞ ð31Þ

where the functional J is defined as

JðhÞ ¼ F hðhÞ þ min
ðu;aÞ2Ku�Ka

fF eðu;a; hÞ þ F dða; hÞg ð32Þ

and can be proved to be concave (see Appendix B).
Solving the set of partial differential equations (27) amounts to

solve the concave maximization problem (31) with respect to the
temperature field. A lot of well-known algorithms can be used to
solve such a maximization problem, some of them being built-in
functions of scientific calculation softwares. Such algorithms (like
the Broyden–Fletcher–Goldfarb–Shanno algorithm for instance)
are iterative and typically require the computation of J and its gra-
dient J0 (or at least of an ascent direction) at each iteration. In this
regard, note from (32) that the calculation of JðhÞ amounts to solve
the minimization problem

min
ðu;aÞ2Ku�Ka

F eðu;a; hÞ þ F dða; hÞ ð33Þ

for which the local equations (expressing the stationarity of the
functional) read as

u 2 Ku;r 2 Kr; a 2 Ka;

r ¼ @w
@e

; A ¼ � @w
@a

;

A ¼ Ad þ Ar
; Ad 2 h

h0 @U
a� a0

dt

� �
; Ar 2 @IT ðaÞ:

ð34Þ

That problem is formally identical to the isothermal problem (21),
with a dissipation potential set equal to ðh=h0ÞU. The calculation
of JðhÞ thus amounts to solve a incremental problem at a fixed tem-
perature field.

Special care must be taken in the calculation of J0ðhÞ because,
due to the non-differentiable nature of U, it is not ensured that J
is differentiable everywhere. However, since J is concave, there ex-
ists a directional derivative in every direction (Rockafellar, 1970).
For a given h 2 Kh and ~h such that ~h ¼ 0 on Ch, the directional deriv-
ative DJðh; ~hÞ at h in direction ~h is defined by

DJðh; ~hÞ ¼ lim
t�!0þ

JðhðtÞÞ � JðhÞ
t

where hðtÞ ¼ hþ t~h 2 Kh. As detailed in Appendix B, the directional
derivative of J satisfies the property

DJðh; ~hÞP @F
@h

:~h ð35Þ

with

@F
@h

:~h¼
Z

X
h0ðs0�sÞþrdtþAd:ða�a0ÞþKdt

krh0k2

h0 �rh:rh0

h0 þDh

 !" #
~h

h0 dx

�dt
Z

Cq

qdþKrh:n

h0
~hda�dt

Z
Ch

hðh�hRÞþKrh:n

h0
~hda:

ð36Þ
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In order to determine an ascent direction for J, consider the solution
W of the following linear problem:

DW�W¼� 1
h0 KdtðDhÞþrh0

h0 :rðh0�hÞ�h0ðs�s0ÞþAd
:ða�a0Þþrdt

" #
;

W¼0 on Ch;

rW:n¼ dt

h0 ðKrh:nþqdÞ on Cq;

rW:n¼ dt

h0 ðKrh:nþhðh�hRÞÞ on Ch: ð37Þ

Substituting in the expression (36) gives

@F
@h

:~h ¼
Z

X
ð�DW þWÞ~hdx�

Z
@X

~hrW :nda

¼
Z

X
ðrW:r~hþW~hÞdx:

The relation (35) then implies that

DJðh; ~hÞP
Z

X
ðrW:r~hþW~hÞdx:

In particular, we have DJðh; WÞ ¼
R

XðW
2 þ krWk2ÞP 0, i.e. W is an

ascent direction for J. Note that DJðh; WÞ is null if and only if h is
solution of the maximization problem (31). The introduction of an
auxiliary problem for determining an ascent direction is reminis-
cent of techniques used in optimal control theory (Lions, 1968).
That theory addresses minimization problems of the form
minaJðsðaÞÞ in which sðaÞ is solution of a set of partial differential
equations parametrized by a. In the optimal control terminology, a
is the control variable and sðaÞ is the state variable. In general, the
set of partial differential equations that defines sðaÞ cannot be
solved in closed-form, so that the dependence of J with respect
to a remains implicit. The explicit determination of the gradient
J0 is thus not straightforward. An effective method is to introduce
a so-called adjoint state for expressing J0. That adjoint state is usu-
ally defined as the solution of an ad hoc set of linear partial differ-
ential equations. In solid mechanics, the optimal control theory
has been extensively used for inverse problems (Bui, 2006) and
also proved to be useful for other classes of nonlinear problems
(Peigney and Stolz, 2001; Peigney and Stolz, 2003; Stolz, 2008).
Note that the maximization problem (31) can be interpreted as
an optimal control problem, the temperature field h being the con-
trol variable and the mechanical fields ðu;aÞ being the state vari-
able. The fields ðu;aÞ are indeed solution of the set of partial
differential Eqs. (34) in which h acts as an external parameter.
The field W defined in (37) can be interpreted as the adjoint state
for that problem.

Algorithm 2. Maximization method for the thermo-
mechanical problem (27).

k 0
while residual > tolerance do

Compute JðhkÞ by solving (34) at h ¼ hk

Compute Wk as the solution of (37)

hkþ1 ¼ hk þ ascent ðJðhkÞ;WkÞ
k kþ 1

end while
Collecting the results obtained leads to Algorithm 2 for solv-
ing the incremental thermo-mechanical problem (27). At each
iteration, a mechanical problem at a fixed temperature field is
solved for evaluating J, and a scalar problem is solved for deter-
mining an ascent direction Wk. The results are used to feed an
ascent algorithm for updating the temperature field. One of the
simplest choices consists in performing a line search in the
direction Wk.

Algorithm 2 retains some attractive features of Algorithm 1,
such as the decoupling between mechanical and thermal subprob-
lems. The mechanical subproblems in both those algorithms have
the same structure. In contrast, the thermal subproblem (37) in
Algorithm 2 is linear, whereas the thermal problem (26.4),(26.5)
in Algorithm 1 generally is not. The proposed method has the
advantage of relying on a sound mathematical framework, which
bodes well for robustness and convergence properties.

5. Application to shape-memory alloys

The formulation derived so far is now applied to shape memory
alloys. Such material indeed exhibit strong thermo-mechanical
coupling (notably through latent heat effects) and therefore offer
a relevant application for illustrating the proposed method. It is
not the purpose of this paper to give a detailed presentation of
shape-memory alloys (see e.g. the books by Otsuka and Wayman
(1999) and Bhattacharya et al. (2003)). We simply mention that
the peculiar properties of those materials stem from a solid/solid
phase transformation between different crystallographic struc-
tures, known as austenite and martensite. The martensitic lattice
has less symmetry than the austenitic one, which leads one to
distinguish several martensitic variants, identified as individual
phases.

Here we consider a micromechanical model of shape-memory
alloys, for which the internal variable a ¼ ða1; . . . ;anÞ corresponds
to the volume fractions of the n martensitic variants. Because of
mass conservation in the phase-transformation process, the vari-
able a must belong to the n-dimensional tetrahedron T defined as

T ¼ a 2 Rnjai P 0 8i;
Xn

i¼1

ai 6 1

( )
: ð38Þ

We consider a Helmholtz free energy w and a dissipation potential
U given by the following expressions (Abeyaratne et al., 1994; Gov-
indjee and Miehe, 2001; Anand and Gurtin, 2003):

wðe;a; hÞ ¼ 1
2

e�
Xn

i¼1

aie
tr
i

 !
: L

: e�
Xn

i¼1

aie
tr
i

 !
þ kT

hT
ðh� hTÞ

Xn

i¼1

ai

þ c h� hR � h log
h
hR

� �� �
; ð39Þ

Uð _aÞ ¼ Gþ:h _aiþ þ G�:h _ai�: ð40Þ

where hxiþ denotes the positive vector whose component i is
maxð0; xiÞ. Similarly, for any vector x; hxi� is the positive vector with
components maxð0;�xiÞ. In (40), Gþ and G� are two given positive
vectors of Rn that characterize the mechanical dissipation in the
model. In (39), the so-called transformation strains etr

i are obtained
from the crystallographic structure of the alloy considered. The
elasticity tensor L is symmetric positive definite. The parameter kT

is the latent heat at the transformation temperature hT , and c is
the specific heat. We refer to Govindjee and Miehe (2001), Hackl
and Heinen (2008), Peigney (2009), Peigney (2013a) and Peigney
(2013b) for more details and recent developments on microme-
chanical modelling of shape-memory alloys.

As detailed in Section 4, solving the thermo-mechanical prob-
lem (31) partly relies on solving the isothermal problem (21). For
the material model considered here, the isothermal problem (21)
specializes as
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r 2 Kr; u 2 Ku; a 2 Ka;

r ¼ L : e�
Xn

i¼1

aie
tr
i

 !
;

A ¼ ðetr
1 : r; . . . ; etr

n : rÞ;

A ¼ Ad þ Ar
; Ad 2 @U a� a0

dt

� �
; Ar 2 @IT ðaÞ;

ð41Þ

where the subdifferentials @U and @IT are characterized as follows:

Ad ¼ ðAd
1; . . . ;Ad

nÞ 2 @U
a� a0

dt

� �
()

Ad
i ¼ Gþi if ai > ai

0

¼ �G�i if ai < ai
0

2 ½�G�i ;G
þ
i � if ai ¼ ai

0

8><
>:

and

Ar¼ðAr
1; . . . ;A

r
nÞ2@IT ðaÞ()

there exists z2Rþand ai 2Rþsuch that

Ar
i ¼ z�ai; z 1�

Xn

i¼1

ai

 !
; aiai¼0:

Concerning the thermal equations, note from (39) that the entropy s
is given by

s ¼ � kT

hT

Xn

i¼1

ai þ c log
h
hR

� �

so that the heat Eq. (20) becomes

c _h� KDh ¼ kT
h
hT

Xn

i¼1

_ai

 !
þ ½Gþ:h _aiþ þ G�:h _ai�� þ r: ð42Þ

Apart from the external heat source r, the two terms on the right-
hand side can be interpreted as internal heat sources due to phase
transformation. They are respectively associated with the latent
heat (reversible contribution) and with the mechanical dissipation
(irreversible contribution). Depending on the rate of loading and
on the thermal exchange conditions, the heat produced by the
phase transformation may not have time to diffuse in the body
and the temperature field may become inhomogeneous. In such
conditions, the overall stress–strain response becomes significantly
different from its isothermal counterpart. Such effects are explored
in more detail in the following.

5.1. Influence of the strain rate

The first example we consider is inspired by the experiments of
Shield (1995). We consider a monocrystalline CuAlNi strip with
dimensions 38 mm � 6 mm � 1 mm, submitted to displacement-
controlled traction along the x-axis (Fig. 1). The end section at
x ¼ 0 is clamped. On the end section at x ¼ L (L ¼38 mm), the dis-
placements along the ez and ey axes are set equal to 0 and the dis-
placement u�ðtÞ along the ex axis is prescribed as

u�ðtÞ ¼
t
T u�max for 0 6 t 6 T

2� t
T

� �
u�max for T 6 t 6 2T

(
ð43Þ

where u�max and T are fixed. The loading strain rate _e� is defined as

_e� ¼ d
dt

u�

L

� �����
���� ¼ u�max

LT
:

A null heat flux is prescribed on both end sections of the sample. A
convection boundary condition of the form (19) is assumed on the
lateral surface Slat . We consider two different thermal boundary
conditions on the end sections, labeled as ðiÞ and ðiiÞ. Boundary
condition ðiÞ consists in imposing a null heat flux on the end
sections x 2 f0; Lg. Boundary condition ðiiÞ consists in imposing
h ¼ hR on the two end sections. Those two boundary conditions
can be interpreted as limiting cases of the convection condition
(19), with h ¼ 0 and h ¼ 1, respectively.

In the initial state, the structure is fully austenitic (i.e.
aðx;0Þ ¼ 0 for all x) and in thermal equilibrium (i.e. hðx;0Þ ¼ hR).

There are six martensitic variants in CuAlNi (Otsuka and Way-
man, 1999; Bhattacharya, 1993). The six transformation strains
etr

i , expressed in the ðx; y; zÞ basis of Fig. 1, take the form

etr
i ¼ RT :etr

0;i:R

where etr
0;i (i ¼ 1; . . . ;6) are the reference transformation strains (ex-

pressed in the natural basis of the austenitic cubic lattice) and R is a
rotation describing the orientation of the sample with respect to the
austenitic lattice. The reference transformation strains etr

0;i are listed
in Appendix C. The rotation R considered corresponds to the ‘A1–
T1b’ sample in the nomenclature of Shield (1995), and is given by

R ¼
0:925 0:380: 0
�0:380 0:925 0

0 0 1

2
64

3
75

The thermo-mechanical response of the sample is obtained by solv-
ing the maximization problem (31) with a Broyden–Fletcher–Gold-
farb–Shanno algorithm, using respectively the expressions (34) and
(37) for evaluating J and an ascent direction. A finite-element meth-
od is used for discretizing (34) and (37) with respect to space. The
mesh considered consists of 16 � 8 � 1 eight-node brick elements,
as represented on Fig. 1. The problem (37) is linear and does not
present any substantial difficulty. The nonlinear problem (34) is
more delicate, notably because of the constraint (38) on the internal
variable a. We use a method proposed in Peigney et al., 2011 for
solving (34) in the presence of such constraints. That method essen-
tially consists in reformulating (34) as a linear complementarity
problem (via a change of variables) and from there using a inte-
rior-point algorithm (see e.g. the books by Ye (1997) or Wright
(1997)) for a detailed presentation of linear complementarity prob-
lems and interior-point methods).

For CuAlNi, the results obtained with the boundary condition ðiÞ
and ðiiÞ are qualitatively similar. The main difference is that fluctu-
ations of the temperature are more pronounced for boundary con-
dition ðiÞ. In the following we only present results corresponding to
the boundary condition ðiÞ.

The evolution of the phase transformation during the loading is
illustrated on Fig. 1 (top), along with the evolution of the temper-
ature field (bottom). Those numerical results correspond to
h ¼ 400 W.m�2.K�1, hR ¼ 313 K, _e� ¼ 2:10�3s�1. In the free energy
(39), the elasticity tensor L is taken as isotropic with a Young’s
modulus equal to 26:7 Gpa and a Poisson’s ration equal to 0:25
(Shield, 1995; Govindjee and Miehe, 2001). The transformation
temperature hT and the latent heat kT are set equal to 277 K and
46:7 Mpa, respectively. Those values have been measured by
Shield (1995) using differential scanning calorimetry. The specific
heat c is taken as 3:1 Mpa (Otsuka and Wayman, 1999). The com-
ponents of the dissipative parameters Gþ and G� take a common
value G that is identified from Shield’s experiments and is equal
to 0:15 Mpa (see Peigney et al., 2011 for more details).

As can be observed on Fig. 1, the phase transformation initiates
at the middle section of the sample, and propagates towards the
end sections. In order to explain that behaviour, note from (41)
that the condition for (austenite to martensite) phase transforma-
tion to occur at point x and time t reads

min
i

rðx; tÞ : etr
i ¼ Gþ k

hT
ðh� hTÞ: ð44Þ

For small time t, the evolution is elastic (no phase transformation)
and the temperature is equal to hR at all point. In such case, the



Fig. 1. Phase transformation (top) and temperature distribution (bottom) in a CuAlNi rectangular sample loaded in traction.

Fig. 2. Maximum and minimum temperatures in the sample as a function of the
loading strain rate.
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stress field rðx; tÞ can be written as ðt=TÞrEðxÞ where rEðxÞ is solu-
tion of the following linear elasticity problem:

divrE ¼ 0; rE:n ¼ 0 on Slat ;

rE ¼ L : ðruEþTruEÞ=2;

uE ¼ 0 on x ¼ 0; uE ¼ umaxex on x ¼ L:

ð45Þ

Because of the clamped boundary conditions at x ¼ 0 and x ¼ L, the
stress field rEðxÞ is not homogeneous and exhibits some stress con-
centration near the end sections. From (44), phase transformation
initiates at point x� such that

min
i

rEðx�Þ : etr
i ¼ sup

x2X
ðmin

i
rEðxÞ : etr

i Þ: ð46Þ

In the case of CuAlNi, that condition is met at the middle section,
even though the Von Mises stress at that location is lower than near
the end sections.

The thermo-mechanical coupling results in a heterogeneous
temperature field, the phase transformation front acting as a mov-
ing heat source in accordance with (42). The variations of the tem-
perature with respect to the ambient temperature hR get more
pronounced when the strain rate _e� increases, as illustrated on
Fig. 2. On that Figure are represented the maximum and minimum
temperatures in the sample at t ¼ T, i.e. when the applied strain is
maximum. Variations of the temperature are of the order of 10 K
for high strain rates, which is consistent with the order of magni-
tude observed experimentally (Grabe and Bruhns, 2008). Observe
on Fig. 2 that hmax and hmin converge towards a limit as _e� ! þ1.
That behaviour can be explaining by noting that, for high values
of _e�, conduction and convection effects become negligible com-
pared to the latent heat effect. In such case, the local temperature
hðx; tÞ at point x and time t is directly correlated to the evolution of
aðx; tÞ at the same point. More precisely, using the simplifying
assumption G� ðh=hTÞkT , the integration of the heat Eq. (42) with
respect to t gives
hðx; tÞ ’ hR exp
kT

chT

Xn

i¼1

aiðx; tÞ
 ! !

: ð47Þ

The temperature is thus maximum at points x where the material is
fully transformed in martensite, i.e. at points where

P
iaiðx; tÞ ¼ 1. It

follows that

hmax ¼ hR exp
kT

chT

� �
: ð48Þ

For the material parameters of CuAlNi, the formula (48) gives
hmax ¼ 330:7 K. The simulation results for _e ¼ 0:5 gives



Fig. 3. Stress–strain curves at several applied strain rates (CuAlNi). Fig. 4. Size of the hysteresis loop as a function of the loading strain rate.
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hmax ¼ 330:6 K, which is in good agreement with (48). A formula
analog to (48) holds for hmin: using (47) we have
hmin ¼ hR exp
kT

chT
min
x2X

Xn

i¼1

aiðx; TÞ
 ! !

: ð49Þ
Fig. 5. Phase transformation in NiTi, for two different thermal boundary conditions
at the end sections: null heat flux (top) and prescribed temperature (bottom).
However, at time t ¼ T , phase transformation is initiated at all point
in the sample, i.e.

P
iaiðx; TÞ > 0 for all x. The minimum value

minx
P

iaiðx; TÞ is non zero and cannot be obtained in closed form.
For _e� ¼ 0:5, the numerical simulation gives
minx

P
iaiðx; TÞ ¼ 0:163 and hmin ¼ 315:9 K. Those values are com-

patible with (47).
On Fig. 3 are represented the stress–strain curves obtained for

several values of the applied strain rate _e�. The curve obtained
for a very low strain rate ( _e� ¼ 5:10�4 s�1) coincides with the iso-
thermal simulations presented in Peigney et al. (2011) and
exhibits some distinctive plateaux in the stress response. As
the applied strain rate _e� is increased, some hardening of the
stress–strain curve is observed. As can be noticed on Fig. 3,
the hardening is strain-rate dependent. That behaviour is a direct
consequence of thermal effects. Let us indeed emphasize that the
mechanical behaviour of the model is rate-independent: the only
parameters that introduce a time scale are those related to ther-
mal effects (thermal conduction K, convection coefficient h, spe-
cific heat c).

The size of the hysteresis loop (here denoted by D) is an
important parameter in some applications of shape-memory al-
loys, such as damping applications. There are contradictory
experimental observations in the literature concerning the varia-
tion of D with respect to the applied strain-rate _e�. Some authors,
as Shaw and Kyriakides (1997) observe that D increases with the
applied strain rate, whereas others, as Dolce and Cardone (2001),
observe the opposite. In the present model, D varies in a non
monotonic fashion with _e�, as can be noted on Fig. 3. This is
shown more clearly on Fig. 4: D increases for low value of _e�
and then decreases after having reached a maximum. The maxi-
mum value of D as well as the corresponding value of _e� are
not intrinsic properties of the material: they depend on the sur-
rounding medium (notably through the convection coefficient h)
as well as on the shape and dimensions of the sample. Provided
such a behaviour is not just an artefact of the model and corre-
sponds to a real phenomenon, it would explain the seemingly
contradictory observations found in the literature.
5.2. Influence of the thermal boundary conditions

We now consider an example related to NiTi alloys. As detailed
in Appendix C, there are twelve transformation strains to be con-
sidered for that material. The geometry and the mechanical bound-
ary conditions are identical to those considered previously for
CuAlNi, except that the dimensions of the sample are now
15 mm � 2 mm � 0.3 mm.
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On Fig. 5 is presented the phase transformation evolution ob-
tained from the two types of boundary conditions ðiÞ and ðiiÞ. The
thermal boundary condition ðiiÞ results in a clearer localization of
the phase transformation: for sufficiently high values of _e, phase
transformation initiates at the end sections and propagates to-
wards the middle section. That last scenario is in agreement with
the numerical simulations performed by Anand and Gurtin
(2003) for the same material and geometry, with a boundary con-
dition of type ðiiÞ. Recall that phase transformation initiates at
points x satisfying the condition (46). That condition strongly de-
pends on the transformation strains in the alloy considered. In
the case of NiTi, the condition (46) is satisfied near the end sec-
tions, in contrast with the CuAlNi example considered previously.
The time t� when phase transformation begins is given by

t�

T
min

i
rEðx�Þ : etr

i ¼ G: ð50Þ

Note that (46) and (50) are independent on the thermal boundary
conditions. The initiation of phase-transformation is thus identical
for both boundary conditions ðiÞ and ðiiÞ. As soon as phase transfor-
mation begins, heat is produced and the temperature rises locally.
This is when the thermal boundary condition matters. Observe from
(44) that high temperatures defavour phase transformation. In the
vicinity of the end sections, the adiabatic boundary condition ðiÞ
tends to keep the temperature high compared to the fixed temper-
ature boundary condition ðiiÞ. In such condition, phase transforma-
tion becomes favoured near the middle sections, where the
temperature remains close to hR. On the contrary, compared to
the condition q ¼ 0 used in ðiÞ, the boundary condition ðiiÞ helps
in preventing significant rise of the temperature near the end sec-
tions and therefore promotes phase transformation in those points.

The strain–stress curves obtained for the boundary conditions
ðiÞ and ðiiÞ are represented on Fig. 6. Although the loading strain
rate ( _e� ¼ 10�3s�1) is the same for both simulations, the obtained
stress–strain curves are dramatically different. The thermal bound-
ary condition ðiÞ results in a larger hardening of the response com-
pared to ðiiÞ. Also note that the stress–strain curve for boundary
condition ðiiÞ is linear for e > 4%, which indicates that phase trans-
formation in martensite is complete for such level of strains. For
both boundary conditions, the size D of the hysteresis loop is
bigger than for the isothermal case (represented as dashed lines
on Fig. 6). In accordance with (46)–(50), the phase transformation
Fig. 6. Stress–strain curves in NiTi for different thermal conditions.
begins for the same applied strain (about 0:76%) on the three
responses.

The results of Figs. 5,6 show that phase transformation may
strongly depend on the thermal boundary condition. Such an effect
is not observed on the CuAlNi example considered previously. The
reason is that the phase transformation in CuAlNi initiates at the
middle section (see Fig. 1), so that the thermal boundary condi-
tions at the end sections do not have as strong an impact.

6. Concluding remarks

In this paper have been studied some incremental variational
principles for the thermo-mechanical problem that results from
the combination of generalized standard materials, non-smooth
mechanics, and Fourier’s law. Compared to the isothermal case,
existence of solution is obtained under the additional requirement
that the Helmholtz free energy w is concave with respect to the
temperature. Building on those incremental variational principles,
it has been shown that the incremental thermo-mechanical prob-
lem could be recast as a concave maximization problem. Although
other routes are possible for solving the incremental problem, that
particular way has the attractive feature of being simple to imple-
ment. Indeed the problem ultimately reduces to a sequence of lin-
ear scalar problems and purely mechanical problems, defined
respectively by (34) and (37). Note that the structure of the linear
scalar problem (37) to solve is independent on the material model
considered (i.e. on the expression of the free energy w and of the
dissipation potential U). All the specificities of the material model
appear in the purely mechanical problem (34), which has the same
structure as the incremental problem supplied by the Euler impli-
cit scheme in the isothermal case. This is also where all the diffi-
culties are concentrated, as nonlinearities, non-differentiabilities
and constraints on the state variables may need to be handled.
Provided one can solve that isothermal problem, the thermo-
mechanical problem can be solved with low additional effort in
terms of numerical implementation. For the micromechanical
model of shape-memory alloys considered in Section 5, the iso-
thermal algorithm proposed by Peigney et al. (2011) acted as a
building block for the thermo-mechanical simulations. Such simu-
lations are important for the design of SMA-based systems, as in-
stance for estimating the response-time of SMA actuators, or for
assessing the energy absorption capability of SMA dampers.
Shape-memory alloys are obviously just an example of possible
applications of the proposed approach, which for instance could
be used for a wide class of plasticity models. In this paper, some
mathematical aspects have been kept at a formal level. For in-
stance, the choice of functional spaces for the different fields con-
sidered has not been discussed in detail. It would be interesting to
explore those aspects in a more thorough full fashion, notably in
order to study the convergence of solutions as the time increment
tends towards zero.

Appendix A. Derivation of the variational principle for the
incremental thermo-mechanical problem

In this section, we establish that solutions of the variational
problem (29) are solutions of the incremental thermo-mechanical
problem (27). Studying the stationarity conditions with respect to
u and a in is similar to the isothermal case (29) and leads to (27.1)–
(27.3). In the following we focus on the stationarity condition with
respect to h. For any ~h such that ~h ¼ 0 on Ch, we have

@F
@h

:~h ¼ @F
h

@h
:~hþ

Z
X
�sþ 1

h0 Uða� a0Þ
� �

~hdx ðA:1Þ

where
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@F h

@h
:~h ¼

Z
X

s0 þ dt
r

h0 þ Kdt
krh0k

h0

 !2
2
4

3
5~hdx�

Z
X

Kdt

� rh

h0 r~hdx� dt
Z

Cq

qd

h0
~hda� hdt

Z
Ch

ðh� hRÞ
h0

~hda: ðA:2Þ

Integrating by part gives the identity

�
Z

X

rh

h0 :r~hdx ¼
Z

X

~hr rh

h0

� �
dx�

Z
@X

rh:n
h0

~hda

with

r rh

h0

� �
¼ Dh

h0 �
rh0:rh

ðh0Þ2
:

Therefore

@F h

@h
:~h ¼

Z
X

h0s0 þ rdt þ Kdt
krh0k2

h0 �rh:rh0

h0 þ Dh

 !" #
~h

h0 dx

� dt
Z

Cq

qd þ Krh:n

h0
~hda� dt

Z
Ch

� hðh� hRÞ þ Krh:n

h0
~hda:

ðA:3Þ

Moreover, since U is positively homogeneous of degree 1 and
Ad 2 @Uða� a0Þ, we have ðk� 1ÞUða� a0Þ ¼ Uðkða� a0ÞÞ�
Uða� a0ÞP ðk� 1ÞAd

:ða� a0Þ for any k P 0. This implies that

Uða� a0Þ ¼ Ad
:ða� a0Þ: ðA:4Þ

Substituting (A.3),(A.4) in (A.1) we obtain

@F
@h
:~h¼

Z
X

h0ðs0�sÞþrdtþAd
:ða�a0ÞþKdt

krh0k2

h0 �rh:rh0

h0 þDh

 !" #
~h

h0dx

�dt
Z

Cq

qdþKrh:n

h0
~hda�dt

Z
Ch

hðh�hRÞþKrh:n

h0
~hda:

ðA:5Þ

Therefore, the stationarity condition @F=@h ¼ 0 give the relations
(27.4),(27.5).

Appendix B. Directional derivative of J

Assuming that w is convex in ðu;aÞ and concave in h, let us
establish that the function J in (32) is concave. A first observation
is that F h;F e as well as F d are concave with respect to h. In (32),
the term minðu;aÞfF eðu;a; hÞ þ F dða; hÞg is the minimum of a family
of concave functions (parametrized by ðu;aÞ), and therefore is con-
cave in h. As a result, the function J in (32) is concave. The concavity
of J implies the existence of the directional derivative

DJðh; ~hÞ ¼ lim
t�!0þ

JðhðtÞÞ � JðhÞ
t

where hðtÞ ¼ hþ t~h and ~h vanished on Ch. We prove in the following
that DJðh; ~hÞ satisfied the inequality (35). To that purpose, let us de-
note by ðuðtÞ;aðtÞÞ the solution of the minimization problem

min
ðu;aÞ2Ku�Ka

fF eðu;a; hðtÞÞ þ F dða; hðtÞÞg

so that

JðhðtÞÞ ¼ F hðhðtÞÞ þ F eðuðtÞ;aðtÞ; hðtÞÞ þ F dðaðtÞ; hðtÞÞ: ðB:1Þ

From the definition of ðuðtÞ;aðtÞÞ we obtain
F eðuðtÞ;aðtÞ; hÞ þ F dðaðtÞ; hÞP F eðuð0Þ;að0Þ; hÞ
þ F dðað0Þ; hÞ: ðB:2Þ

Combining (B.1) and (B.2) yields

JðhðtÞÞ � JðhÞP ½F eðuðtÞ;aðtÞ; hðtÞÞ � F eðuðtÞ;aðtÞ; hÞ�
þ ½F dðaðtÞ; hðtÞÞ � F dðaðtÞ; hÞ� þ ½F hðhðtÞÞ � F hðhÞ�:

ðB:3Þ

We now examine the limits (as t ! 0þ) of the three terms in
brackets in the right-hand side of (B.3). The expression (22) of F e

gives

F eðuðtÞ;aðtÞ; hðtÞÞ � F eðuðtÞ;aðtÞ; hÞ
t

!
t!0þ

Z
X

@w
@h

~hdx ðB:4Þ

where @w=@h is evaluated at ðuð0Þ;að0Þ; hÞ. Moreover, we have

F hðhðtÞÞ � F hðh�Þ
t

!
t!0þ

@F h

@h
:~h ðB:5Þ

where the expression of ð@F h=@hÞ:~h is given in (A.2). Since F d is lin-
ear with respect to h, we obtain

F dðaðtÞ; hðtÞÞ � F dðaðtÞ; hÞ
t

¼
Z

X

~hUðaðx; tÞÞdx !
t!0þ

Z
X

~hUðaðx;0ÞÞdx:

ðB:6Þ

Substituting (B.4)–(B.6) in (B.3), we obtain

DJðh; ~hÞP DF hðh; ~hÞ þ
Z

X
ð�sþ Ad

:ða� a0ÞÞ~hdx ðB:7Þ

where the definition s ¼ �@w=@h and the relation Uða� a0Þ ¼
Ad
:ða� a0Þ have been used. Comparing with (A.5) shows that the

right-hand side of (B.7) is equal to ð@F=@hÞ:~h. We thus obtain

DJðh; ~hÞP @F
@h

:~h
Appendix C. Transformation strains in CuAlNi and NiTi

The CuAlNi alloy obeys a cubic to orthorombic transformation,
for which there are 6 (lattice correspondent) martensitic variants
with reference transformation strains given by

etr
0;1 ¼

a 0 d

0 b 0

d 0 a

2
6664

3
7775; etr

0;2 ¼

a 0 �d

0 b 0

�d 0 a

2
6664

3
7775;

etr
0;3 ¼

a d 0

d a 0

0 0 b

2
6664

3
7775; etr

0;4 ¼

a �d 0

�d a 0

0 0 b

2
6664

3
7775;

etr
0;5 ¼

b 0 0

0 a d

0 d a

2
6664

3
7775; etr

0;6 ¼

b 0 0

0 a �d

0 �d a

2
6664

3
7775:

ðC:1Þ

For CuAlNi, values of the lattice parameters are
a ¼ 0:0425;b ¼ �0:0822; d ¼ 0:0194 (Chu, 1993).

In the case of NiTi, austenite and martensite respectively have a
cubic and monoclinic-I structure. There are 12 martensitic variants,
with transformation strains given by:
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3
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0;12 ¼
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ðC:2Þ

For nearly equiatomic NiTi alloys, the values of the lattice parame-
ters are a ¼ 0:0243;b ¼ �0:0437; d ¼ 0:058; � ¼ 0:0427 (Knowles
and Smith, 1981).
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