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The main contribution of this work lies in the detailed comparison of the predictions of linear elastic
properties of mean field homogenization approaches and full field, voxel-based homogenization methods
for short-fiber reinforced materials. In the former case, the self-consistent, the interaction direct
derivative and a two-step-bounding approach, applying the Hashin–Shtrikman bounds, are used. In the
latter case, the boundary value problem for representative volume elements is solved using fast
Fourier transformation. Model microstructures with unidirectional aligned and two misaligned fiber con-
figurations are considered exemplarily. Fiber volume fractions of 13%, 17% and 21% and phase contrasts of
44, 100 and 1000 in the elastic moduli have been taken into account. The different homogenization
schemes are compared by means of effective directional dependent Young’s modulus. This detailed com-
parison shows that mean field and full field solutions deliver similar results for moderate phase contrasts
and volume fractions. Especially in the range of realistic phase contrasts like 44 for a composite of
polypropylene and glass, the mean field approaches pose reliable alternatives for full field solution.
Large phase contrasts result in relative deviations of up to 68%.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Since the mechanical behavior of fiber reinforced lightweight
materials is crucially dominated by their microstructure, a reliable
dimensioning has to take into consideration the properties of this
microstructure. Especially, the microstructure of injection-molded
thin parts manufactured of short-fiber reinforced composites exhi-
bit a layer-wise setup (Bernasconi et al., 2008, 2012). While in the
boundary layers, the majority of the fibers is oriented in the main
flow direction of the material during manufacturing, in the core
layer, the fibers are predominantly oriented perpendicular to the
main flow direction. Experimentally, the microstructure properties
can be examined, e.g., through micro-computer tomography mea-
surements (Maire and Withers, 2013; Bernasconi et al., 2012; Shen
et al., 2004).

In order to calculate the effective material behavior based on
microstructure data, several methods of homogenization have
been suggested in literature (Kanouté et al., 2009; Geers et al.,
ller), matthias.kabel@itwm.
ofer.de (H. Andrä), thomas.

l. Homogenization of linear elas
uct. (2015), http://dx.doi.org/10
2010). Among them, two basic groups can be identified: Mean field
and full field approaches. Within the first group, bounding and
estimating mean field methods can be distinguished. Bounding
methods specify an admissible range of possible effective proper-
ties for given microstructural information. The size of this range
depends on microstructural properties like the volume fraction,
material properties of the phases and, additionally on the specific
assumptions made for the homogenization approach.
Exemplarily, within the first order or simple bounds, known as
the Voigt and Reuss bounds (Voigt, 1889; Reuss, 1929), the strain
field or the stress field, respectively, is assumed to be uniform
throughout the heterogeneous material. In both approaches the
only microstructural information taken into account are the vol-
ume fractions. Simple bounds enclose a wide range of admissible
effective properties. Tighter bounds have been provided by
Hashin and Shtrikman (1962a,b, 1963) and extended by Willis
(1977) and Böhlke and Lobos (2014) for anisotropic materials.
Based on a variational principle and a comparison material, this
approach has been applied to nonlinear composites (Talbot and
Willis, 1992; Willis, 1986) and also to power-law composites
(Suquet, 1993), to mention only few. In contrary to the bounding
approaches, estimating methods approximate effective properties.
The Mori–Tanaka (Mori and Tanaka, 1973), the generalized self-
tic properties of short-fiber reinforced composites – A comparison of mean
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Table 1
Abbreviations used in the present paper due to convenient handling.

BS Basic scheme of the FFT solution
DFT DFT discrete fast Fourier transformation
FFT Fast Fourier transformation
HS Hashin–Shtrikman
HS� Hashin–Shtrikman lower bound
HS+ Hashin–Shtrikman upper bound
IDD Interaction direct derivative
MF Mean field
RVE Representative volume element
SC Self-consistent
SFRC Short-fiber reinforced composite
TS Two step (mean field approach)
TP Thin plate (microstructure type)
UD Unidirectional (microstructure type)
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consistent (SC) (Christensen and Lo, 1979) and the interaction
direct derivative (IDD) (Zheng and Du, 2001) estimates are promi-
nent representatives of such mean field schemes, which take the
interaction of the inclusions into account. Originally developed to
approximate the effective behavior of a polycrystalline structure
based only on the properties of a single crystal (Kröner, 1977),
the SC method has been applied to granular and also particulate
systems (Willis, 1981). Based on the Eshelby solution (Eshelby,
1957), the general idea is, that each inclusion is embedded in an
infinite matrix, which possesses the properties of the effective
material. Due to this choice of the matrix material, the SC method
has an inherently implicit character. Hill (1965) and Budiansky
(1965) extended the SC method to multi-phase materials. The
major shortcoming of SC is, that the interaction between the inclu-
sions and the surrounding matrix is not considered directly. This
drawback is the main motivation to apply methods like IDD, which
are based on the three-phase model. Here, one inclusion interacts
with the matrix directly and with the other inclusions through
the effective medium. Another mean field approach is based on
two-step methods (TS) (Pierard et al., 2004; Doghri and Tinel,
2006). This method can be applied to homogenize multi-phase par-
ticulate composites. The phases, which can be also fibers, are dis-
tinguished by their geometrical shape, their orientation and
material properties. The first step within this method consists of
the decomposition of the microstructure in as many domains as
there exist different inclusions. In a first step, each domain is
quasi-homogenized individually, and then, in a second step, all
domains are homogenized to determine the effective properties.
These methods have been applied to thermo-elastic (Pierard
et al., 2004) and elasto-plastic materials (Doghri and Friebel,
2005). The main motivation for the introduction of the TS method
is that this method can be applied to a much larger class of
microstructures compared to second-order bounding schemes. A
comparison of the SC method, the IDD approach and the TS scheme
with experimental data is given in Müller et al. (2015).

In the last years, numerical homogenization techniques based
on full field simulations have made significant progress (Suquet,
1987; Guedes and Kikuchi, 1990; Ghosh et al., 1995; Moulinec
and Suquet, 1994; Andrä et al., 2013b). For full field methods, the
microstructure is represented by a representative volume element
(RVE), which is subjected to a macroscopic load. After determining
the local fields in the RVE caused by external load (e.g., by FEM,
BEM, FFT), the effective response of the RVE can be calculated by
volume averaging of the full field solution. This approach allows
for the treatment of complicated microstructures and is also appli-
cable for inelastic material laws, e.g., plasticity or viscoplasticity.
Generally, the choice of the RVE size and the implementation of
proper boundary conditions with regard on the considered
microstructure are issues to be solved when applying this method
(Dirrenberger et al., 2014).

In this paper, the Fourier method has been chosen for the calcu-
lation of the full field solutions. The Fourier method was first pro-
posed by Moulinec and Suquet (1994). This method applies the fast
Fourier transformation (FFT) to solve integral equations of
Lippmann–Schwinger type (Zeller, 1973; Kröner, 1977), which
are equivalent to the local periodic cell problems in numerical
homogenization. Since no meshing is required and the assembly
of the linear system is avoided, the memory needed for solving
the problem is significantly reduced compared to other methods.
Primarily due to the striking speed of available FFT implementa-
tions (Frigo and Johnson, 1998, 2005; Johnson and Frigo, 2007),
this approach has become popular in recent years, in particular
for real world industrial applications (Andrä et al., 2013a). A full
field FFT approach has been compared to various mean field meth-
ods based on artificial variation of the properties of the con-
stituents of a composite consisting of a matrix and spherical
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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inclusions (Ghossein and Lévesque, 2012) and to experimental data
(Spahn et al., 2014).

The outline of the present paper is as follows: In Section 2, the
theoretical background of the applied SC scheme, the IDD
approach, the TS method and the FFT full field method is given.
The generated model microstructures and their properties are
described in Section 3. Here, besides a microstructure with unidi-
rectional aligned fibers, two microstructure with unaligned fiber
configurations inspired by the characteristics of the microstructure
of short-fiber reinforced composites are considered. In Section 4,
the numerical results of the mean field methods are compared to
the full field solutions for all microstructure types. A summary
and conclusions are given in Section 5.

Notation. A direct tensor notation is preferred throughout the
text, see, e.g., (Truesdell and Noll, Jan. 2004; Šilhavý, 1997). If ten-
sor components are used, then Latin indices are used and the
Einstein’s summation convention is applied. Vectors and second-
order tensors are denoted by lowercase and uppercase bold letters,
e.g., a and A, respectively. The composition of two second-order or
two fourth-order tensors is formulated by AB and AB. A linear
mapping of second-order tensors by a fourth-order tensor is writ-
ten as A ¼ C½B�. The inner product between second-order tensors is
denoted by A � B. We define the operator � via ðA�BÞ½C� ¼ ACB, the
dyadic product � by A� Bð Þ C½ � ¼ B � Cð ÞA and the operator s � t by
ða� bÞ � ðCsa� btÞ ¼ ða� aÞ � ðC½b� b�Þ. Arbitrary vectors a and
b, second-order tensors A;B and C and a fourth-order tensor C

are used in the foregoing definitions. The identity on symmetric
second-order tensors is denoted by Is. The brackets h�i, e.g., hei,
indicate ensemble averaging which for ergodic media can be iden-
tified with volume averages in the infinite volume limit. A super-
imposed bar, e.g., �e, indicates that the quantity refers to the
macroscale. The discrete fast Fourier transformation operation is

denoted by DFT. Quantities in Fourier space are indicated by ð�^Þ.
Abbreviations. To distinguish the regarded methods and the

considered microstructure types, several abbreviations have to be
introduced as a reference for the reader in Table 1.
2. Determination of elastic properties

2.1. Modeling preliminaries

In the present work, short-fiber reinforced composites (SFRC)
are considered, where the matrix and the arbitrary oriented fibers
are assumed to be linear isotropic with piecewise constant proper-
ties. The microstructure X ¼ XF [XM consists of a matrix XM and a
set of N fibers XF ¼ fXa : a ¼ 1; . . . ;Ng. The matrix is characterized
by its stiffness tensor CM and volume fraction cM. Accordingly, the
fiber with number a is specified by the orientation of the axis na,
the length la, the radius ra, the volume fraction ca and the stiffness
tic properties of short-fiber reinforced composites – A comparison of mean
.1016/j.ijsolstr.2015.02.030
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tensor Ca. The aspect ratio aa ¼ la=ð2raÞ denotes the ratio of the
length to the diameter of each fiber. The total fiber volume fraction

is indicated with cF ¼ 1� cM ¼
PN

a¼1ca. The material behavior of
the fibers is assumed to be uniform, e.g., Ca ¼ CF for a ¼ 1; . . . ;N.

2.2. Mean field homogenization

2.2.1. Self-consistent homogenization
The effective elastic stiffness tensor �C can be formulated as

ensemble average using the strain localization tensor A (Kröner,
1977). In case of ergodic media, the ensemble average can be inter-
preted as a volume average. For microstructures with piecewise
constant properties, the effective elastic stiffness is then given by

�C ¼ CM þ
XN

a¼1

ca Ca � CMð ÞAa; ð1Þ

where Aa describes the average strain localization tensor in terms
of phase a or fiber a, respectively. For the formulation of the effec-
tive stiffness in Eq. (1), the normalization condition hAi ¼ Is has
been used. The SC homogenization scheme generally assumes that
each fiber is embedded in an infinite homogeneous matrix with
the properties of the effective material �C ¼ CSC. The inclusion prob-
lem is solved based on the single inclusion formula of Eshelby
(1957). Thus, for the special case of an ellipsoidal approximation
of the cylindrical fibers, the strain localization Aa is a function of
the effective stiffness CSC, the stiffness Ca and the geometry of the
ellipsoid Za, which contains the information about the fiber axis
orientation:

Aa ¼ AðCSC;Ca;ZaÞ ¼ Is þ PSC
a Ca � CSC
� �� ��1

: ð2Þ

Herein, PSC
a denotes Hill’s polarization tensor (see equation 4.34 in

Willis, 1981):

PSC
a ðC

SC;ZaÞ ¼
1

4p det ðZaÞ

Z
S

HðCSC;nÞ n � Z�T
a Z�1

a n
� �� ��3=2

dS;

ð3Þ

with HðCSC;nÞ ¼ IsðK�1
�ðn� nÞÞIs and K ¼ CSC

sn� nt. The polar-
ization tensor PSC

a depends on the stiffness CSC and the ellipsoidal
geometry of the fibers Za:

kZaxk2 ¼ x � ZT
aZax

� �
6 1: ð4Þ

x denotes a position vector in the three-dimensional space. The
inverse eigenvalues of Za correspond to the half axis of the ellipsoid
with the number a. In Eq. (3), dS is a surface element of the unit
sphere S :¼ fn 2 R3 : knk ¼ 1g, and detðZaÞ represents the determi-
nant of Za.

The stiffness CSC can be computed by solving the following
implicit equation resulting from Eqs. (1) and (2) and the SC approx-
imation �C ¼ CSC (Willis, 1986):

CSC ¼ CM þ
XN

a¼1

ca Ca � CMð Þ Is þ PSC
a Ca � CSC
� �� ��1

: ð5Þ

This equation for the unknown tensorial quantity CSC is solved
numerically using a Newton–Raphson algorithm combined with a
line search procedure. To determine Hill’s polarization tensor PSC

a
numerically, a Gaussian quadrature over the unit sphere according
to Mura (1987) is used.

2.2.2. Interaction direct derivative
The interaction direct derivative (IDD) estimate, proposed by

Zheng and Du (2001) is based on the generalized self-consistent
scheme (GSCS) (Christensen and Lo, 1979), which for its part is
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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based on the three-phase model. In the three-phase model, the
inclusions are embedded in a finite matrix material region. This
inclusion-matrix cell itself is embedded in the unbounded linear
elastic medium with the effective properties. The difference
between the three-phase model and the IDD estimate can be iden-
tified in the determination of the stresses in the inclusions: In con-
trary to the three-phase model, Zheng and Du (2001) assume an
unbounded medium with the properties of the matrix for the
embedding of the inclusion in the matrix material. Du and Zheng
(2002) have proven that the stresses in the inclusions are approx-
imated by this assumption with an error of second order of the
inclusion volume fraction. The advantage of the IDD is its explicit
structure, which is valid for multi-phase composites with different
material symmetries and inclusion distributions.

The following equation gives the IDD estimation of the proper-
ties of the effective medium:

CIDD ¼ CM þ Is �
XN

b¼1

cb Cb � CM

� �
NbP

D
b

 !�1XN

a¼1

ca Ca � CMð ÞNa;

ð6Þ

with Na ¼ Is þ Pa Ca � CMð Þð Þ�1. Here, Pa ¼ PðCM;ZaÞ is Hill’s polar-
ization tensor as defined in Eq. (3) (with CSC replaced by CM). If the
matrix-inclusion cell has an ellipsoidal shape, then, PD

a ¼ PðCM;Z
D
a Þ

is the polarization tensor corresponding to an ellipsoidal inclusion
with geometry of the matrix-inclusion cell ZD

a , which is embedded
in an infinite matrix with the stiffness CM. The shape of the
matrix-inclusion cell defines the inclusion distribution in the com-
posite (Zheng and Du, 2001). In the present work, this shape is
assumed to be equal to the shape of the spheroidal approximation
Za of the corresponding inclusion itself.

Particularly if the distribution is equal for all inclusions
ZD

a ¼ ZD
� �

, the IDD estimate is equivalent to the Hashin–
Shtrikman estimate of Ponte Castañeda and Willis (1995), which
is based on the Hashin–Shtrikman variational structure in the form
developed by Willis (1977, 1978). A detailed discussion of the rela-
tion of IDD to the estimate of Ponte Castañeda and Willis (1995)
and, e.g., Mori–Tanaka can be found in Zheng and Du (2001) and
Du and Zheng (2002).

2.2.3. A two-step bounding method
The SC and the IDD approaches lead to estimates of the effective

elastic moduli. The two-step (TS) method provides an admissible
range for the effective elastic properties. It should be noted, how-
ever, that the TS homogenization applying the HS method based
on constant stress polarization and two subsequent steps does
not represent a rigorous second-order bounding scheme.

The first step of the TS approach consists of a decomposition of
the microstructure into as many domains as there are different
fibers (Pierard et al., 2004). Thus, fibers of the same shape and ori-
entation are aggregated into unidirectional domains. The fiber vol-
ume fraction in the domains corresponds to the total fiber volume
fraction cF. For each of these domains, the upper and lower bounds,
denoted by CUDþ

a and CUD�
a , respectively, are calculated using the

unidirectional (UD) special case of the second-order HS bounds.
Assuming the fiber material being stiffer than the matrix material
leads to the following prescriptions for CUDþ

a and CUD�
a (Willis,

1977):

CUDþ
a ¼ Ca þ ð1� cFÞ CM � Cað Þ Is þ cFP

UD
a CM � Cað Þ

� ��1
;

CUD�
a ¼ CM þ cF Ca � CMð Þ Is þ ð1� cFÞPUD

a Ca � CMð Þ
� ��1

:
ð7Þ

Hill’s polarization tensor PUD
a is known explicitly for the case of

unidirectionally aligned ellipsoidal inclusions. The resulting bounds
exhibit a transversely isotropic linear elastic behavior. If each fiber
tic properties of short-fiber reinforced composites – A comparison of mean
.1016/j.ijsolstr.2015.02.030
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is unique in terms of direction, geometry or material properties,
then N domains have to be considered. In Eq. (7), a depicts the num-
ber of the particular domain with a 2 f1; . . . ;Ng.

In the second step, all domains are homogenized like a granular
structure, again using the HS bounds. Herein, only corresponding
bounds are combined: the lower (upper) bound of the domains is
homogenized with the lower (upper) bound for the granular struc-
ture. The resulting stiffness tensors are denoted by CTS� and CTSþ,
respectively:

CTS� ¼
XN

a¼1

ca

cF

CUD�
a A�a ¼

XN

a¼1

ca

cF

CUD�
a M�

a M�� ��1
; ð8Þ

with

M�
a ¼ IsþP0 CUD�

a �C�0
� �� ��1

; M�� �
¼
XN

b¼1

cb

cF

IsþP0 CUD�
b �C�0

� �� ��1
:

ð9Þ

Here, P0 is Hill’s polarization tensor for a spherical inclusion
embedded in a matrix with the comparison stiffness C�0 . In case of
the lower (upper) HS bound, for this comparison material, the
minimum (maximum) isotropic part of all domain stiffnesses
CUD�

a CUDþ
a

� �
is taken.

2.3. Full field homogenization

2.3.1. Periodic boundary value problem
For the homogenization of a heterogeneous, periodic medium

with local stiffness CðxÞ, a periodic boundary value problem
(BVP) for the displacement fluctuations ~u on a rectangular cuboid
X, which is often called unit-cell, statistic or representative volume
element (RVE), has to be solved:

divðrðxÞÞ ¼ 0; x 2 X;

rðxÞ ¼ CðxÞ½eðxÞ�; x 2 X;

eðxÞ ¼ �eþ symðgrad ~uðxÞð ÞÞ x 2 X;
~uðxÞ periodic; x 2 @X;
rnð ÞðxÞ anti-periodic; x 2 @X:

8>>>>>><
>>>>>>:

ð10Þ

For all constant strains �e, the problem (10) is uniquely solvable in
the space

~u 2 H1;#ðXÞ
� �3

: ~uh iX :¼
Z

X

~uðxÞdX ¼ 0
� 	

; ð11Þ

with H1;#ðXÞ being the closure of C1;#ðXÞ ¼ fv 2 C1ðXÞ :

v periodicg in H1ðXÞ (see, e.g., Bakhvalov and Panasenko, 1989;
Cioranescu and Donato, 1999). In the rectangular cuboid, the
considered microstructure is represented in a binary manner using
a regular three-dimensional voxel discretization.

2.3.2. Equivalent strain and stress based Lippmann–Schwinger
equation

By introducing a homogeneous comparison material of stiffness
C0 and the stress polarization

pðxÞ ¼ CðxÞ � C0ð Þ½eðxÞ�; ð12Þ

the constitutive equation for the stress rðxÞ ¼ CðxÞ½eðxÞ� can be
transformed as follows

rðxÞ ¼ C0½eðxÞ� þ pðxÞ: ð13Þ

For known stress polarization pðxÞ with support in X, e.g.,
suppðpÞ# X, the solution of div rðxÞð Þ ¼ 0 can be expressed by using
the nonlocal elastic Green operator G0 for strains associated with
the comparison material C0 (Kröner, 1977)
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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eðxÞ ¼ �e� G0 � pð ÞðxÞ; ð14Þ

where the convolution is defined by

G0 � pð ÞðxÞ ¼
Z

X
G0ðx� yÞ½pðyÞ�dX: ð15Þ

Inserting (12) into (14), the strain based formulation of the
Lippmann–Schwinger equation is derived:

Is þ Beð Þ½eðxÞ� :¼ eðxÞ þ G0 � C� C0ð Þ½eðxÞ�ð Þð ÞðxÞ ¼ �e: ð16Þ

This integral equation is equivalent to an integral equation for the
stress (Kröner, 1971)

Is þ Brð Þ½rðxÞ� :¼ rðxÞ þ L0 � S� S0ð Þ½rðxÞ�ð Þð ÞðxÞ ¼ �r; ð17Þ

with the local compliance SðxÞ ¼ C�1ðxÞ, the compliance of the
comparison material S0 ¼ C�1

0 and the macroscopic stress
�r ¼ C0½�e�. The Green operator L0 for stresses associated with the
comparison material C0 can be determined from the Green operator
G0 for strains by

L0 ¼ C0 � C0G0C0: ð18Þ

For the sake of a simpler notation, the dependency of the quantities
on the spatial position x is not noted in the following equations
anymore.

2.3.3. Energy and strain equivalence principle
With the use of the energy equivalence principle (Hill

condition)

1
2

ea � C½eb�
� �

¼ 1
2

eah i � �C½ eb

� �
�; ð19Þ

it is possible to determine the effective (homogeneous) stiffness �C

by solving (10) for a basis of the six dimensional space of macro-
scopic strains �e. Hence, ea or eb, respectively, denote the six neces-
sary linear independent loading cases with a;b 2 f1; . . . ;6g. The
same can be done for the effective compliance �S

1
2

ra � S½rb�
� �

¼ 1
2

rah i � �S½ rb

� �
�: ð20Þ

By applying the results of Bishop and Hill (1951a,b), the effective
stiffness and compliance can be obtained

C½eb�
� �

¼ �C½ eb

� �
�; ð21Þ

S½rb�
� �

¼ �S½ rb

� �
�: ð22Þ
2.3.4. Lippmann–Schwinger equations for the Hashin–Shtrikman
bounds

The energy principle of Hashin and Shtrikman (1962b) states
that for any choice of the polarization field pðxÞ, the following
bounds on the elastic energy in the unit-cell hold true

e � C½e�h i 6
ðPÞ

�e � C0½�e� þ 2 ph i � �e� p � C� C0ð Þ�1½p�
D E

� p � G0 � pð Þh i; ð23Þ

if C 6 C0 (C P C0). Equality is reached when p ¼ C� C0ð Þ½e�. These
bounds are applied to the subspace of voxel-wise constant polariza-
tion fields (Brisard and Dormieux, 2010). It is shown, that by intro-
ducing the periodized Green operator G#

0 , the bounds (23) or G0 � p,
respectively, can be calculated in this subspace without any approx-
imation error by a discrete fast Fourier transformation. Since Willis
(1977) has shown that the Hashin–Shtrikman bounds are quadratic
positive (negative) definite forms on the space of all polarization
fields, an optimal polarization field pHS in this subspace has to exist.
tic properties of short-fiber reinforced composites – A comparison of mean
.1016/j.ijsolstr.2015.02.030

http://dx.doi.org/10.1016/j.ijsolstr.2015.02.030


V. Müller et al. / International Journal of Solids and Structures 64–65 (2015) 1–15 5
Applying this result for the polarization fields to the associated
strain field

eHS :¼ C� C0ð Þ�1½pHS�; ð24Þ

results in the following equation

eHS þG#
0 � C� C0ð Þ½eHS�
� �

¼ �e; ð25Þ

which is of the same form as (16). This means, that the bounds of
Hashin–Shtrikman can be calculated by the methods discussed for
the strain based formulation of the Lippmann–Schwinger equation.
The difficulties arising in the calculation of the periodized Green
operator G#

0 are discussed in Brisard and Dormieux (2010).
Equivalently, the stress based formulation of the Lippmann–

Schwinger equation can be restated. This formulation has the
advantage, that rigid inclusions can be treated without problems.
Following Hill (1963), the eigenstrain eH is introduced:

eH ¼ S0½p� ¼ S0 � Sð Þ½r�: ð26Þ

This leads to the following formulation of the bounds of Hashin–
Shtrikman (Willis, 1977)

r � S½r�h i 6
ðPÞ

�r � S0½�r� þ 2 eH
� �

� �rþ eH � S� S0ð Þ�1½eH�
D E

þ eH � L0 � eH
� �� �

; ð27Þ

if C 6 C0 (C P C0) or equivalently S P S0 (S 6 S0). Again, equality
is reached for eH ¼ ðS0 � SÞ½r�. Applying the above arguments to

the associated stress field rHS :¼ S0 � Sð Þ�1½eHHS� of the optimal

eigenstrain field eHHS in the subspace of voxel-wise constant eigen-
strain fields, the following equation is obtained

rHSðxÞ þ L#
0 � S� S0ð Þ½rHS�
� �� �

ðxÞ ¼ �r; ð28Þ

with L
#
0 being the periodized Green operator for stresses which is

defined in the same way as the periodized Green operator for
strains.

2.3.5. Numerical algorithm
Both, the strain based formulation (16) as well as the stress

based formulation (17) of the Lippmann–Schwinger equation can
be iteratively solved using the Neumann series expansion for
inverting the operator Is þ Be or Is þ Br, respectively. The iterates
of the local strain or stress, respectively, reads

en ¼
Xn

a¼0

�Beð Þa½�e�; rn ¼
Xn

a¼0

�Brð Þa½�r�; ð29Þ

which can also be written as

e0 ¼ �e; r0 ¼ �r; ð30Þ

enþ1 ¼ �Be½en� þ �e; rnþ1 ¼ �Br½rn� þ �r: ð31Þ

The iterates (31) can be efficiently calculated in four simple steps
using discrete fast Fourier transformation (DFT) by the so called
basic scheme for polarization and eigenstrain, respectively (see
Moulinec and Suquet, 1994):

p ¼ ðC� C0Þ½en�; eH ¼ ðS� S0Þ½rn�; ð32Þ

p̂ ¼ DFTðpÞ; êH ¼ DFTðeHÞ; ð33Þ

êH ¼ �Ĝ0½p̂�; êHð0Þ ¼ �e; p̂ ¼ �L̂0½êH�; p̂ð0Þ ¼ �r; ð34Þ

enþ1 ¼ DFT�1ðêHÞ; rnþ1 ¼ DFT�1ðp̂Þ: ð35Þ

Previously defined in (26), in these equations, the sign of the eigen-
strain eH is changed, to get an identical algorithm for the strain and
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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stress formulation. Expressions for Ĝ0 can be found in Mura (1987)
for different types of anisotropy.

The computation of the Hashin–Shtrikman bounds (25) and
(28) can be done by replacing the Green operators G0 and L0 in
the basic scheme with their periodized counterparts G

#
0 resp. L

#
0

(Brisard and Dormieux, 2010).

2.3.6. Hashin–Shtrikman bounds on the effective moduli
According to Kabel and Andrä (2013), it is possible to use the

solutions of the Lippmann–Schwinger equations (25) and (28) to
obtain upper and lower bounds on the effective moduli.
Additionally, the assumptions in terms of the Hashin–Shtrikman
bounds on C0 will have the consequence, that it is not possible
to calculate an upper (lower) bound of the effective stiffness
numerically, if the composite contains any rigid (porous) region.
This is, however, not a real limitation, since in the first case, the
upper Hashin–Shtrikman bound is a rigid material, and in the sec-
ond case, the lower Hashin–Shtrikman bound is a material without
any elastic stiffness. In the case of a composite having both rigid
and porous regions, the assumptions of the Hashin–Shtrikman
bounds cannot be fulfilled.

In appendix A is shown, that combining (19) and (21) with (23)
yields

e
�
��C½e
�
� ¼ �e � CHS

e ½e
�
�: ð36Þ

It follows

C 6
ðPÞ

C0 ) �C 6
ðPÞ

CHS
e : ð37Þ

Further in appendix A is shown, that combining (20) and (22) with
(27) yields an analogous result for the compliance

�r � �S½�r� � �r � S0½�r� ¼ �r � S0 � S
HS
r

� �
½�r�: ð38Þ

Therefore, if S P
ð6Þ

S0

�S 6
ðPÞ

2S0 � SHS
r 6
ðPÞ

2�S� SHS
r ; ð39Þ

which means that

S P
ð6Þ

S0 ) SHS
r 6
ðPÞ

�S: ð40Þ

For non-rigid materials this implies

C 6
ðPÞ

C0 ) �C 6
ðPÞ

CHS
r : ð41Þ

From their convergence analysis, Michel et al. (2001) and Eyre and
Milton (1999) concluded, that the convergence of the Neumann ser-
ies expansion (29) for the strain based formulation of the
Lippmann–Schwinger equation (25) is only guaranteed for C 6 C0.
The opposite is true for the stress based formulation, for which only
S 6 S0 guarantees the convergence of the Neumann expansion
(29). To sum up, the strain (stress) based formulation allows the
determination of an upper (lower) bound of the effective stiffness
if the composite does not contain any rigid inclusion (pore space)

CHS
r 6

�C 6 CHS
e : ð42Þ
3. Model microstructures and material parameters used for
homogenization

3.1. Generation of model microstructures

The mean orientation distribution can be described with fabric
tensors of second rank N (Kanatani, 1984), also called fiber
tic properties of short-fiber reinforced composites – A comparison of mean
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orientation tensors (Advani and Tucker, 1987). For N equal
weighted fiber orientations n, the orientation tensor is defined as

N ¼ 1
N

XN

a¼1

na � na: ð43Þ

Since the fiber axis orientation n is normalized, the trace of the fiber
orientation tensor is always one: trðNÞ ¼ 1.

Three different microstructures have been used for the compar-
ison of the methods. Firstly, a microstructure with unidirectional
aligned fibers has been considered. Results affiliated with this
microstructure are referred to with UD in the following.
Secondly, inspired by the orientation distribution of the fiber axes
in injection-molded thin plates, two different microstructures with
misaligned fiber axes have been considered. Results based on this
microstructures are denoted with TP1 and TP2 (thin plate) in the
following. All microstructures are generated under a periodicity
constraint. In Table 2, the components of the orientation tensors,
which have been used to generate the model microstructures, are
given. The artificial microstructures have been generated by using
GeoDict (2014). The corresponding data files can be found on the
internet page http://www.itm.kit.edu/cm/288.php. The algorithm
is described in Schladitz et al. (2006).

For all microstructures, the fibers have been modeled by cylin-
ders with a length of l ¼ 200 lm and a diameter of d ¼ 10 lm. Ten
different RVEs have been realized for each microstructure type. The
side length of the RVEs has been dRVE ¼ 250 lm, and they have
been discretized with the resolutions 125;250 and 500, corre-
sponding to a side length of one voxel of 2 lm;1 lm, and
0:5 lm, in all directions for consideration in the full field approach.
For all realizations, the fiber volume fraction is assumed to be
equal to cF ¼ 13%. Additionally, for UD, fiber volume fractions of
17% and 21% have been taken into account. Since the mean field
Table 2
Components of orientation tensors, used for the generation of the model
microstructures.

N11 N22 N33 N23 N13 N12

NTP1
0

0.61 0.36 0.03 0.0 0.0 0.0

NTP2
0

0.80 0.18 0.02 0.0 0.0 0.0

NUD
0

1.0 0.0 0.0 0.0 0.0 0.0

Fig. 1. (a) UD microstructure
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methods only rely on the orientation information, the explicit geo-
metrical description of the orientation and geometry of each fiber
is necessary. In Fig. 1, examples for UD and TP1 microstructures are
given.

3.2. Properties of the model microstructures

The microstructure generation process, which is implemented
in GeoDict, is a random process. In the UD case, the microstructure
generation algorithm matches perfectly the unidirectional align-
ment of the fibers. The achieved mean orientation tensors of the
TP RVEs are compared with the target orientation tensors in
Table 3.

3.3. Parameter overview

As mentioned above, three different microstructure types with
three different fiber volume fractions have been regarded for the
comparison of the homogenization methods. Additionally, three
different combination of elastic moduli for fibers and matrix have
been taken into account: First, the elastic moduli have been chosen
corresponding to polypropylene (EPP ¼ 1:665 GPa, mPP ¼ 0:36) and
glass (EG ¼ 73 GPa, mG ¼ 0:2) (Joshi et al., 1994; Tomasetti et al.,
1998). These materials are frequently used to compound compos-
ites like PPGF30, consisting of polypropylene reinforced with glass
fiber of a weight fraction of 30%. The phase contrast of this combi-
nation amounts to n ¼ 44. Further, the phase contrast has been
increased to 100 and 1000, whereby Young’s modulus of the
matrix and fibers is set to EM ¼ 1 GPa and EF ¼ 100 GPa or
EF ¼ 1000 GPa. The parameter variation is summarized in Table 4.
; (b) TP microstructure.

Table 3
Components of the average orientation tensors of 10 realization of the TP

microstructures and their deviations compared with the target orientation tensors
(see Table 2).

N11 N22 N33 N23 N13 N12

�NTP1 0.6083 0.3615 0.0302 0.0064 �0.0017 0.0004

NTP1
0 � �NTP1 0.17% �0.15% 1.02% �0.64% 0.17% �0.04%

�NTP2 0.8058 0.1743 0.0199 �0.0006 0.0022 0.0114

NTP2
0 � �NTP2 �0.58% 0.57% 0.01% 0.06% �0.22% �0.11%

tic properties of short-fiber reinforced composites – A comparison of mean
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Table 4
Variation of microstructural and material parameters.

Microstructure Fiber volume
fraction

Material combination

TP1 TP1/TP2 UD n ¼ 44 n ¼ 100 n ¼ 1000
TP2 13% 13% EF [GPa] 1.665 1 1
UD 17% mF 0.36 0.36 0.36

12% EM [GPa] 73 100 1000
mM 0.36 0.36 0.36

Fig. 3. Mean Young’s modulus and standard deviation in 0�-direction of UD

microstructure realizations in dependence of the resolution of the RVE for FFT
methods.
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4. Numerical results

4.1. Directional dependent elastic properties

To compare the effective stiffnesses, the directional dependent
Young’s modulus and bulk modulus can be evaluated. The direc-
tional dependent Young’s modulus

1
EðdÞ ¼ d� d � �S d� d½ � ð44Þ

and the directional dependent bulk modulus

1
3KðdÞ ¼ I � �S d� d½ � ð45Þ

determine uniquely the effective compliance tensor �S ¼ �C�1 (see,
e.g., Böhlke and Brüggemann, 2001). In Fig. 2, the graphical repre-
sentations of these quantities are given exemplarily for a UD real-
ization. In the following, the numerical results are compared by
means of the directional dependent Young’s modulus. on the one
hand, a quarter of the contour of this quantity is shown on the x–
y-plane. Here, this plane is the plane with the main fiber orientation
distribution in terms of UD and TP. On the over hand, the compar-
ison is expressed by means of a relative deviation of the directional
dependent Young’s modulus of method X and Y:

gX
Y ¼

R
S EXðnÞ � EYðnÞ
� �2

dSR
S EXðnÞ
� �2

dS

0
@

1
A

1=2

: ð46Þ
4.2. Resolution, size and realization dependency of Young’s modulus

4.2.1. Spatial resolution of RVE
In order to evaluate the dependencies of the FFT solution on the

resolution, Young’s moduli have been calculated in 0�-direction
(E0) for each realization of the three different resolutions for two
different phase contrasts, n ¼ 44 and n ¼ 1000. For UD microstruc-
tures with a volume fraction of 13%, these results are shown in
Fig. 3, and, for TP1 microstructures in Fig. 4. In both figures, the
mean Young’s modulus values and the corresponding standard
deviation of all realizations for the lower bound (FFT-HS�), the
Fig. 2. Graphical representation of the directional dependent (a) Y
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basic scheme (FFT-BS), and the upper bound (FFT-HSþ) in the
appropriate direction are shown.

Since the averaged Young’s modulus values of the FFT-BS solu-
tion are on an approximately constant level for both microstruc-
ture types, a dependency on the resolution cannot be observed.
The standard deviation of the FFT-BS results in terms of different
RVE realizations is similar for all resolutions. Contrary to this,
FFT-HSþ and FFT-HS� dependent obviously on the resolution:
the gap between the corresponding bounds is narrowed with
increasing resolution. This can be reasoned with an increasing
space for solution in this case of voxel-wise constant field vari-
ables. Thus, tighter bounds can be found based on Eq. (27). For
the smaller phase contrast of n ¼ 44, FFT-HSþ is closer and con-
verges faster to FFT-BS for UD and TP1 in the considered direction.
Just the opposite can be observed for the larger phase contrast of
oung’s modulus and (b) bulk modulus for one UD realization.

tic properties of short-fiber reinforced composites – A comparison of mean
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Fig. 4. Mean Young’s modulus and standard deviation in 0�-direction of TP1

microstructure realizations in dependence of the resolution of the RVE for FFT
methods.

Fig. 5. Mean Young’s modulus and standard deviation of TP1 microstructure
realizations in 0�-direction in dependence of the size of the RVE for (a) FFT methods
and (b) MF approaches.

Table 5
Components of orientation tensors of RVEs with an endge-length of 250 lm; 500 lm
and 1000 lm.

N11 N22 N33 N23 N13 N12

NTP1
130

0.6086 0.3614 0.0299 0.0062 �0.0020 0.0014

NTP1
1035

0.6115 0.3581 0.0304 �0.0005 0.0007 �0.0007

NTP1
8277

0.6113 0.3586 0.0301 0.0000 �0.0001 �0.0003
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n ¼ 1000. The standard deviation of FFT-HSþ is slightly increasing
for UD with n ¼ 44 and obviously increasing for UD with n ¼ 1000.
In the TP1 case, its standard deviation is approximately constant
for the smaller phase contrast and decreasing for the larger phase
contrast. The standard deviation of FFT-HS� increases in all cases
with increasing resolution.

4.2.2. Size of RVE
In order to verify the representativity of the volume element for

the misaligned microstructure configuration, additional volume
elements of three different sizes have been considered for TP1:
Starting with 250 lm, the side length has been doubled two times
to 500lm and 1000 lm. Again, ten volume elements with a reso-
lution of 125;250 and 500 voxels, respectively, in each direction
have been generated and homogenized using the FFT and MF
methods. The resulting averaged Young’s modulus in 0�-direction
and its standard deviation are shown in Fig. 5(a) for the FFT and
in Fig. 5(b) for the MF approaches.

Despite the low resolution which has been chosen due to com-
putational issues, it is obvious from Fig. 5, that the mean values of
Young’s modulus are approximately constant for all RVE sizes. The
FFT and MF methods show qualitatively comparable results in
Fig. 5(a) and in Fig. 5(b), respectively. On the one hand, for small
RVEs with 130 inclusions, a dependency on the specific realization
is evident. On the other hand, for the midsize and large volume ele-
ments with 1035 and 8277 inclusions, respectively, Young’s mod-
ulus does not show a significant dependency on a specific
realization. The correspondence of the orientation distribution in
terms of the fiber orientation tensor compared to the target given
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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in Table 2 is the better, the larger the volume elements become, see
Table 5. Since the mean stiffnesses and also the mean direction-de-
pendent Young’s modulus are constant regarding different RVE
sizes, it is concluded, that the representativity is also given for
the small RVEs in an averaged manner.
4.2.3. Variation in RVE generation
The variation of the microstructure realization process is ana-

lyzed by means of averaged directional dependent Young’s moduli
and standard deviations of all realizations on the x–y-plane. In
Fig. 6 and 7, FFT results are shown for UD and TP1, respectively.
In each figure, results for microstructures with a fiber volume frac-
tion of 13% and a phase contrast of 44 and 1000 are presented.
Especially for UD, a direction dependence of the standard deviation
of Young’s modulus can be observed: The greatest deviation occurs
in fiber direction (0�-direction) and the smallest in transversal
direction for all FFT methods. It increases for higher averaged
Young’s modulus. Thus, for the upper bound FFT-HSþ and for lar-
ger phase contrast the greatest standard deviation is found.
However, relating the standard deviation to the averaged Young’s
tic properties of short-fiber reinforced composites – A comparison of mean
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Fig. 6. Direction dependent Young’s modulus and standard deviation in x–y-plane
for UD microstructure realizations for FFT methods.

Fig. 7. Direction dependent Young’s modulus and standard deviation in x–y-plane
for TP1 microstructure realizations for FFT methods.
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modulus in the corresponding direction reveals two facts: The
greatest relative deviation of approximately 2% for n ¼ 44 and
25% for n ¼ 1000 occurs again in fiber direction but now for FFT-
BS. Since the UD alignment is perfectly matched in all RVE realiza-
tions, no deviations can be observed in the MF results.

In the TP1 case in Fig. 7, no distinct direction dependence of the
standard deviation can be observed for FFT results. However, the
greatest deviations occur for methods delivering the greatest
Young’s modulus. If the standard deviation is related to the aver-
aged Young’s modulus, a deviation of 8% for n ¼ 44 and 18% for
n ¼ 1000 is found. The MF results also depend on the RVE realiza-
tion in the TP1 case, see Fig. 8. Here, again, no distinct direction
dependence of the standard deviation can be observed. MF-SC
delivers the highest sensitivity on specific RVE realizations and,
thus, the highest standard deviation, also compared to FFT meth-
ods: 11% for n ¼ 44 and 25% for n ¼ 1000.

4.2.4. Effects of the periodicity constraint
For the generation of the TP microstructures, a periodicity con-

straint has been imposed. In order to quantify the effect of the peri-
odicity, non-periodic TP1 RVEs with the side length of 250;500 and
1000 lm have been generated additionally. Although the RVEs are
not periodic, it is still possible to solve the boundary value problem
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
field and voxel-based methods. Int. J. Solids Struct. (2015), http://dx.doi.org/10
using the FFT approaches with periodic boundary conditions.
Compared to the results of FFT-BS for periodic microstructures,
the relative deviation, which is defined in Eq. (46), decreases with
increasing RVE side length of the non-periodic microstructures. For
250 lm the deviation amounts to 9:0%, for 500 lm to 6:7% and for
the largest RVE with 1000 lm to 4:8%. The periodicity constraint
ensures a constant fiber length, however, this is not the case for
the non-periodic RVEs, which contain shorter fiber ends at their
boundaries. Since the volume fraction of the short fiber ends
decreases for increasing RVE size, the results are reasonable.

4.3. Deviation of Young’s modulus

In the following, FFT-BS is compared with MF-IDD and MF-SC
by means of a relative deviation defined in Eq. (46). Herein, the
highest resolution of the RVEs have been used for FFT-BS. The
effective averaged Young’s moduli of the mentioned methods are
compared for all microstructure types, phase contrasts and fiber
volume fractions. For each comparison, the relative deviation has
been calculated and shown in a heat map, see, e.g., Fig. 9. Herein,
the relative deviation is entered directly on the one hand, and rep-
resented in color in order to see the tendencies better on the other
hand.
tic properties of short-fiber reinforced composites – A comparison of mean
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Fig. 8. Direction dependent Young’s modulus and standard deviation in x–y-plane
for TP1 microstructure realizations for MF methods.
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In Fig. 9(a), first, FFT-BS and MF-IDD are compared for all
microstructure types and phase contrasts. The smallest deviation
of 1:5% occurs for TP1 with the smallest phase contrast n ¼ 44.
The largest deviation of 31:8% is found for UD with n ¼ 1000.
The deviation increases with increasing phase contrast and with
advancing alignment of the fibers (TP1! TP2! UD). Similar
results can be seen in Fig. 9(c), where FFT-BS and MF-IDD are com-
pared for UD microstructures with all considered phase contrasts
and volume fractions. Starting from 3%, the deviation increases
with increasing phase contrast and also with increasing volume
fraction up to 49:5%.

The relative deviation between MF-SC and FFT-BS for UD,
shown in Fig. 9(d), reveal the same tendencies as MF-IDD and
FFT-BS. Again, the deviation increases with increasing fiber volume
fraction and phase contrast. The minimum and maximum devia-
tions amount to 4:5% and 29:2%, respectively. Another tendency
can be observed for the comparison of MF-SC and FFT-BS in terms
of different microstructure types, see Fig. 9(b). Here, the deviation
still increases with increasing phase contrast, however, it decreases
with advancing alignment of the fibers.

The direct comparison of Young’s modulus for TP2 with
cF ¼ 13% and n ¼ 100 is shown in Fig. 10(a) on the x–y-plane for
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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all MF and FFT methods. Accordingly, in Fig. 10(b), the UD results
of all methods are compared for cF ¼ 17% and n ¼ 100. It can be
seen, that the results of all methods are located between MF-TSþ
and FFT-HS�, where FFT-BS appears between the narrow FFT
bounds. MF-SC predicts a higher Young’s modulus than FFT-BS
and a partially higher Young’s modulus than FFT-HSþ, especially
in fiber direction in the UD case. MF-IDD is located between FFT-
BS and the lower bound FFT-HS�. In the UD case, MF-IDD and
MF-TS� coincide for all parameters and appear between FFT-BS
and FFT-HS�. MF-TSþ predicts a much higher Young’s modulus
then all other methods, additionally for UD, the shape of the MF-
TSþ Young’s modulus is different compared to the other
approaches.
4.3.1. Effects of the ellipsoidal approximation of the cylindrical fibers
Generally, it is known that for UD, the effective material behav-

ior in fiber direction is getting stiffer with increasing fiber length.
The MF results discussed so far are based on the modeling of the
cylindrical fibers by ellipsoids of equal aspect ratio and volume.
Thus, the ellipsoids are longer than the cylindrical fibers in the
RVE. The half axes of the ellipsoid, a1; a2 and a3 are scaled by

3=2ð Þ1=3:

2a1 ¼
3
2


 �1=3

l; 2a2 ¼ 2a3 ¼
3
2


 �1=3

d;

where l and d are the length and the diameter of the cylindrical
fiber. Alternatively, the cylindrical fibers can also be approximated
by ellipsoids with the side condition of equal length and equal vol-
ume. Herein, the second and third half axis have to be scaled with

3=2ð Þ1=2, while the first is exactly 2a1 ¼ l. In Fig. 11, both approxima-
tions are shown for a fiber with an aspect ratio of 20. The ellipsoidal
approximation with equal volume and aspect ratio overestimates
the length and the width of the cylinder by about 14:5%, while
the approximation with equal volume and equal length overesti-
mates the width by 22:5%. In the following, these two approaches
to model the cylindrical fibers by ellipsoids are distinguished by
the terms first type ellipsoid and second type ellipsoid.

To determine the effect of the ellipsoidal approximation on the
effective material properties, additional RVEs with unidirectional
aligned first type ellipsoids and a fiber volume fraction of
cF ¼ 13% have been generated. In Fig. 12, the relative differences
between the averaged stiffnesses of the RVEs with cylindrical
inclusions and ellipsoidal inclusions for FFT-BS, FFT-HSþ and
FFT-HS� are shown for the phase contrast of 44 . In this figure, that
error is indicated, which is introduced if the cylindrical fibers are
modeled by first type ellipsoids. In the fiber direction, the differ-
ence ranges between 4% in case of FFT-BS and FFT-HS�, and 5%

in case of FFT-HSþ.
Using the second type ellipsoid for MF-SC and MF-IDD

approaches, denoted by MF-SC2 and MF-IDD2, again an analysis
of the relative deviation to FFT-BS with cylindrical inclusions have
been performed. The results of this analysis is shown in Fig. 13.
Compared with the former deviation analysis shown in Fig. 9, it
can be seen, that the tendencies remain the same. However, all
deviations of the comparison of MF-IDD2 and FFT-BS are higher
than the deviations between MF-IDD and FFT-BS. The contrary is
the case for MF-SC2 and FFT-BS: Here, the deviation are smaller
than in the former analysis. This can be reasoned by the smaller
aspect-ratio of the second type ellipsoidal approximation.
Generally, MF-IDD predicts smaller Young’s moduli than FFT-BS.
Smaller aspect-ratios lead to smaller Young’s moduli and, there-
fore, the deviations become larger. In case of MF-SC, which gener-
ally predicts larger Young’s moduli than FFT-BS, the deviations
become smaller for smaller aspect-ratios of the inclusions.
tic properties of short-fiber reinforced composites – A comparison of mean
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Fig. 9. Relative deviation of FFT-BS and (a) MF-IDD for TP1;TP2 and UD with cF ¼ 13%, (b) MF-SC for TP1;TP2 and UD with cF ¼ 13%, (c) MF-IDD for UD with
cF ¼ 13; 17; 21% and (d) MF-SC for UD with cF ¼ 13; 17; 21%.
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5. Summary and conclusions

The main objective of this paper is the detailed comparison of
the predicted effective linear elastic properties of full field and
mean field methods for discontinuous short-fiber reinforced com-
posites. For this purpose, the IDD scheme, the SC method and a TS
approach, on the one hand, and a full field solution based on fast
Fourier transformation, on the other hand, have been applied. In
the case of the mean field methods, an explicit geometrical
description of the fibers in terms of their geometrical properties
can be taken into account. Whereas for the full field method, a reg-
ular three-dimensional discretization of the microstructures with
voxel-wise constant properties is additionally necessary. The expli-
cit description of the microstructures is available online. The prop-
erties of the considered microstructures have been analyzed. Three
different types of microstructures have been considered, two mis-
aligned and one unidirectional configuration, in conjunction with
three phase contrasts, the smallest contrast of 44 for a PPGF com-
posite and two artificial of 100 and 1000. Three different fiber vol-
ume fractions have been taken into account for the unidirectional
configuration: 13%;17% and 21%, what corresponds to weight
fractions of 30%;40% and 50% for the PPGF composite material.
The numerical solutions have been compared in terms of the direc-
tional dependent Young’s modulus regarding the dependency on
resolution and size of the RVEs, the relative deviations of Young’s
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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modulus, and the anisotropy of Young’s modulus in the plane of
the main fiber orientation distribution.

In the following, the term Young’s modulus always refers to
the realization averaged Young’s modulus. The term specific
Young’s modulus denotes Young’s modulus of one particular
RVE realization.

With respect to the model microstructures and their dis-
cretization, the following can be concluded:

	 The range of Young’s modulus between the upper and lower HS
bounds of the FFT solution depends on the resolution (voxel) of
the RVE. With increasing resolution, both bounds converge to
the FFT-BS solution. The Young’s modulus of the FFT-BS solution
does not show an obvious dependency on the selected resolu-
tion of the RVE.
	 No significant effect of the size of the RVE on Young’s modulus

of the TP configuration has been observed. While for small RVEs
with 130 fibers, the specific Young’s modulus depends on the
realization, this is not the case for larger RVEs with 1035 and
more fibers.
	 In the UD case, the standard deviation of specific Young’s mod-

uli of FFT solutions show a dependency on a particular realiza-
tion only in fiber direction. The deviation is higher for higher
effective Young’s moduli. The highest relative deviation, where
the standard deviation is divided by the average Young’s
tic properties of short-fiber reinforced composites – A comparison of mean
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Fig. 10. Direction dependent Young’s modulus of all FFT and MF methods on x-y-
plane.

Fig. 11. Approximation of a cylindrical fiber with equal volume and aspect ratio or
volume and length.

Fig. 12. Relative deviation of the directional dependent Young’s modulus
EX

cylðuÞ � EX
ellðuÞ

��� ���=EX
cylðuÞ for UD with cF ¼ 13% and n ¼ 44 of the FFT methods for

ellipsoidal and cylindrical inclusion geometry.
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modulus, occurs for FFT-BS: 2% for a phase contrast of 44 and
25% for a phase contrast of 1000. No deviations occur for MF
approaches.
	 In the TP1 case, no distinct direction dependency of the stan-

dard deviation of specific Young’s moduli can be observed.
The SC method shows the highest sensitivity on the specific
RVE realization. The relative standard deviation amounts to 11
and 25% for a phase contrast of 44 and 1000, respectively.

Thus, an RVE with a side length of 250 lm is sufficient for the con-
sidered microstructure with a constant fiber length of 200 lm,
especially by means of averaged stiffnesses.

The comparison of the effective elastic properties predicted
by the different homogenization schemes yields the following
results:

	 The comparison of FFT-BS and MF-IDD by means of a relative
deviation of Young’s modulus reveals the following tendencies
for all considered microstructures with a fiber volume fraction
Please cite this article in press as: Müller, V., et al. Homogenization of linear elas
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of 13%: the relative deviation increases with increasing phase
contrast and advancing alignment of the fibers. The relative
deviation varies between 1:5% and 31:8%.
	 In case of UD microstructures, the deviation of FFT-BS and MF-

IDD increases with increasing phase contrast and with increas-
ing fiber volume fraction. It varies between 3% and 49:5%.
	 The relative deviation between FFT-BS and MF-SC shows

another tendency for microstructures with a fiber volume frac-
tion of 13%: It increases with increasing phase contrast but
decreases with advancing alignment of the fibers. The relative
deviation varies between 4:5% and 68:5%.
	 For UD microstructures, the deviation between FFT-BS and MF-

SC again increases with increasing phase contrast and with
increasing fiber volume fraction. The relative deviation varies
between 4:5% and 29:2%.
	 If the cylindrical fibers are approximated with ellipsoids not

under the conditions of equal aspect-ratio and volume, but, of
equal length and volume, the tendencies of the relative devia-
tions between MF and FFT approaches remain the same.
However, it affects the comparison of FFT-BS and FFT-IDD in such
way, that the deviations become slightly larger. In the compar-
ison of FFT-BS with FFT-SC the deviation become slightly smaller.

Hence, under the assumption of first type ellipsoids in the MF
approaches, quantitatively similar results of FFT-IDD and MF-BS
approaches, i.e., a maximum relative deviation of 10%, are
obtained for all considered microstructure types with a maxi-
mum phase contrast of 100 and a maximum fiber volume frac-
tion of 17%. In the case of MF-SC and FFT-BS, only UD

microstructures with a maximum phase contrast of 44 deliver
a deviation, which suits to this condition. If second type ellip-
soids are assumed for MF approaches, the relative deviation
between FFT-BS and MF-IDD2 is smaller than 10% only for
microstructures with a phase contrast of 44. The same is valid
for the comparison of FFT-BS and MF-SC. Additionally, in the last
comparison the UD microstructures with cF ¼ 13% for all consid-
ered phase contrast and cF ¼ 17% for n ¼ 100 deliver small
deviations.

The effect of the geometrical fiber modeling assumptions on
the effective elastic properties can be summarized as follows:

	 Apart from the volume fraction, the geometrical shape of the
inclusions significantly affects the effective elastic properties
predicted by the mean field and the full field approaches.
The FFT-BS solution predicts a deviation of the effective
tic properties of short-fiber reinforced composites – A comparison of mean
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Fig. 13. Relative deviation of FFT-BS and (a) MF-IDD2 for TP1;TP2 and UD with cF ¼ 13%, (b) MF-SC2 for TP1;TP2 and UD with cF ¼ 13%, (c) MF-IDD2 for UD with
cF ¼ 13; 17; 21% and (d) MF-SC2 for UD with cF ¼ 13; 17; 21%.
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Young’s modulus in fiber orientation of 5% for the UD
microstructures with a fiber volume fraction of 13% if cylin-
drical fibers are replaced with ellipsoidal approximations of
equal aspect ratio.

Hence the shape of the inclusions affect the prediction of the effec-
tive elastic properties.

Altogether, it can be concluded, that the selection of the appro-
priate homogenization method should be done with regard to the
problem at hand. The presented mean field approaches are numer-
ically less expensive than the full field FFT method. On the one
hand, this property allows to handle an equivalent amount of dis-
crete microstructure datasets in shorter time or, on the other hand,
to consider more expanded data like segmented microstructure
data experimentally measured through micro-computer tomogra-
phy. The presented FFT method is able to account for more com-
plex geometrical characteristics, like long curved fibers, than the
discussed mean field approaches. Additionally, the full field
approach is numerically more efficient than other established full
field methods like, e.g., FEM.
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Appendix A. Hashin–Shtrikman bounds on effective moduli

Combining (19) and (21) with (23) yields

�e � �C½�e�

¼ e �C½e�h i

6

ðPÞ
�e �C0½�e�þ2 pHS

� �
��e� pHS � C�C0ð Þ�1½pHS�

D E
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Combining (20) and (22) with (27) yields an analogous result for the
compliance
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