International Journal of Solids and Structures 53 (2015) 129-137

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

Semi-analytical solution for mode I penny-shaped crack in a soft

inhomogeneous layer
S.M. Aizikovich *”*, A.N. Galybin ¢, L.I. Krenev?®

@ CrossMark

4 Research and Education Center “Materials”, Don State Technical University, Gagarin sq. 1, Rostov-on-Don 344000, Russia
b Vorovich Research Institute of Mechanics and Applied Mathematics, Southern Federal University, Stachki av., 200/1, Rostov-on-Don 344090, Russia
“The Schmidt Institute of Physics of the Earth (IPE) of the Russian Academy of Sciences, Gruzinskaya str., 10-1, Moscow 123995, Russia

ARTICLE INFO ABSTRACT

Article history:

Received 22 January 2014

Received in revised form 5 October 2014
Available online 17 October 2014

Keywords:

Mode I penny-shaped crack
Elastic inhomogeneous layer
Young’s modulus variation
Stress intensity factor
Approximate analytical solution
Axisymmetric problem
Elastostatics

An axisymmetric elastostatics problem for a penny-shaped crack placed in the middle of a inhomoge-
neous (FGM) elastic layer is considered. It is assumed that the elastic modulus of the layer varies through
the thickness symmetrically with respect to the crack plane. Several specific distributions of the moduli
variations have been analysed. We report a semi-analytical approximate solution for the determination of
the stress intensity factor for the distributions considered. The obtained solution is accurate enough and
can be applied in engineering applications for the analysis of crack propagation in FGM and hydrofracture
growth in elastic reservoirs.
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1. Introduction

The work is aimed at investigation of the fracture characteris-
tics of elastic materials with inhomogeneous layers weakened by
cracks. The classical problem for the disk-like crack in homoge-
neous isotropic elastic medium was studied (Sneddon, 1946) by
the method of dual integral equations and (Sack, 1946) with the
use of spherical harmonic functions. For two-dissimilar media
the problem with an interface crack has been studied in a number
of studies, among them in Arin and Erdogan (1971), Erdogan
(1965), Erdogan and Arin (1972), Kassir and Bregman (1972),
Lowengrub and Sneddon (1972), and Willis (1972).

The development of advanced materials, such as functionally
graded materials, FGM, necessitates investigation of fracture prop-
agation in media with non-uniform elastic properties. Particular
formulations for FGM layers with continuous variations of elastic
properties have been considered by Selvadurai (2000), for the case
when the shear moduli of the bonded half-spaces vary in
accordance with the exponential law G(z) = G; + G,e*** (where
the z-axis is perpendicular to the interface and the parameter ¢
characterises the rate of exponent decay/grow). The disk-like crack
at a bonded plane (the interface between two half-spaces) with
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localised elastic inhomogeneity has been considered and the mode
[ stress intensity factors for different shear moduli distributions
were calculated for the case of uniform remote tension applied
perpendicular to the crack plane. The method used has been based
on the Hankel transform followed by numerical solving a system of
the Fredholm equation of the second kind.

It should be noted that the exponential form for elastic moduli
is convenient for mathematical manipulations, however other
forms present certain interest as for FGM as in other applications,
for instance (Mendelsohn, 1984) for investigations of hydrofrac-
ture development (Savitski and Detournay, 2002) in inhomoge-
neous reservoirs surrounded by the rock layers with different
(but constant) elastic properties. Thus, geological observations of
Bazhenov shale formation structures (e.g. Strahov, 1970) and lab
tests of velocity anisotropy of different shale formations (e.g.,
Vernik and Liu, 1997) demonstrate diversity in elastic moduli
through the layer thickness. For the plane case such formulations
are found, e.g., in Erdogan and Gupta (1971a,b) and more general
in Delale and Erdogan (1988); for penny-shaped cracks in dissim-
ilar layer one can mention Arin and Erdogan (1971). This study
partly employs the above-mentioned formulations but assumes
that the layer is spatially inhomogeneous through its thickness
and deals with a mode I penny-shaped crack.

The lack of general analytical solutions for the problems involv-
ing cracks in functionally graded materials is emphasised by
Eischen (1987). It should be noted that the methods of contact


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.10.010&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.010
mailto:saizikovich@gmail.com
http://dx.doi.org/10.1016/j.ijsolstr.2014.10.010
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

130 S.M. Aizikovich et al./International Journal of Solids and Structures 53 (2015) 129-137

mechanics for FGM can also be applied for the crack problems. For
instance, one can use the piecewise linear approximation of elastic
moduli for constructing the kernel transform as suggested (Ke and
Wang, 2007; Liu et al., 2008) for the contact problems for half-
space and half-plane with arbitrary variations of elastic properties.
We will further expand the techniques developed in a number of
previous studies (Aizikovich and Alexandrov, 1984; Aizikovich,
1995; Aizikovich et al., 2002; Aizikovich et al., 2011; Vasiliev
et al., 2012) for contact problems for the case of a penny-shaped
crack located within a functionally graded layer. We construct a
semi-analytical solution that depends on a single dimensionless
parameter characterising the ratio of the crack radius to the layer
thickness and examine the accuracy of such approximate solution.
The analysis is conducted for a soft layer, although no restrictions
is imposed for the case when the layer is stiffer that the
surrounded media.

2. Formulation of the problem

Let us consider a mode I disk-like crack of certain radius R in
isotropic inhomogeneous space. The crack lies in the plane z =0
of the cylindrical coordinate system (r,¢,z) and its centre is
located at the origin.

It is assumed that the elastic modulus of the space is an even
function of z of the following form

f@), 0<lzl<H

11
1, |7>H (1.1

Ez) = E%{
where f(z) is an arbitrary function (continuous or piecewise contin-
uous), H is the thickness of the inhomogeneous layer and E, is the
modulus of the material outside the layer, see Fig. 1.

Additionally the following conditions are satisfied to provide
positiveness of Young’s modulus

min A(z) = ¢; >0, max A(z) <
z€(0;00) z€(0:00

Az) = 2M@2)(A(2) + M(z))(A(z) +2M(2))" = G)(1 - v(z)
—LE@)(1-v@2)?) "

Cy < oo, lim A(z) = const
Z—

(1.2)
Here G(z) is the shear modulus, A(z) and M(z) are the Lame coeffi-
cients, v(z) is Poisson’s ratio of the inhomogeneous spaces, c;, ¢, are
certain constants.

Let us further analyse the case when the crack surfaces are
loaded by normal pressure p(r) > 0. Given symmetry of the elastic
properties with respect to the z-axis and the loading conditions
one can suggest that the stress/strain/displacement fields are inde-
pendent of the angular coordinate ¢, which leads to the following
2D axisymmetric boundary value problem for the half-space

T(r,0) =0, 0<r<oo
0.(r,0) = —p(r), 0<r<R w(r,0)=0, r>R

where a,(r,z), t.(r,z) are the normal and shear components of the
stress tensor respectively and w(r,z) is the normal component of
displacements. It is also assumed that the displacements and the
stresses are continuous across the planes |zl =H and vanish at
infinity.

It has been shown (Aizikovich and Alexandrov, 1984) that under
conditions (1.2) the following relationship between the normal
stresses and the normal displacements on the surface of the half-
space (z = 0) is satisfied

w(r,0) = / q(p)pdp / LyJo(yp)o(yr)dy

(1.3)

q<r>=az<r,0>:_/0 Q(o0)foler)udar, Q) = /o a(p)o(ep)pdp

(1.4)

Here J,(r) is the Bessel function and the function A is defined in
(1.2), y is the dimensional parameter of the Hankel transform.

The function L(y) is found numerically by the method of
modulating functions, detail in Babeshko et al. (1987). It has the
following asymptotics as shown by Aizikovich and Alexandrov
(1984) (provided that the conditions specified by Eqgs. (1.1) and
(1.2) are valid)

L(y)=A+Bjy|+0(y*), 7—0 (1.5)
L(y)=1+Dp[" +0(y?),

where A = A(0)A™'(|H|) and B, D are constants. It should be noted
that for a multilayer media this function possesses the following
properties (Aizikovich and Alexandrov, 1982)

P — 00 (1.6)

L(@) =A+o0(x),A=D;'D,"---D,',, «—0 (1.7
Loy =1+ B(azhf + cxhl)Me‘m‘ Fo(e ), o oo (1.8)
Here

L AA k) -1 ey A D

- b b 1 7—7

(D1 +1)? = (kyDy — ky)? 2(1-w)

p_ 1=V Eea(1-1)
=

20-v) TR

and h; is the thickness of the upper layer, E; and the Young moduli
and the Poisson’s coefficients of the j™ layer respectively.

It is evident that the second terms in (1.6) and (1.8) are different
at o — oo, which emphasise the difference in solutions of the inte-
gral equations for FGM and layered media. The properties (1.5) and
(1.7) mean that the value L(0) does not depend on the variation of
the Lame coefficients but rather determined by their values at z=0
and |z| =

Using the approach (Ishlinsky, 1986) and taking into account

(1.3) one can present (1.4) in the form

[ oo [ gty = -4 Opn), 0<r <R
(1.9)

where §(r) = —w(r, 0) is the function that describe the shape of the
crack (crack opening displacements, COD). This function should
satisfy the following condition

S(R)=0 (1.10)

By taking into account the above relationships one can reduce
the problem to the following dual integral equations for an auxil-
iary function A;(p)

{ o ThAT(Brydp=A"'(O)p7, 0<T<1
Jo  M(B)BJ,(Br)dp =0,

Here the new unknown function A;(p) is linked with the unknown
crack opening displacements by the following relationship
=[5 Ar(o)fo(or)der, and J;(r) is the Bessel function of the first
order In the right hand side of (1.11) we introduce a dimensionless
load p* as detailed in Appendix A. Further the asterisk at the
notation for the dimensionless loads will be removed for
compactness.
It is convenient to denote the reciprocal of L(u) as F(u) in the
kernel of (1.8) and bear in mind the asymptotic behaviour of F(u)
yielding from (1.5) and (1.6)

F(y) =A™ —BA?[| +0(?),
F(y)=1-Dy[ " +0(y?),

1.11
r>1 ( )

—0
4 (1.12)

Y=
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3. Closed form solution of the dual integral equation

We further apply an approximate analytical method for the
solution of dual integral equation (1.11) whose kernels satisfy
(1.12). The method has been fully detailed in the previous papers
by Aizikovich with co-authors (Aizikovich and Alexandrov, 1984;
Aizikovich et al., 2002, 2009; Aizikovich, 1982; Aizikovich and
Vasiliev, 2013), see also Appendix A. Here it is necessary to empha-
sise that the asymptotics (1.12) makes it possible to approximate
F(y) by a rational expression of a special kind.

Let us introduce the following definitions.

Definition 1. The function L(y) belongs to the class Iy if it can be
presented in the form

N
W) =T[0*+ A0 +B) ik

i=1

(Bi — Bi)(Ai — Ax) # 0,

(2.1)
where A;,B; (i=1,2,...,N) are complex constants.

Definition 2. The function L(y) belongs to the class Xy if it can be
presented as

M
20 =Y Co? + DY)

k=1

(2.2)

where C, are real constants, and D, (k=1,2,...
constants.

,M) are complex

Definition 3. The function F(o) belongs to the class Sy u(Iy, Xy) if
can be presented in the form
N
[1 (o2 +A2i?) (02 + B 27— M) e Ty
i=1
F(al) =
(04) ZCkoc) (a2 + D22

Lg(ou) + Ly (o)) € Sym

Ai, Bi, G, D (i=1,2,...,N),(k=1,2,...,
and (A, 7Ak)(B,‘ 7Bk) #0,ifi #k.

=Ly (0h) € Iy

M) are certain constants

Dual integral equation (1.11) can be rewritten in the operator
form as follows

Myo + .6 =p (2.4)

where the operators Ily and X, correspond to the functions
F(a) eIy and F(a) € £, respectively. Following (Aizikovich,
1982), one can show that regardless of the right hand side of Eq.
(1.11) satisfying (1.12), the operator Ily is invertible, which yields

p=1II,'s (2.5)

The later formula implies that the norm of the operator X, is
small and one can consider (2.5) as an approximate solution of

(2.4) based on the following theorems presented in (Aizikovich,
1982).

Theorem 1. Let p*(x) be an odd function that can be expanded into
the Bessel series, then Ily has its inverse and the following estimate
takes place

H5N||c§"” 11)

Theorem 2. Under the conditions specified in (1.2), Eq. (1.11)
possesses a unique solution in the space Cg(;z (=1,1) for any p (x)
satisfying Theorem 1 for 0< A< * and 2> /% where 2* and i° are
some fixed values of /, and the following estimate holds

m(IIy)M,(—1,1), m(Ily) = const

0" (R)ICY5 (-1,1) <

It also follows from the analysis presented in (Aizikovich, 1982)
that for 7 — 0 and 4 — oo the operator ITy'Z.. in Eq. (2.4) is a con-
traction operator, i.e. the analytical solutlon of the form (2.5) is a
bilateral asymptotic solution of Eq. (2.4) for 2 — 0 and 1 — oo. It
should be noted that the error of the approximate solution does
not exceed the error of approximation of the functions F(«) from
the class Ily.

m(Iy, )M, (=1, 1).

By applying the methods of operational calculus as by
Alexandrov (1973), one obtains the general solution of the dual
integral equation.

Let F(a) € Iy, then by assuming the uniform pressure p(r) =p
on the crack surfaces, one can present the crack opening displace-
ments in the form
2 p In(0) \/—r2+ZCb / shbtdr}

=220 (2.6)

The constants C; are determined from the following system of
linear algebraic equations

N

S CP(ag by + 0y 0)=0, k=1,2,.

= . kh 2.7)
BchB + AshB

P ="

where a; = A/Jf], B,‘ = B,‘/T].

The normal stresses on the crack plane outside the crack are
determined as follows

p /xocAl(oc)FN(/loc) Sloryde, > 1

p(r) = “AO) J, (2.8)

After transformations of (2.8), one finally finds the following
expression for the stress distribution along the radial direction

p(r)= 2n1p{arcsm <]> } Nt

ok | L0) h(by —a(t-1
_;Lﬁ(ak{ A0 fish( )} /] exp(ti( ))dt}, r1

r2—t?

N
Ao+ ) Cushib

(2.9)

a2.qa2
=14 25 is the product of the rational factors
) ki

Here L& ()
except the k™ one.
The mode | stress intensity factor is found from (2.9) as

follows

K, = li{nox/r—lp(r) \/— A <
r—1+

T A0) ZCshb) (2.10)

It is evident that the solution obtained possesses the inverse
square root singularity at the crack front, which confirms the pre-
vious results for cracks in FGM, e.g. Parameswaran and Shukla
(1999) and Selvadurai (2000). This fact also allows one to use the
concept of linear fracture mechanics for estimations of fracture
propagation, for instance the Irwin’s criteria based on the fracture
toughness.

4. Results

For numerical approximation of the function L(7y), y = AR by the
functions from the class Iy the following procedure is applied.
Firstly, let us transform the function L(y) by using the substitu-

tion u = y2/(y? + C?) from the interval (0, cc) to the interval (0,1)
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Fig. 1. Geometry of the problem: curves marked I, II, Il present examples of possible Young’s modulus E(z) variation in the inhomogeneous elastic layer.

(y =Cy/u(u— 1)’1). Here C is a positive constant that should be

chosen to optimise the approximation of the function L(y) as
shown below.

Then, let us approximate the function y/L(7) and 1/L~'(}) on the
interval (0,1) by the Bernstein polynomial of the N-order as

follows
N N
In(y) = _ad, (/L () =Y bal Lu(y) = LLL((V))
= =0 N (Y

N N -1
(Zawzz) <Zbi*y2i>
i—0 i-0

where the coefficients a;, b; are determined by the substitution
u="72/(*+C).

By finding the roots of both the numerator and the denominator
one obtains the following approximation

N ;2,2 2
) iyt +A

L)~ Ly(Ay) = | | 55— 3.1
()~ Lnta) = 1 o o &)
In order to estimate the error of approximation one can intro-
duce the maximum ratio of the difference between the exact and

approximate values of the function L(y)

IL(2Y) = Ly (29)]
L(zy)

The error L., is further minimised by varying the free parameter
C. For some simple cases of monotonic variations of the elastic
modulus it is possible to construct quite accurate approximation
even for N=1.

Let us consider four specific monotonic distributions of the elas-
tic moduli along the normal to the crack surfaces as shown in Fig 2.

For simplicity Poisson’s ratio is assumed to be constant
(v =0.25), and the elastic modulus varies as in (1.1) where the
function f,(z) is specified by the following four different shapes
shown in Fig. 2

Leyr = max
0<y<oo

(32)

—1
---2
---- 3
—=-4
.\‘
\-
.. ~.
\\ ,‘ \~
S .\
~ 2 .
\\‘.\.
L.
=N

0,0 4 5
e » . -~ \
v
0,2 AN
\ N
1 \ N
N RN
-04 N M %
- \ )
~
0,6 S
zZ i
0,8 -
-1,0 -
1,24
T » T J T %
0,3 0,4 0,5

T
0,6

0,7 0,8 0,9 1,0 1.1

E(2)/E(-1) i=1,2,3,4

Fig. 2. Dependencies of the Young’s modulus in the direction perpendicular to the crack: four specific distributions specified by (3.3).
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Y
Fig. 4. Dependencies of the kernels on the parameter 7.
£1(2) = 1 £,(2) = 1 Re— 122 The values of the parameters a;, b;, ¢;, d; are shown in the table
1 Re’ 2 Re Re below for the elastic modulus distributions specified in (3.3)
-1 Rg—1exp(-2)—-1 o1 Rg—1_
f3(2) = R—E+ R:  exp(1)—1° fa@) = R: Rp z (33) i @ b,
E. E(-1 1 0.88334 0.03085
Re = E0) % 12<Re <3 2 1.31739 0.78188
3 0.75099 2.22931
4 0.55121 4.20334

The dimensionless parameter Rg characterises the degree of
inhomogeneity of the soft layer.

In numerical calculations the value of L;(0) = 1/Rg = E(0)/E(—1)
has been varied and the errors have been minimised. As a result, a lin-
ear dependence of the magnitude of B? from R has been determined.
Therefore, the ratio of the elastic modulus on the crack plane to its
remote value varies in the range 1.2 < Rx < 3 and the parameter is
found as follows

B} (Re) = a; + biRe (3.4)

Approximations of all four elastic distributions investigated are
shown in Fig. 3. The number indicated in the legend corresponds to
the law of change of Young’s modulus, crosses represent the values
of B? found after minimisation of the errors. The curves have been
constructed by (3.3) after which the coefficients a;, b; are
determined.

Approximate analytical expressions for the kernel transforma-
tion for (1.11) can be obtained from the data in the table and
(3.4) as follows
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Fig. 5. The dependences of the maximum relative errors (L — Ly)/L from R; for all four distributions for the case when the approximations contain one term.
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For Rg =3 and 2 = H/a =1 the approximations for L;;(4y) are
shown below and plotted in Fig 4.

_ 7%40.8833/3+0.0309 _ 72+0.3253

1 - =
Lia(y) 770.883310.0309+3 _ 72+0,9759
L (y) = 7%+1.3174/3+0.7819 _ $2+1.2210
L21\V) = 5 13174107819:3 — 77436630
Ls1(y) = 7240.7510/342.2293 _ y242.4796
£31(Y) = 730751042.2293:3 — ;7474389
Lii(y) = 72+0.5512/3+4.2033 _ 72+4.3871
L41(V) = 121 05512+4.2033:3 — 725131612

Fig. 5 shows the dependence of the maximum relative errors
(Li — Li)/L; from Rg for all four distributions for the case when
the approximations contain one term. Fig. 6 shows similar errors
when 29 terms are used in the approximation for L. Comparison
of the results presented in Fig 5 and 6 shows that for the

approximation of the integral equation kernels for distributions
1-4 is accurate to within 12% error when the ratio of elastic mod-
ulus at the surface to its remote value varies in the range from 1.2
to 3. If the number of approximation terms increases up to 29 this
reduce the error up to 3 times.

The approximation of the kernel transform (3.1) by a single
term allows one to express all the components of the solution
(for all distributions considered) in terms of the parameter
L1(0) = 1/Rg = E(0)/E(—1). In this case L;(0) = A’B™%. The stress
intensity factor is found as the following limit

V2

3

pA(0) ' (Li(0) + CshB2™") (3.5)

K = li{nox/r —1p(r)
r—1+4
The constant C is determined from the following linear alge-
braic equation

B/ 'chBi™! + Ai~'shBa™!
A2 —B%)?

14+ A"
A?)?

C L:(0) =0, (3.6)

3,4
32
o =]
= 3,0
~ 28
S 26
2 24
f&\ 2,2—_
~ 2,04
T re]
S 1,64
2 ]
a 144
SRS
X 1,04
< ]
£ 084
* -
£ 06
S 04
= ]
02
0,0 +——F——F——7—

Fig. 6. Maximum errors for the case of 29 terms used in the approximation for L.
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Fig. 7. The dependence of the stress intensity factor from Rg.
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Fig. 8. The dependence of the dimensionless stress intensity factor from 4.

Therefore, the stress intensity factor can be approximated as a Fig. 7 shows the variation of the stress intensity factor, calcu-
function of L;(0) and the parameter B, which yields lated by Eq. (3.7) with (3.3) for the case when the crack radius is

=1 2 -2 _ 2 =2
F ki L1(0)<1 gyt LA A2 B >

“ Ko A2)2 By 'chBi '+ Ai 'shBi !
7l(1 (;V+A)(RE—1)> 1y, (2+ \/@i/R + bi) (R — 1) (3.7)
= - =

RE BcthBa +A RE \/mcth( (aj + REb,‘))fl) -+ a,'/RE + b,‘

V2

A=\/B*/Re, Kp= - pA(0)~!
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equal to the thickness of the layer. The results are shown for all 4
distributions of the elastic modulus variations provided that the
ratio Rg varies in the range from 1.2 to 3. The line numbers in
the legend correspond to the distribution numbers as in Fig. 2.

By varying the parameter . = H/a at fixed value of R; = 2 it is
possible to obtain the dependencies of the dimensional stress
intensity factor F; = K;/Kj, (normalised by Ko for a crack in the
homogeneous space) from 4! by formula (3.7). The results are
shown in Fig 8 for all 4 distributions of the elastic modulus varia-
tions (the line numbers in the legend correspond to the distribu-
tion numbers as in Fig. 2). The results for the step-like
distribution (marked 1 in the figure) agree with those presented
in the handbook by Murakami (1987).

5. Closure

The paper presents the approximate semi-analytical solution
for a disk-like mode I crack in a functionally graded soft interlayer
for four specific distributions of the elastic moduli. It is shown that
the fracture characteristics (the mode I stress intensity factor) can
be expressed in terms of the quantity R i.e. the ratio of the remote
elastic modulus to its value on the plane of symmetry (crack
plane). The accuracy of the solution has been found satisfactory
for the four distributions given by Eqs. (3.3) when the ratio of
the moduli, Rg, varies in the range from 1.2 to 3.

Simple analytical expressions obtained for the mode I stress
intensity factor can serve for the analysis of fracture propagation
in FGM or for the analysis of hydrofracture growth in elastic inho-
mogeneous reservoirs.
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Appendix A. Auxiliary transformations

Let us introduce the following notation for the integral operator

Al = / p)pdp / Ligplo(eplo(ar)dz (A1)
Integration by parts ylelds:
o0 2 R R
Ald] = 3(p)p / Ly Ph (Pl - / &(p)dp
e (A2)

@Jl(ap) o(ar)dot
The first term in (A.2) vanishes due to (1.10). Thus, one obtains:

o ~ ap P
A[élf—/o 6<p>dp/0 [l @l =~ 0<r<R
(A3)

It follows from (A.3) that the normal stresses on the crack plane
are given by the following operator:

p(r) = A(0) / ydp / L) 1(@p)o(ar)de, >R (A4)
The application of the followmg operator
By = [ pulpyip (AS)

to both sides of (A.4) results in

1 T
— dp, 0<r<R
A(O)/Op(mp p

ke = rpJi(ap)]; (ar)
/Ob(p)dp/o Tl dot

(A.6)
Let us introduce the following substitutions and notations
H / r . /o p . /0 Al A
oH = u; lfﬁA r=gi P =% I(PR)=¢'(p)
——Bq Rr/p ppR/pRpdepOW1
(A7)

Making use of (A.7) one can reduce the system to the following
integral equations (hereafter the dash symbols are omitted)

/Ol(p / PIi(Bp)1 (Br) ﬁph br) 4 1

L(57) dp = mq (r),
Here the following notation has been introduced for dimension-
less loads:

1
:% /0 f(p)pdp

Taking into account that ¢(r) = 0 for r > 1, and hence ¢'(r) =0,
for r > 1, one finds the following relationship (based on the prop-
erties of the Hankel transform):

(A.8)

(A.9)

@'(p), 0<p<1

-1
0. p>1 . M) = /0 Q' (p)1(Bp)pdp

(A.10)

AmANﬂMhWPMp:{

Therefore the following dual integral equation can be derived
from (A.8)-(A.10):

{ o BT (pr)dp = AT (0)p(r),
fo A (BBl (prydp =0, T>1

As soon as the function A;(p) is found it is possible to find out
6(r) by the following integrals:

0<r«i1
(A11)

d'(r / Aq ()] (or)do (A12)
3(r) = / p)dp = / Ao /]1 op)dodp
- / " Av(@)o(ar)da, as 5(R) = 0
J0
Let p*(r) be expanded into the Bessel series as follows
. 1
pi(n=5p|r+ Zchjl LT } (A13)

Then the uniform load is expressed via the following limit

llmj 1(87) =2r
e—0 &

(A14)

For the special case of uniform loads the crack opening displace-
ments take the form:

5(r):%< A(O)) {LN J“‘+th»/

The normal stresses on the crack plane are given by the follow-
ing expression:

p(r):—ﬁ

shhtdt

} (A.15)

/m oAq (at)Fn(A0)]o(or)dor, > 1 (A.16)
0

Evaluation of the integrals yields the following distribution of
the normal stresses on the crack plane:
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N ~
p(r) =2n1p{arcsin G) - %—&- ZCnsh(bn)] x\/%
n=1 -

N N 22¢h(h r S
72 ¥.- | L(0) Z azsh(by) o exp(—ax(t—1))
k:lLN(ak) [A(O)+"1 G aﬁ_[’% ] /‘ -t dt}7 =
(A17)

The stress intensity factor, SIF, is found from (A.17) by limiting
transition
. V2 p N -
K, = rkmgx/r —1p(r) = T A0 L(0) + A(O);Cishbi (A18)
The energy relies rate, ERR, for the case of uniform load assume
the form:

1
A=p, / 2mrs(r)dr (A19)
0
which after evaluation of the integral becomes
1 N oo =
A=4p? §LN(O)A-l(O) + > _Cib;(bichb; — shb;) (A.20)

i=1

All the expressions in (A.15)-(A.20) are asymptotically accurate
for COD, normal stresses on the crack plane, SIF and ERR respec-
tively for the case of a penny-shaped crack in FGM.
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