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A two-dimensional single edge crack problem is employed to investigate the fracture behavior of satu-
rated poroelastic media. The media are mimicked by a micromechanical model consisting of elastic
matrix and square arrays of voids with prescribed uniform pore pressure. Finite element method is used
to simulate the fracture responses of the model subject to remote stress and pore pressure loading. The
stress extrapolation method is extended for the porous media to calculate the nominal stress intensity
factor (SIF) from the crack tip stress field. By adopting the tensile strength criterion and assuming either
brittle or ductile failure of the constituent solid skeleton of the porous media, lower and upper bounds of
the fracture toughness are obtained. Theoretical expressions for the stress intensity factor and the tough-
ness are derived, agreeing well with numerical results. The effects of the arrangement of pores and the
non-uniform pore pressure on the cracking of porous media are discussed and are found to only have

moderate effects on the obtained results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Porous media, such as wood, bone, sedimentary rock, and
hydrogel, are widely available in nature and modern industry.
Their microstructures usually contain both a solid skeleton and a
moving pore fluid (either gas or liquid). A strong coupling may
exist between the fluid flow and the elastic deformation of the
solid skeleton (Biot, 1941; Rice and Cleary, 1976; Detournay and
Cheng, 1993; Coussy, 2011). Under external loadings, the fracture
of porous media is typically multiphysics coupled (Rice and
Simons, 1976; Rudnicki, 2001; Exadaktylos, 2012). Furthermore,
the microstructures, such as pores and micro cracks, have been
found to have great effects on the mechanical behavior of porous
media, especially the fracture behavior (Shafiro and Kachanov,
1997; Cramer and Sevostianov, 2009; Ponson, 2009; Nara et al.,
2011, 2014; Ryvkin and Aboudi, 2011; Tokiwa et al., 2013;
Tsusaka and Tokiwa, 2013; Zybell et al., 2014). A mutual under-
standing of the fracture behavior of porous media is of fundamen-
tal importance in fulfilling their applications and has received an
increasing interest in recent years (Kovalyshen, 2010).

A number of theories have been developed for the elastic and
non-elastic deformation of porous media (e.g., Biot, 1941;
Rajagopal, 1995; Carmeliet et al., 2013). Among them, the theory
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of poroelasticity developed by Biot (1941) is well recognized in
studying the elastic deformation of porous media. In its classical
form, the theory is based on the principle of effective stress and
the Darcy’s law. The interaction between the pore fluid and solid
skeleton is described through the pore pressure. Based on Biot’s
theory, Rice and Cleary (1976) reformulated the linear constitutive
equations by using the more familiar constants (e.g. Poisson’s ratio
and Bulk modulus). Solutions of several typical poroelasticity prob-
lems were also obtained.

With the development of the poroelasticity, numerous studies
indicate that the linear quasi-static poroelastic model be useful
in a great variety of fields, such as materials engineering, geome-
chanics and biomechanics (Detournay and Cheng, 1993; Wang,
2000; Hong et al., 2008; Vermorel and Pijaudier-Cabot, 2014). For
these fields, fracture problems are common and important, such
as hydraulic fracture, bone fracture etc. Accordingly, initiation
and extension of cracks in porous media is an area of both practical
and theoretical interest (Kovalyshen, 2010; Barani and Khoei,
2014). For porous media, not only the external loadings but also
the fluid pressure within pores promotes initial propagation of
cracks. The flow of the pore fluid will be affected by the deforma-
tion of the solid skeleton. Meanwhile, the material properties of
the solid can be changed with the diffusion of the fluid into the
solid skeleton (Nara et al., 2012; Duda and Renner, 2013).

Based on the poroelasticity established by Biot (1941), Rice and
his coworkers (Rice and Cleary, 1976; Rice and Simons, 1976)
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investigated the fracture behavior of a quasi-static semi-infinite
shear crack in saturated porous media. Various boundary condi-
tions of the pore pressure on the crack faces were considered
and analytical solutions were obtained. Atkinson and Craster
(1991) and Craster and Atkinson (1992) employed the integral
transformation method to investigate the Mode I and II cracks
embedded in poroelastic media. The crack tip pore pressure and
stress fields were analytically obtained for both permeable and
impermeable crack face boundary conditions. The effects of bound-
ary conditions upon the stress intensity factor (SIF) and energy
release rate were also quantified. Radi et al. (2002) considered
the steady state crack growth in elastic-plastic porous media. In
addition, studies of the thermally activated fracture in porous
media were reported by Guarino and Ciliberto (2011).

As a typical example of poroelastic fracture, the problem of a
stationary hydraulic fracture in a poroelastic medium is important
in the unconventional oil and gas industry (Kovalyshen, 2010;
Shojaei et al., 2014). A self-similar analytical plane strain solution
for a hydraulic fracture propagating in a poroelastic media was
obtained by Lenoach (1995). Adachi and Detournay (2008) pre-
sented an analysis of a hydraulic fracture embedded in permeable
rock and obtained a multi-scale asymptotic solution of the crack-
tip fields. A review of contributions in this area can be found in
Huang et al. (2012).

The fracture behavior of porous media are complicated. In gen-
eral, theoretical solutions are only available for limited boundary
value problems. Consequently, numerical simulation methods,
such as the finite element method (FEM) was employed to deal
with more general poroelastic problems (Lewis and Schrefler,
1998; Ferronato et al., 2010). FEM has been successfully applied
in the solution of problems in poroelasticity, especially in poroelas-
tic fracture analysis (Adachi et al., 2007; Selvadurai and Mahyari,
1998; Shao et al.,, 2014). Selvadurai and Mahyari (1998) studied
the plane strain steady crack extension in poroelastic media, in
which the Galerkin technique was used and the SIF and the pore
pressure fields ahead of crack front were successfully predicted.
Recently, Shao et al. (2014) proposed an advanced numerical
model to investigate the influence of heat transfer and fluid flow
on crack propagation in multi-layered porous materials, with the
extended Finite Element Method (XFEM).

In addition to theoretical and numerical studies, a number of
experimental studies were conducted to improve our understand-
ing on the fracture properties of porous media. For instance, Nara
and his co-workers (2011, 2012, 2013, and 2014) reported experi-
mental investigations on the influence of environmental factors
(e.g., relative humidity, temperature, and electrolyte concentra-
tion) on the fracture behavior of rock, showing that crack growth
in rock is greatly affected by the environmental factors. In addition,
Huang et al. (2014) presented an experimental study for crack
propagation in claystones to provide useful information for
numerical simulation.

In the aforementioned studies, porous media are mostly treated
as continuous media, with the influences of the microstructure
ignored. In fact, the microstructure around the crack tip may have
significant effects on the fracture properties (Shafiro and Kachanov,
1997; Cramer and Sevostianov, 2009; Ryvkin and Aboudi, 2011;
Zybell et al., 2014). For example, Bazant (1984) discovered that
the crack tip of concrete and rock was blunted by the existing of
micro cracks (or pores). Similar effects were found in ductile metal
because of the plastic zone. Smith (2005) showed that the role of
pore located in the crack tip couldn’t be ignored, regardless of
how small it was. It’s the so-called keyhole problem. Further study
indicated that, when the pores exist at the crack tip, there exists
competition between at least two mechanisms of a nominal tough-
ness enhancement due to the crack blunting by the presence of
pores and the weakening effect caused by the increasing volume

fraction of pores (Leguillon and Piat, 2008). Although most of the
aforementioned studies are on traditional continuous solids, their
conclusions are believed to have implications on porous media.
In saturated porous media, the microstructures, especially those
located at the crack tip, can affect the fracture toughness and crack
propagation of the porous media significantly. Therefore, it is desir-
able to quantify the fracture behavior of porous media, such as the
influence of the microstructure and the coupling of fluid and solid
on the fracture characteristics.

In this paper, a two dimensional micromechanical model is pre-
sented, which is capable of describing the influence of the
microstructure of the solid skeleton, and the coupling of the fluid
flow and the deformation of the solid skeleton. In this model, the
interaction between fluid and solid is described by the pore pres-
sure p, and the influence of the diffusion of fluid into solid skeleton
is ignored. Based on the theory of linear fracture mechanics, theo-
retical expressions of the fracture parameters (e.g., SIF and fracture
toughness) of porous media are obtained. In addition, the parame-
ters are calculated numerically using FEM. The accuracy of the
assumptions adopted in this model is discussed by varying the
arrangement of the pores and the distribution of pore pressure.
Finally, a few conclusions are drawn.

2. Micromechanical model

To investigate the fracture characteristics of saturated porous
media, a two dimensional plane strain edge crack problem is con-
sidered, as shown in Fig. 1, where the porous medium is mimicked
by periodically distributed pores embedded in an elastically brittle
solid. A rectangular coordinate system oxy centered at the crack tip
is defined and the geometrical parameters are also shown in Fig. 1,
with a being the crack length, w and b being the specimen width
and height, respectively, d being the pore diameter, and | being
the lattice constant. Accordingly, the porosity is given by

¢ = nd’® /4F° (1)
It is noted that the pores in most porous media may have vary-
ing shapes and sizes and can be randomly distributed, giving rise to

macroscopically isotropic behavior. For simplicity, the following
assumptions are adopted in the model:

(i) The pores are circular and of the same size and are arranged
in square arrays.

(ii) The saturated fluid in all pores is modeled by a prescribed
constant pressure p. The effect of deformation upon p is
neglected.

(iii) The crack is straight and passes through the centers of pores.

In addition to the square arrays of pores in Assumption (i), the
effects of a different distribution of triangular arrays of pores upon
the fracture behavior will be discussed later. Moreover, the pore
pressure p in a porous medium is generally coupled with deforma-
tion. Assumption (ii) implies that only unidirectional coupling is
considered here (i.e., p affects deformation, but not vice versa).
As to Assumption (iii), it can be justified as follows. Note that the
cross section between two pore centers is weakest. It can therefore
be expected that crack advances along the weakest section. In
addition to a remote uniaxial uniform loading o, the crack faces
are also subject to pressure p.

3. Theoretical analysis
3.1. Stress intensity factor

According to linear elastic fracture mechanics (LEFM), the SIF in
mode I of a homogenous elastic counterpart of Fig. 1 is given by
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Fig. 1. Schematic of an edge crack in a porous medium with the square arrays of pores: (a) Macroscopic specimen with remote stress o.; (b) lllustration of the square arrays
of pores with uniform pressure p imposed upon the pores and crack faces. A unit cell with a single pore of diameter d and lattice constant [ is also shown.

K= 1in3x/2nrayy (r>0,0=0) (2)
r—

where o0,,(r >0, 0 =0) is the y-direction normal stress along the
crack propagation direction. For an elastic edge crack problem sub-
ject to remote stress g, K; has the form of

Ki=o.vaa-fi), n=a/w 3)
where f(#) is the geometry factor given by (Tada et al., 2000)

f(n) = 1.12 = 0.237 + 10.561% — 21.74° + 30.421" (4)

For the single edge crack problem of the homogenized linear
elastic porous medium given in Fig. 1, the macroscopic crack tip
fields are much more complicated than those of linear elastic
solids. However, it has been shown by Atkinson and Craster
(1991), Loret and Radi (2001) and Hui et al. (2013), among others
that the same singularity of —1/2 exists for porous media. Because
the problem in Fig. 1 is linear, the effects of remote stress ¢, and
pore pressure p on SIF can be superimposed. Analogous to elastic
solids, the macroscopic crack tip stresses (o) for a porous medium
in Mode I can be related to a nominal stress intensity factor (K;) by

()
V2mr

where Z;(0) is the angular functions the same as those for elastic
solids. Extending the LEFM theory to porous media by superimpos-
ing the effects, (K;) can be assumed to be

with f, (17, @) and f,(n, ) being functions to be determined.
First, consider only the remote stress loading. For a homogenized
elastic porous medium with p = 0, its macroscopic Young’s modu-
lus (E) and Poisson’s ratio (») vary with the porosity ¢. Note that
the planar K; in Eq. (2) for isotropic elastic solids is independent
of the elastic constants (i.e., Young’s modulus E and Poisson’s ratio
v). Therefore, the nominal stress intensity factor (K;) for homoge-
nized isotropic elastic porous media should also be independent
of (E) and (v) and thus has no dependence upon the porosity ¢.
Otherwise, a porosity dependent (K;) indicates that it is a function
of (E) and (v). That is

fa(ﬂ%q)):fa(n)' (7)

Moreover, the geometry factor f; (1) for homogenized elastic
porous media should be the same as that of elastic solids f(#), that
is

(O-ij> = . 211(9)’ lv] =X,y (5)

fem) =fn). (8)

In the case of pressure loading only, contribution from the pore
pressure field near the crack face instead of the overall pore pres-
sure dominates (K;) (the dominance will be verified by FEM in the
following section). Following the same argument applied to
fo(m, @) due to the remote stress loading, the independence of
(K1) upon porosity means that f,(17, ¢) for the pore pressure be also
independent of porosity, giving f, (17, ¢) = f,(1). Note that, both f,
and f, in Eq. (6) are the geometrical factors in SIF. For conventional
elastic solids, the geometrical factors associated with remote
stressing and crack face pressure loading are the same. One can
thus expect that f, and f, for the homogenized porous media are
close to each other, if not identical. Based upon above argument,
f»(1, @) can be approximated by

(@) =Fp(m) =f(n). 9

Therefore, (K;) can be re-expressed as

(Ki) = (0. +p)vma-f(n). (10)

It should be noted that, although the porosity ¢ has no effect
upon the nominal SIF (K)), it does have significant effect upon
the local stress aﬁj in the solid skeleton. In fact, as shown by
Smith (2005), the size and distribution of pores close to the crack
tip affect the fracture behavior greatly. Such a phenomenon is also
referred to as key-hole problem (Leguillon and Piat, 2008). In gen-
eral, the local stress in the solid skeleton dictates the cracking of
porous media and is important in evaluating the toughness of por-
ous media. As a first order approximation, the crack tip local stress

afj is assumed to be defined by a local stress intensity factor K{ as

Ki
V2mr

0= —==-Zy(0), ij=xy (11)

!
i
functions with Ej,y(O) =1, and K! is assumed to related to (K;) by

where superscript “I” refers to local quantities, Z..(0) are angular

Ki = (Ki) - g(¢p).

Here, the porosity factor g(¢) represents the effect of porosity
upon the local stress fields. For the square arrays of uniform circu-
lar pores given in Fig. 1, g(¢) can be estimated as follows.

Within each unit cell ahead of the crack tip, equilibrium in the y
direction indicates that the equivalent macroscopic stress (ay,)

(12)
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along the crack line y = 0 is related to the local stress ¢}, in the
solid skeleton by

[ iomxy = 0= [ ol xy = 0)dx. (13)

where the integral paths S and U refer to the cross section of the
solid skeleton and the entire unit cell, respectively. According to
the Intermediate Value Theorem (IVT), Eq. (13) can be expressed
further on unit cell level as

(Oy) - 1=0y, - (1-d) (14)

where (6,,) and 6§,y are the corresponding average values of
(oyy) and g, along y = 0 with the unit cell.

Note that () and 6’§,y comply with Egs. (5) and (11). One can
get the following relation between (K;) and K! from Egs. (5), (11)
and (14) as
I-d
T

Combining Eqs. (1), (12) and (15), the porosity factor for the
square arrays of voids can be estimated to be

&) =1/ -2v¢/m). (16)

Consequently, the equivalent local stress (i.e., Eq. (11)) in the

solid skeleton and along the crack line is given by
O

Oy o g(p)

K)) =K - (15)

(17)

3.2. Fracture toughness

In general, the fracture behavior of porous media is controlled
by the properties of the constituent solid. Here, it is assumed that
crack growth is by means of breaking of the elastic solid skeleton,
for which two failure modes (i.e., brittle and ductile failure) are
considered. For brittle failure, as a rule of thumb, it is assumed that
crack starts to advance when the maximum stress (normally, the
stress aj,Ey at the edge point E of the cross section, as labeled in
Fig. 1) reaches its failure strength 5. On the other hand, ductile
failure is deemed to occur when the porous medium fails via the
average stress of the cross section ahead the crack tip (approxi-
mated by the stress at the middle point M, i.e., O’%) reaching the
failure strength oy.

To evaluate the local stress a’yEy as shown in Fig. 1, two effects
must be taken into account: First, the local stress field solely due
to the crack; Second, the stress concentration effect due to the lead
pore. Consequently, aj,Ey can be expressed as
o= (Bl.s) - 18)

\/ﬁ r=d/2 \/ﬁ
where S; is the stress concentration factor of a circular hole in a
plate of finite width. It is noted that the pores are distributed evenly
ahead the crack. From a unit cell point of view, each pore can be
viewed as a pore of diameter d embedded in a finite plate of width
I (see Fig. 1). Accordingly, S; can be approximated as (Heywood,
1952)

st:2<1—%>71+<1—%{>2 (19)

which increases from 3 monotonically with d/I increasing.
When the local stress o reaches its failure stress oy, the

corresponding toughness of brittle failure is given by substituting
Eq. (19) into (18) as

d 1
1's;
where superscript “B” denotes brittle failure. It is noted that the
second and third parts of the right hand side of Eq. (20) represent
the two mechanisms of blunting and stress concentration effects,
respectively. When the blunting effect prevails, the toughness asso-
ciated with the brittle failure increases with porosity. However, the
toughness is expected to decreases with porosity when the latter
effect dominates. Therefore, the competition of the two mecha-
nisms indicates the existence of a peak toughness with varying
porosity

For the ductile failure mode, the stress at the middle point M
cannot be obtained by simply extending Eq. (18) to r = I/2. In fact,
we have shown in Section 3.1 that the equivalent local stress at the
middle point M in the solid skeleton complies with Eq. (17), i.e.,

m_ (K)o ) _ (K

o ( V2w 8@)| | =8 1)
With the local stress a’y";’ equal to the failure stress o, the tough-
ness of the porous media in ductile failure can be derived as

(KR) = o5 - V- (1 - 2/ /) (22)

where superscript “D” denotes ductile failure. Eq. (22) is derived
from the specific case of square arrays of circular pores shown in
Fig. 1. Using a hexagonal honeycomb model, Gibson and Ashby
(1999) obtained the in-plane fracture toughness as

(Kie) = oVl - (20)

(Ki) =€ -opVml- (1 - g) (23)

It can be seen that the fracture toughness K| is related to the
yield strength of the solid skeleton gy, the unit cell size of micro-
structure I, and the porosity ¢.

4. Finite element simulations

In order to verify the theoretical analyses given in Section 3, the
microscopic crack tip fields are also obtained numerically with the
commercially available finite element software package ANSYS.
The solid skeleton of the model is meshed with 8-node biquadratic
plane strain elements (i.e.,, Solid Quad 8Node 82 element in
ANASYS). Due to symmetry, only half of the model (y>0) in
Fig. 1(a) is meshed and symmetrical boundary conditions are
enforced along (y = 0 and x > 0). The constituting solid skeleton is
assumed to be linear elastic with Young’s modulus E = 70 GPa
and Poisson ratio v = 0.3.

It should be pointed out that the model in Fig. 1 is employed to
mimic a homogenous porous medium with a crack by using FEM.
In theory, the number of pores in each dimension should be big
enough to eliminate any size effect. Nevertheless, increasing the
number of pores in the model means increased number of degrees
of freedom and computational cost. Therefore, a trade-off between
the pore number and numerical efficiency must be sought.
Numerical experiment shows that a model with the number of unit
cells of 30 x 30 is sufficient to show the homogenized responses of
porous media. Therefore, all finite element models in this study
have 30 x 30 pores. Moreover, mesh sensitivity study has been
conducted to ensure the numerical convergence of the models.
Graded meshes are employed for the crack tip region. The total
degrees of freedom of a typical mesh is about 200,000.

4.1. The stress extrapolation method for determining SIF

Once the microscopic crack tip fields (i.e., stress and displace-
ment) are obtained, the macroscopic fracture characteristics (e.g.,
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SIF and fracture toughness) can be derived. As shown by Atkinson
and Craster (1991), Loret and Radi (2001) and Hui et al. (2013), the
crack tip stress fields of porous media show the same singularity as
those of linear elastic solids. The stress extrapolation method to
obtain SIF of conventional solids (Kim and Eberhardt, 1997) is
adapted here for porous media.

Considering the localized feature of the singularity and the
Williams series for LEFM (Anderson, 2005), an apparent stress
intensity factor K; for the crack problem subject to remote stress
in Fig. 1 is defined in order to extrapolate K; at r =0

Gy V21| 2K =K + 0y - (ar'? 4 cor). (24)

where c¢; and c, are constants to be determined and higher
order terms are ignored. In the original method of Kim and
Eberhardt (1997), only a constant term and a linear term in r are
included (i.e., c; = 0 in Eq. (24) is assumed). However, it is found
in this study that, although the additional nonlinear term r'/? has
only minor effect for continuum solids, it is vital to ensure the
repeatability of the stress extrapolation method for porous media.

Fig. 2(a) shows the calculated local stress J’yy along the crack
line for the model in Fig. 1 with ¢, and p = 0 (denoted by lines).
The porosity is about 19.6%. It is clear that, owing to the existence
of the pores, the stress does not vary continuously across pores. In
general, the stress decreases from the left end of each cross section
between two adjacent pores and reach its minimum at a point
close to the middle point. Also shown in Fig. 2(a) is the stress aver-
aged over each cross section, represented by solid symbols at the
middle points of the cross sections. The calculated average local
stresses over the cross sections in Fig. 2(a) are re-plotted in
Fig. 2(b) in terms of the apparent stress intensity factor K; versus
r/l. Curve fitting the results in Fig. 2(b) with Eq. (24) and extrapo-
lating to r/l = 0 give the remote stress induced local stress inten-
sity factor K!, as discussed in Section 3.1.

When only pore pressure p is present, the induced stress inten-
sity factor can be obtained in a way analogous to the loading case
of remote stressing only, i.e.,

Gy - V27r , Oéfq =Ki+p- (c3r'2 + cqr). (25)

where c3 and ¢4 are unknown constants. For any combinations
of loadings 0., and p, the stress intensity factor can be obtained
similarly as the superimposed principle applies for the linear elas-
tic problems considered in this paper. By varying the porosity in
the FE model, the dependence of Kf on ¢ (i.e, g(¢) in Eq. (12))
can then be obtained numerically.

(a) L
< 150 — Actual values
E 100+ e Average values |
\b::: 50+ L
YUuwuwuwwwww

® 9 ' ' '
s 54+t
£ 45} ]
s . = Average values
I\;H 36 , —IFillcd valucsl

0 3 6 9

r/l

Fig. 2. Illustration of using the stress extrapolation method to determine the stress
intensity factor. (a) FE calculated local stress and its corresponding cross section
average values along the crack line; (b) Curve fitting the apparent stress intensity
factor with Eq. (24). The results are shown for a model with cell numbers of 30 x 30,
crack length a/l = 4.5, porosity ¢ =19.6%, and loading ¢., = 10 MPa and p = 0.

4.2. Toughness associated with brittle and ductile failure modes

From the numerical results of crack tip stress field, the fracture
toughness can also be evaluated. For the brittle failure mode, the

corresponding toughness K- is obtained by choosing the loadings
so that the maximum local stress ny is equal to the failure stress
oy while the toughness Ki- for the ductile failure mode is derived
when the local stress ¢!¥f at the cross section middle point reaches
0. Mathematically, they can be expressed as

g
Kic = o+ (K (26)
yy
and
Ofs
Kie = o (K1) (27)
yy

where (K;) is the nominal stress intensity factor given in Eq.

5. Numerical results

The FE method predicted local SIF K! due to remote stress and
pore pressure are shown in Fig. 3 as solid symbols. Also included
are the theoretical results given by Eq. (16), represented by line.
Note that the results in Fig. 3 are normalized by the nominal SIF
(K1), giving the porosity factor g(¢) in accordance with Eq. (12).
It is seen from Fig. 3 that the porosity factor g,(¢) due to remote
stress is slight higher than g,(¢) associated with only pore pres-
sure. Note from Fig. 1 that there exists a crack tip hole in the model
which slightly reduces the crack tip singularity. The reduction is in
fact more pronounced for pore pressure loading than remote stress
loading, giving rise to a slightly higher g,(¢) than g,(¢).
Nevertheless, both agree with each other very closely and can be
approximated by a single function (i.e., the theoretical expression
(16)). Moreover, Fig. 3 shows that the porosity factor increases
with increasing porosity, which means the local SIF of porous
media becomes larger as the porosity increases. Furthermore, the
porosity factor reduces to 1 when the porosity is equal to zero,
indicating the porous model reduces to continuum media without
pores.

The FE predicted porosity dependent fracture toughness of the
porous medium is shown in Fig. 4 as up and down triangles for
the brittle and ductile failure modes, respectively. The correspond-
ing theoretical predictions given by Eqgs. (20) and (22) are included
as dotted and dot-dash lines for the purpose of comparison. The
Huang-Gibson results in Fig. 4 is for regular hexagonal honeycombs

Q— 5.6F a ]
Y » FEM result, g _(¢)
v ol = FEM result, g, (¢) |
L —— Theoretical result
S
)
o)
Q -
3]
&
2
2 |
2
S ; . . . .
0 12 24 36 48

Porosity ¢, %

Fig. 3. Comparison of FE and theoretical predictions of the local SIFs K{ due to the
remote stress and pore pressure. Here, normalized values are presented for a model
with cell numbers of 30 x 30, and the loading are ¢, =10 MPa and p =10 MPa,
respectively.
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Fig. 4. Predicted fracture toughness of the porous media as a function of porosity.
The FE and theoretical results of brittle and ductile failure modes are both included.
The hexagonal honeycomb model (Gibson and Ashby, 1999) is also contained for

comparison. Cell numbers of the FE model is 30 x 30, and loading is ¢, = 10 MPa

and p = 0.

and serves as reference only. Overall, excellent agreement between
the FE and theoretical predictions of the fracture toughness is
achieved for both failure modes. For the brittle failure mode, the
FE results indeed show that the toughness first increases and then
decreases with increasing porosity, due to the two competition
mechanisms of crack tip blunting and stress concentration effects
predicted by Eq. (20) for the existence of pores. A similar feature
has been reported by Ryvkin and Aboudi (2011) for a double
periodic voided media. For the ductile failure mode, the FE and
theoretical predictions show that the corresponding toughness
decreases with porosity. In fact, the solid skeletons of real porous
media may not fail by ideal brittle or ductile. In such cases, their
toughness are expected to lie in the region between the brittle
and ductile failure modes in Fig. 4. With the established SIF and
fracture toughness, the following fracture criterion of porous media
can be established as

(K1) = Kic. (28)

6. Discussions
6.1. Effects of different arrangements of pores

Generally, pores are randomly distributed in most natural and
manmade porous media. To simplify the analysis, square (SQ)
arranged pores are assumed in previous sections. Here, we discuss
the effects of a different arrangement of pores, i.e., triangle (TR)
arrangement. The FE calculated SIFs corresponding to remote
stress and pore pressure loadings are given in Fig. 5 for various
porosities, shown again as the normalized SIF (i.e., porosity factor
g(®)). One can see that the porosity factor is only moderately sen-
sitive to the arrangement of pores.

6.2. Non-uniform pressure field

In the model given in Fig. 1, uniform pore pressure is adopted.
In porous media, the pore pressure for the crack problem is, in gen-
eral, position dependent (Exadaktylos, 2012). For a simplified
unidirectional coupling model neglecting the effect of deformation
upon fluid flow, the pressure field can then be approximated by
solving the equation V2p = 0. Now, re-consider the crack problem
shown in Fig. 1, with the continuum modeled by the simplified
poroelasticity in conjunction with prescribed pressure of 10 MPa
on the crack face, impermeable condition on left boundary, and
zero pressure for other boundaries. The numerically calculated
pore pressure is shown in Fig. 6(a). One can see that the pore
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Fig. 5. Effects of square (SQ) and triangle (TR) arrangements of pores upon local
stress intensity factors for both remote stress and pressure loading. The normalized
SIFs are presented for a model with cell numbers of 30 x 30, loading ¢.. = 10 MPa
and p = 10 MPa.
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Fig. 6. The cracked plane of a porous medium: (a) Calculated pressure profile of
non-uniform distribution with boundary condition of prescribed pressure of
10 MPa on the crack face, impermeable condition on left boundary, and zero
pressure for other boundaries; (b) Calculated crack tip stress distribution of the
cracked plane with the calculated pressure field. The results are shown for a model
with crack length a/l = 10.5 and porosity ¢ = 19.6%.

pressure in the cracked poroelastic solid is not uniform.
Subsequently, the assumed uniform pore pressure in Section 4 is
replaced by the calculated non-uniform pore pressure. The purpose
is to gauge the effect of uniform pore pressure assumption on the
obtained crack tip characteristics.

For the single edge crack problem with a/w = 0.35, porosity of
19.6%, and the uniform pore pressure p = 10 MPa replaced by the
pore pressure field shown in Fig. 6(b), the calculated local stress
a’y along the crack is included in Fig. 6(b) as dotted lines. One
can see that the calculated stress using the much simpler uniform
pore pressure (see the solid line in Fig. 6(b)) assumption only dif-
fers slightly from that with more realistic non-uniform pore pres-
sure, indicating that the contribution from the pore pressure field
near the crack face indeed dominates the crack tip behavior -
stress intensity factor. This dominance confirms the argument sug-
gested in Section 3.1.

7. Concluding Remarks

The fracture behavior of saturated porous media is investigated
by a two dimensional voided micromechanical crack model theo-
retically and numerically. The interaction between solid skeleton
and fluid insides pores are modeled by the assumed uniform con-
stant pore pressure. The stress extrapolation method is adapted to
calculate the SIF from the FE simulated local stress field.
Theoretical expression of the SIF is obtained and is found to be able
to reduce to the degenerated continuous media.
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As to the facture toughness, brittle and ductile failures of the
elastic solid skeleton constituting the porous media are identified
and the corresponding theoretical expressions are proposed. In
the case of ductile failure mode, the toughness is found to decrease
monotonically with increasing porosity. For the brittle failure
mode, however, the toughness first increases and then decreases
with porosity increasing, due to the two competition mechanisms
of crack tip blunting and stress concentration effects in the pres-
ence of pores. The latter indicates that a proper value of porosity
can in fact enhance the fracture toughness of porous media. For
real porous media, in which the failure mode is between ideal duc-
tile and brittle, their toughness are expected to lie in the region
between the lower and upper bound corresponding to brittle and
ductile failure modes respectively. Good agreement between the
theoretical predictions and numerical results on the SIF and tough-
ness are observed.

To assess the reliability of the obtained results using the simpli-
fied assumptions of square arrays of voids and uniform pore pres-
sure, the influence of different arrangements of pores and pressure
distributions is discussed. It is found that the SIF only has a mod-
erate sensitivity to the pore arrangement and the crack tip stress
field is dictated by the pore pressure field near the crack face.
Therefore, any non-uniform pore pressure outside the leading
pores is not expected to have a significant effect on the fracture
behavior of porous media.
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