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Abstract: Buckling due to diffusion-induced compressive stress has been observed during 

the lithiation of various nanowires, and can affect the mechanical and electrochemical 

performance of nanowire-based electrodes. This study is focused on the diffusion-induced 

buckling of nanowires. Two diffusion paths are analyzed; one with radial diffusion only, and 

the other with axial diffusion. For the diffusion-induced buckling of nanowires with radial 

diffusion, the theory of large deformation is used in the description of the coupling between 

mass transport and deformation in large deformed solids. Using the linear theory, analytical 

solution of the critical length of a nanowire, below which there is no buckling, is obtained, 

which is dependent on the constraint of the ends of the nanowire and the volumetric strain of 

the nanowire at the fully lithiated state. The comparison between the linear analytical solution 

of the critical length and the numerical solution from the theory of large deformation shows 

that the linear analytical solution is valid for the influx less than 1 mol·m
-2

·s
-1

 and 

configurations considered in the work. Numerical analysis shows that the critical buckling 

time decreases with the increase of nanowire length and current density, and the nanowire 
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with two fixed ends has a larger critical buckling time than that for the same nanowire with a 

fixed end and a pinned end. The nanowire length plays a bigger role in determining the 

critical state of charge for the onset of the buckling than that of the diffusion flux. The state of 

charge (SOC) at the state of critical buckling decreases with the increase of the nanowire 

length and increases with the increase of current density. For the diffusion-induced buckling 

of nanowires with axial diffusion, numerical analysis is performed. The numerical result 

reveals similar trend, i.e., the critical buckling time decreases with the increase of nanowire 

length and current density. The comparison of the critical buckling times for the conditions 

with axial diffusion, radial diffusion and diffusion from all sides, respectively, reveals that the 

contribution from axial diffusion is negligible even for small aspect ratio, and it does not 

change significantly with the increase of the aspect ratio. 

 

Keywords: nanowire; diffusion-induced stress; buckling; large deformation. 
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1.  Introduction 

   The continuous development in science and technology has increased the demand of 

energy storage devices for our daily life. Lithium-ion batteries (LIBs) have recently attracted 

great attention because of their high energy capacity and long cycle life. The electrochemical 

performance of LIBs is crucially related to the materials behavior of electrodes. It has been 

demonstrated that nanowire-based electrodes exhibit high electrochemical performance since 

they can accommodate large strain without significant pulverization, provide good electrical 

contact and electronic conduction, and have short distance for the lithium diffusion (Chan et 

al., 2008).  

It is known that the lithiation or delithiation of an electrode will lead to volumetric 

change. The inhomogeneous change of volume will introduce local stress in the electrode, 

which is referred to as diffusion-induced stress (DIS). In general, the diffusion-induced stress 

can be either tensile or compressive. Under the action of compressive stress, a slender 

structure, such as the nanowires or nanotubes used in LIBS, will experience buckling when 

the compressive stress is larger than or equal to the critical stress. Such behavior has been 

observed during the lithiation of Al nanowires (Liu et al., 2011), Si nanowires (Cui, 2011; Liu 

et al., 2013), and SnO2 nanowires (Huang et al., 2010; Zhong et al., 2011). The 

diffusion-induced buckling can degrade the mechanical integrity of the slender structure 

(nanowires or nanotubes), which plays an important role in controlling the electrochemical 

performance of the electrodes in LIBs. It is of practical importance to study the 

diffusion-induced stresses in nanowires and their effect on the buckling behavior of the 

nanowires. 

Prussin (Prussin, 1961) in investigating the effect of dopant on the stress evolution in 

silicon was likely the first one to use a thermal-analogy method and obtain the stress induced 

by the impurity in a Si plate,. Recently, there is a great interest of using the concept of DIS to 

analyze the stress evolution in the electrodes of LIBs due to lithiation and delithiation. Zhang 

et al. (Zhang et al., 2008; Zhang et al., 2007) systematically studied the intercalation-induced 

stresses in spherical and ellipsoidal particles, in which they considered the contribution of 

hydrostatic stress to chemical potential similar to the formula used by Li (Li, 1978) and Yang 

(Yang, 2005). Cheng et al. (Cheng and Verbrugge, 2008) examined the effect of surface 
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tension and surface modulus on diffusion-induced stresses in spherical nanoparticles. They 

found that surface mechanics plays a great role in determining the magnitude and distribution 

of stresses in a nanoscale particle. Cui et al. (Cui et al., 2012) investigated the 

insertion/extraction of lithium ions into/out a silicon particle by using a stress-dependent 

chemical potential and the theory of large deformation. Zhao et al. (Zhao et al., 2011) 

developed a theory of finite plastic deformation of an electrode caused by electrochemical 

charging and discharging and analyzed the stresses in the electrode within nonequilibrium 

thermodynamics. Yang (Yang, 2010) considered the effect of local solid reaction on 

diffusion-induced stress and derived a general relationship among the concentration of solute 

atoms, local reaction product, and mechanical stress. Bhandakkar and Gao (Bhandakkar and 

Gao, 2010) developed a cohesive model of crack nucleation in an initially crack-free strip 

electrode under galvanostatic charging and discharging. Using a theory of concurrent large 

swelling and finite-strain plasticity, Brassart et al. (Brassart et al., 2013) simulated the field 

evolution in an electrode subject to cyclic lithiation and delithiation. 

There are only a few studies addressing the effect of diffusion-induced stresses on the 

buckling of the structures in the electrode of LIBs. Bhandakkar and Johnson (Bhandakkar and 

Johnson, 2012) analyzed the diffusion-induced stresses in honeycomb-like electrodes, which 

undergoes elastic-plastic deformation during cycling and found that the honeycomb-like 

geometry allows for the presence of buckling deformation. Zhang and Zhao (Zhang and Zhao, 

2012) depicted the stresses provenance and evolution of hollow nanosphere and nanotube 

induced by the diffusion of lithium ions, in which they considered self-buckling induced by 

surface stresses and analyzed critical buckling sizes. Chakraborty et al. (Chakraborty et al., 

2015) presented a general framework to study the mechanical behavior of a cylindrical 

silicon anode particle with two boundaries; one is traction-free for all surfaces and the other 

is axially-restrained for the cylindrical particle. They observed the occurrence of buckling due 

to the compressive axial stress for the axially-restrained condition, and obtained a critical 

length below which the cylinder will never buckle. However, none of these studies has 

studied the factors controlling the onset of buckling and the effect of diffusion paths. 

This work is focused on the diffusion-induced buckling of a nanowire. First, the theory of 

large deformation is used to investigate the diffusion-induced buckling of the nanowire with 
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radial diffusion. The interaction between stress and diffusion is considered in the analysis. 

The effects of the aspect ratio of the nanowire, electric current density, and boundary 

conditions on the critical time are discussed for the onset of the buckling. Secondly, a 

relationship between the critical length of a nanowire, below which the nanowire will never 

buckle, and material properties is established, following the study given by Chakraborty et al. 

(Chakraborty et al., 2015) and using the theory of linear elasticity. Finally, finite element 

method (FEM) is used to analyze the diffusion-induced buckling of a nanowire with axial 

diffusion. The effects of the nanowire length and current density are discussed. It is worth 

pointing out that the PDE (partial differential equation) module in COMSOL multiphysics is 

used first to solve the diffusion and deformation problems numerally, and the commercial 

FEM program of ABAQUS is used to solve the post-buckling problem and the problem 

associated with axial diffusion. 

2.  Diffusion-induced buckling of a nanowire with radial diffusion 

2.1 Mechanical equations 

The insertion of solute atoms into a host material will cause the change of the distance 

between adjacent atoms of the host material near the solute atoms, resulting in local 

deformation/strain. For large deformation, there are two approaches to describe the 

deformation, i.e., the Lagrangian description and the Eulerian description. The Lagrangian 

description is based on the initial state, and uses X as the coordinates. The Eulerian 

description is based on the current state, and uses x as the corresponding coordinates. There 

exists one-to-one mapping between these two descriptions as 

  , ,tx X   (1) 

  1 , ,tX x   (2) 

where  represents a uniquely invertible vector field associated with the motion of the 

material. 

 In the Lagrangian description, the displacement vector of U is calculated as 

    , , .t t U X x X X   (3) 

and the deformation gradient tensor of F in terms of the displacement vector is calculated as 
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  Grad Grad , ,t  F x I U X   (4) 

where Grad is the gradient operator in the Lagrangian description, and I is the unit tensor of 

second order.  

 Consider an electrode made of a nanowire with an initial radius of R0 in a cylindrical 

coordinate system (r, θ, z) in the Eulerian description, as shown in Fig. 1. The corresponding 

coordinate system in the Lagrangian description is (R, Θ, Z). Using the axisymmetric 

characteristic of the problem, the resultant deformation gradient tensor, F, in the Lagrangian 

description is written as 

 

0 0 1 / 0 0

0 0 0 1 / 0 ,

0 0 0 0 1 /

R

Z

F u R

F u R

F w Z



     
   

  
   
        

F   (5) 

where u is the radial displacement, and w is the axial displacement. 

 

Figure 1. Schematic of a nanowire electrode with radial diffusion 

The total deformation gradient tensor, F, consists of the elastic deformation tensor, F
e
, 

and the inelastic deformation tensor, F
i
, as 

 .e iF F F   (6) 

Assuming that the inelastic deformation, which is introduced by the insertion or de-insertion 

of solute atoms, is isotropic, the inelastic deformation gradient tensor can be written as (Cui 

et al., 2012) 

  
1/3

11 ,i C F I   (7) 

with C being the concentration of the solute atoms in the Lagrangian description and Ω1 

being the volumetric strain per unit mole fraction of the solute atoms. 

 The elastic deformation gradient tensor, F
e
, in the cylindrical coordinate in the 

Lagrangian description is  
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  
1/3

1

1 / 0 0

1 0 1 / 0 .

0 0 1 /

e

u R

C u R

w Z



   
 

  
 
    

F   (8) 

Using the Green-Lagrange strain tensor, the components of the elastic strain tensor, E
e
, is 

calculated as 

 
 

 

2

2/3

1

1 /1
1 ,

2 1

e

R

u R
E

C

   
  

  

  (9) 

 
 

 

2

2/3

1

1 /1
1 ,

2 1

e
u R

E
C



 
  

  

  (10) 

 
 

 

2

2/3

1

1 /1
1 .

2 1

e

Z

w Z
E

C

   
  

  

  (11) 

  Following the approach used by Cui et al. (Cui et al., 2013), the constitutive relation for the 

deformation is determined from the strain energy density as 

 ,
e e

e e

W W   
 
   

E F
P

F E F F
  (12) 

where P is the first Piola-Kirchhoff stress and W is the elastic strain energy density in the 

Lagrangian description. There are reports on the description of the constitutive behavior of 

silicon in the battery environment (Areias et al., 2016; Barai and Mukherjee, 2016; Damle et 

al., 2016; Gao and Hong, 2016; Wang and Xiao, 2016), in which the elastic strain energy 

density is expressed as a quadratic function of the Green-Lagrange strain tensor, i.e. 

  
   

   
2

det .
2 1 1 2

i e e ehE
W tr tr



 

 
      

F E E E   (13) 

where Eh and ν are Young’s modulus and Poisson’s ratio of the nanowire, respectively, det(F
i
) 

is the determinant of the inelastic deformation gradient tensor, and tr is the trace of the tensor. 

Substituting Eq. (13) into Eq. (12) yields 

  
   

   
-1

det 2 .
2 1 1 2

i e e e ihE
tr



 

 
  

  
P F E E F F   (14) 

Substituting Eqs. (7)-(11) into Eq. (14), one obtains the components of the first 

Piola-Kirchhoff stress tensor as 
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  
  

1/3

1

1
1 1 ,

1 1 2

e e e

R h R Z

u
P C E E E E

R

 

  


   
      

    
  (15) 

  
  

1/3

1

1
1 1 ,

1 1 2

e e e

h R Z

u
P C E E E E

R

 

  
 

  
      

    
  (16) 

  
  

1/3

1

1
1 1 .

1 1 2

e e e

Z h R Z

w
P C E E E E

Z

 

  


   
      

    
  (17) 

 The equilibrium equation at quasi-static state in the absence of body force is 

 0.RR
P PP

R R


 


  (18) 

The axisymmetric characteristic of the problem gives the following boundary condition  

  0, 0.u t    (19) 

The traction-free condition on the outer surface of the nanowire is 

  0 , 0.RP R t    (20) 

For a nanowire with the length much larger than radius, the deformation state of the nanowire 

can be approximated as plane strain, and the axial Green-Lagrange strain is equal to zero, i.e. 

 0.
w

Z





  (21) 

The resultant axial force, Fz, acting on the nanowire is calculated as 

 
02

0 0
.

R

Z ZF P RdRd


     (22) 

 It is known that a slender structure (nanowire) can experience buckling under the action 

of an axial, compressive force. During the lithiation process, the nanowire begins to expand 

both in the radial direction and the axial direction. If both ends of the nanowire are immobile 

along the axial direction, the lithiation will introduce an axial, compressive force, resulting in 

the onset of the buckling of the nanowire when the axial, compressive force is larger than the 

critical load. From the theory of linear elasticity (Gere and Goodno, 2009), the critical load, 

Fcr, for the onset of the buckling of the nanowire, known as Euler's critical load, can be 

calculated as 

 
 

2

2
,h

cr

E I
F

L




    (23) 

where I (=π 4

0R /4) is the inertia moment of the nanowire, and L is the length of the nanowire. 
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The constant of χ is dependent on the boundary conditions at both ends of the nanowire. 

There are χ = 0.7 for a nanowire with a fixed end and a pinned end, and χ = 0.5 for a 

nanowire with two fixed ends. Note that De Pascalis et al. (De Pascalis et al., 2011) had 

shown that the Euler critical buckling load derived from small deformation is applicable to 

the buckling of thin enough cylinders in large deformation by asymptotic analysis. The 

detailed validation is given in Appendix C. 

From Eq. (23), the condition for the onset of the diffusion-induced buckling of a nanowire 

is 

 ,Z crF F   (24) 

which gives 

 
 

0

2
2

20 0
.

R
h

Z

E I
P RdRd

L

 


      (25) 

2.2 Diffusion equations 

 Similar to the deformation analysis of materials, there are two frameworks, i.e. 

Lagrangian description and Eulerian description, used to describe the flow (diffusion) field of 

materials. In the Eulerian framework, the flow field is described as functions of time and of 

fixed space coordinates and calculated at fixed points in space as time varies. In the 

Lagrangian framework, the positions of moving particles (atoms) are described by functions 

of time and of their initial positions or any set of material functions of moving particles 

(atoms) (Grushka and Grinberg, 2014). Fyrillas and Nomura (Fyrillas and Nomura, 2007) had 

given the convection-diffusion partial differential equation in both the Lagrangian and 

Eulerian frameworks, which can be used to describe the diffusion problem in both 

frameworks if the convection term is assumed as zero.  

 Recently, Li et al. (Li et al., 2016) analyzed the mass transport accounting for the 

stress-induced diffusion in both the Lagrangian description and the Eulerian description. For 

completeness, we briefly describe the diffusion equations in both systems. Define J as the 

resultant flux of solute atoms, which is a function of the coordinates, X, and time, t, in the 

Lagrangian description. The conservation of solute atoms in the absence of any solid reaction 

gives 
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 Div 0.
C

t


 


J   (26) 

The concentration, c, and resultant flux, j, in the Eulerian description can be calculated from 

their Lagrangian counterparts as C=det(F)c and J=det(F)jF
-T

, respectively. 

   For a cylindrical electrode, Eq. (26) is reduced to 

 
    ,,

0.
RJ R tC R t

t R R


 

 
  (27) 

It needs to point out that the kinematics of solute atoms should be analyzed in the Eulerian 

description, which is based on the current state. From the theory of kinetics, the diffusion flux 

is 

 grad ,Mc  j   (28) 

where μ is chemical potential, grad is the gradient operator in the Eulerian description, and M 

is the mobility of the solute atoms. 

The chemical potential for a dilute solution is written as (Larché, 1996; Larché and Cahn, 

1985) 

 1 2ln ,g mR T c w       0   (29) 

where μ0 is the chemical potential at a reference state, Rg is the gas constant, T is absolute 

temperature, σm is the Cauchy hydrostatic stress in the Eulerian description, Ω2 is the partial 

molar volume of the solute atoms, and w is the strain energy density in the Eulerian 

description. The Cauchy hydrostatic stress is 

 

    

 
     

   

1

-1

1 1
det

3 3
det1

2 ,
3 det 2 1 1 2

T

m

i

e e e i Th

tr tr

E
tr tr





 

 

   
   

    

σ F PF

F
E E F F F

F

  (30) 

and the strain energy density in the Eulerian description is 

 
     

   
2

.
2 1 1 2det

e e eh

i

EW
w tr tr



 

 
       

E E E
F

  (31) 

Substituting Eqs. (29)-(31) into Eq. (28) yields 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

11 

 
   

 

 
 
     

   

2
2

0

-1
1

grad ln
2 1 1 2

det
2 .

3 det 2 1 1 2

eh
g

i

e e e e e i Th

E
Mc R T c tr

E
tr tr tr




 



 

           

     
    

     

j E

F
E E E E F F F

F

 (32) 

Using the equations of C=det(F)c and J=det(F)jF
-T

, the diffusion flux in the Lagrangian 

description is expressed as 

 

 
     

 

 
 
     

   

22
2

0

-1
1

Grad ln
det 2 1 1 2

det
2 .

3 det 2 1 1 2

T eh
g

i

e e e e e i Th

EC
MC R T tr

E
tr tr tr




 



 


           

     
    

     

J F E
F

F
E E E E F F F

F

 (33) 

Substituting Eqs. (5)-(11) into Eq. (33), one obtains the radial component of the diffusion flux 

as 

 

 

 
 

2

0

1

2

1
, ln

1 1 1 1

1

3
1 1 1 1 1 1

2 1 1 2

g

g

R Z

e e eh
R Z

D C
J R t C R T

u u u wR T R

R R R Z

PP P

u w u w u u

R Z R Z R R

E
E E E





 





 
   

   
                    

 
 
    

                                      


  

 
     

2 2 2 2
e e e

R ZE E E



 

    
 



，

  (34) 

where D(=RgTM) is the diffusion coefficient. 

The diffusion equation in the Lagrangian description can be obtained by substituting Eq. 

(34) into Eq. (27). 

For galvanostatic charging, the boundary condition in the Eulerian description is 

  
 0

0, , 0,
r r t

t t


 j x n j n   (35) 

and the corresponding boundary condition in the Lagrangian description is  

    
0

0, det , 0,T

R R
t t


 J X N F j F N   (36) 

where the magnitude of j0 is proportional to the current density, n is the unit normal vector in 
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the Eulerian description, and N is the unit normal vector in the Lagrangian description. 

 The initial condition for the nanowire without solute atoms incipiently in the Eulerian 

description is  

  0( ,0) 0, 0 ,c t  x x x   (37) 

and the corresponding initial condition in the Lagrangian description is  

 0( ,0) 0, 0 .C   X X X   (38) 

   For a cylindrical electrode, the boundary condition becomes 

  0 0, = 1 1 .
u w

J R t j
R Z

  
   

  
  (39) 

and the initial condition becomes 

  ,0 0, 0 .C R R R   0   (40) 

Solving the coupling equations of deformation, diffusion, and Eq. (25), one can determine the 

critical diffusion time and the distribution of the critical lithium concentration for the onset of 

the buckling of a nanowire during lithiation. Note that the end effect is neglected in the 

following analysis. 

2.3 Numerical analyses 

   Numerical analyses were used to solve the above equations and calculate the critical 

diffusion time and the distribution of the critical lithium concentration for the 

lithiation-induced buckling of a nanowire. The numerical calculation of the above equations 

was performed using the PDE module in the COMSOL multiphysics software. The nanowire 

was assumed to be a silicon nanowire. The self-limiting behavior (Drozdov, 2014; Liu et al., 

2013) was not considered in the analysis. Table I lists the material properties and parameters 

used in the numerical analyses.  

 The PDE module in the COMSOL was used to solve the evolution of stresses and the 

Li-concentration, from which the critical buckling time was calculated using Euler’s critical 

load. A time-dependent step was conducted with the time step of 0.001Dt/ 2

0R , and the linear 

2-node element was used with the element size of R0/400. Both of them were small enough to 

ensure the convergence of the numerical results and the calculation accuracy. Generally, the 
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post-buckling analysis can reveal the critical time for the onset of the buckling induced by the 

diffusion of lithium. Using the commercial finite element software of ABAQUS, the 

post-buckling analysis was performed. The FEM results were compared to the results from 

the Euler’s critical load to verify the viability of the linear theory. The comparison was given 

in Appendix A.  

 Note that the numerical calculation of the resultant axial force was performed by the 

software itself. 

Table I. Material properties of silicon nanowire and the parameters used in the calculation 

Parameter Symbol Value 

Young’s modulus  Eh 90 GPa (Pal et al., 2014)
 

Poisson’s ratio ν 0.28 (Pal et al., 2014) 

Volumetric strain per unit mole 

fraction of lithium in silicon 
Ω1 

8.18×10
-6

 m
3
·mol

-1
 (Zhao 

et al., 2011) 

Partial molar volume  Ω2 
8.18×10

-6
 m

3
·mol

-1
 (Zhao 

et al., 2011) 

Gas constant Rg 8.31 J·mol
-1

·K
-1 

 

Diffusion coefficient D 
10

-16
 m

2
·s

-1
 (Pal et al., 

2014) 

Temperature T 300 K 

Cylindrical radius R0 
5×10

-8 
m (Chan et al., 

2008) 

   Figure 2 shows the variation of the critical buckling time with the parameter j0 for the 

onset of the buckling of nanowires with a fixed end and a pinned end for different ratios of 

length to radius. The dimensionless time τ (=Dt/ 2

0R ) was used. It is evident that the critical 

buckling time decreases nonlinearly with the increasing values of j0 for the same nanowire, as 

expected, since a larger value of j0 will lead to a larger amount of solute atoms into the 

nanowire according to Eq. (34) and (39), resulting in a larger axial, compressive force for the 

onset of the buckling. Such nonlinear behavior reveals the interaction between diffusion and 

stress.  

 Figure 3 depicts the variation of the critical buckling time with the ratio of length to 

radius for different values of j0 for the onset of the buckling of nanowires with a fixed end 

and a pinned end. For the same value of j0, the critical buckling time decreases with the 
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increase of the ratio of length to radius, suggesting that a nanowire with a smaller ratio of 

length to radius can accommodate a larger amount of solute atoms before the onset of the 

buckling in accord with a larger critical force for the onset of the buckling. Such a result is in 

agreement with Eq. (23) that a smaller critical buckling force is needed to initiate the 

buckling of a longer nanowire of the same radius.  
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Figure 2. Variation of the critical buckling time with the parameter of j0 for the onset of the 

buckling of nanowires with a fixed end and a pinned end for different ratios of length to 

radius 
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Figure 3. Variation of the critical buckling time with the ratio of length to radius for different 

values of j0 for the onset of the buckling of nanowires with a fixed end and a pinned end 
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Figure 4. Variation of the critical buckling time with the parameter of j0 for the onset of the 

buckling for nanowires with different ratios of length to radius under two different constraint 

conditions (Solid lines represent the nanowires with a fixed end and a pinned end; symbols 

represent the nanowires with two fixed ends.) 

 As discussed above, the critical load for the onset of the buckling is dependent on the 

constraints on the both ends of a slender structure. Figure 4 shows the comparison of the 

critical buckling times for nanowires subjected to different constraints: one with a fixed end 

and a pinned end (solid lines), and the other with two fixed end (symbols). For a nanowire 

with the same ratio of length to radius, a larger critical buckling time is needed for the onset 

of the buckling of the nanowire with two fixed ends than that with a fixed end and a pinned 

end, as expected, since a larger Euler’s critical load corresponds to a smaller value of χ 

according to Eq. (23). For nanowires with larger ratios of length to radius, the difference 

between the two critical buckling times becomes smaller due to the less effect of the 

constraints on the deformation of the nanowires. 

 In general, it is desirable for electrodes to accommodate more lithium. It is of practical 

importance to determine the factors determining the storage capacity of lithium before the 

onset of buckling in addition to the examination of the factors determining the critical 
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buckling time of nanowires. The state of charging (SOC), which represents the percentage of 

full capacity, is defined as 

  
0 0

1

max
0 0

, ,
R R

SOC C R t RdR C RdR


 
      (41) 

where Cmax is the maximum stoichiometric concentration of lithium in a material. For 

homogeneous cylinders, Cmax is position-independent, and SOC can be calculated as 

 
 

0

0

2

max 0

2 ,
.

R

C R t RdR
SOC

C R



  (42) 

Figure 5 shows the variation of SOC with the ratio of length to radius and the parameter of j0 

at the onset of buckling with the condition of a fixed end and a pinned end. For a nanowire 

subjected to constant diffusion influx, the SOC at the onset of buckling decreases with 

increasing the ratio of length to radius, indicating that reducing the aspect ratio of nanowires 

can lead to the increase of the storage capacity of lithium before the onset of buckling. For a 

nanowire with the same ratio of length to radius, the SOC at the onset of buckling increases 

with increasing the diffusion influx. Such behavior is because a higher influx leads to a sharp 

concentration gradient near the surface, and more Li diffuse into the nanowire in a short time, 

resulting in a high SOC value at the onset of buckling. For nanowires with large ratios of 

length to radius, the SOC at the onset of buckling becomes less dependent on the diffusion 

flux. 
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Figure 5. Variation of SOC with (a) the ratio of length to radius and (b) the parameter of j0 at 

the onset of the buckling of nanowires with a fixed end and a pinned end 

3.  Critical length of nanowires with radial diffusion 

   Chakraborty et al. (Chakraborty et al., 2015) found that there is a critical length below 

which a cylinder will never buckle no matter how large the axial force is. Such behavior is 

due to the continuous increase of the cylinder radius induced by diffusion-induced expansion. 

They performed numerical calculation to evaluate the critical length of silicon nanowires for 

several influx rates without providing any analytical solution. It is always desirable to have 

closed-form solutions in analyzing the effects of parameters on the critical length, which can 

provide the design criteria for the use of nanowire-based electrodes. 

 It is known that it is very difficult, if not impossible, to obtain closed-form solutions from 

the theory of large deformation. Numerical analysis was used to compare the numerical 

results with the closed-form solutions derived from the theory of linear elasticity and to 

assess the applicability of the closed-form solutions in determining the critical load from the 

theory of large deformation. The governing equations for diffusion-induced buckling in the 

theory of linear elasticity are summarized in Appendix B. The following summaries the 

results. 

Figure 6 shows the comparison between the results obtained from the theory of large 

deformation and those from the theory of linear elasticity. Here, nanowires were fixed at one 
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end and pinned at the other end. The solid lines represent the results from the theory of large 

deformation, and the squares represent the results from the theory of linear elasticity. The 

critical buckling time decreases nonlinearly with increasing the value of j0, independent of the 

theory used. For nanowires with small ratios of length to radius, the critical buckling time 

calculated from the theory of large deformation is slightly larger than that calculated from the 

theory of linear elasticity for the same value of j0. This trend reveals the effect of the 

cross-section on the critical load for the onset of the buckling. For nanowires with large ratios 

of length to radius (L/R0≥10), there is no observable difference between the critical buckling 

times calculated from the theory of large deformation and the theory of linear elasticity, 

respectively. For nanowires with small ratios of length to radius (L/R0<10), there exists 

observable difference between these two results. Such behavior suggests that a nanowire with 

a small aspect ratio can withstand a larger axial, compressive force before the onset of the 

buckling, i.e. the nanowire can experience relatively large deformation and stresses. Under 

such a condition, the theory of large deformation is more applicable in describing the 

deformation behavior of the nanowire. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

D
t/

R
2 0
 (

×
1

0
-2
)

j
0
 (10

-1
 mol·m

-2
·s

-1
)

 L/R
0
=5

 L/R
0
=10

 L/R
0
=20

· · 

 

Figure 6. Comparison of the variation of the critical buckling times with j0 for the onset of the 

buckling of nanowires with different ratios of length to radius (Solid lines represent the 

results from the theory of large deformation; squares represent the results from the theory of 

linear elasticity. Nanowires were fixed at one end and pinned at the other end.) 
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Figure 7. Spatial variation of the radial displacement at the onset of the buckling of nanowires 

with different ratios of length to radius (Solid lines represent the results from the theory of 

large deformation; squares represent the results from the theory of linear elasticity. Nanowires 

were fixed at one end and pinned at the other end.) 

 To further explore the difference between the deformations calculated from these two 

theories, the spatial variation of the radial displacement calculated from both theories at the 

onset of buckling is depicted in Fig. 7 for three different ratios of length to radius. Here, 

nanowires were fixed at one end and pinned at the other end. The radial displacement is zero 

at the axisymmetric axis of the nanowire (R/R0=0) and increases with R (R/R0), and reaches 

the maximum at the surface of the nanowire (R/R0=1) for all three nanowires. For nanowires 

with small ratios of length to radius and the same value of j0, the radial displacement 

calculated from the theory of large deformation is slightly larger than that calculated from the 

theory of linear elasticity. For nanowires with large ratios of length to radius (L/R0≥10), there 

is no observable difference between the radial displacement calculated from the theory of 

large deformation and that from the theory of linear elasticity, respectively. The radial 

displacement at the surface of the nanowire (R/R0=1) decreases with the increase of the length 

of nanowires of the same radius at the onset of buckling. This result is in accord with the 

observation that a shorter nanowire can accommodate a larger amount of solute atoms and 

experience a larger compressive force before the occurrence of buckling according to Eq. 
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(23), which results in a larger expansion of the nanowire in the radial direction. The 

differences in the radial displacements (u/R0) at the surface of the nanowires with L/R0 = 5, 

10 and 20 are 9.91%, 5.87% and 2.39%, respectively.  
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Figure 8. Spatial variation of the radial displacement of a nanowire at different lithiation 

times (Solid lines represent the results from the theory of large deformation; squares 

represent the results from the theory of linear elasticity. Nanowire was fixed at one end and 

pinned at the other end.) 

 To understand the difference between the critical buckling times calculated from the two 

theories, the spatial variation of the radial displacement at different lithiation times is shown 

in Fig. 8. There exists significant difference between the radial displacements calculated from 

the two theories at the same lithiation time. For the dimensionless lithiation time τ = 1.0×10
-3

, 

the difference between the radial displacements is 35.40%. Such behavior can be readily 

analyzed from the elastic theory of large deformation.  

 Consider the radial strain of Eq. (9) in the elastic theory of large deformation. The Taylor 

series expansion of the radial strain, e

RE , gives  

 
1 1

1 2

3 3

e

R

u u
E C C

R R

 
    
 

.  (43) 

From the theory of linear elasticity, the radial strain,  e

R , is calculated as 
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1

1
.

3



  


e

R

u
C

R
  (44) 

Substituting Eq. (44) into Eq. (43), one obtains 

 
1

2

3



  



e e

R R

u
E C

R
  (45) 

To the first order approximation, the difference of the radial strains between the large 

deformation and small deformation is proportion to the volumetric strain associated with the 

diffusion of solute atoms and the radial gradient of the radial displacement.  

 For the lithiation process, there is u/R>0, resulting in .e e

R RE    The stress, strain and 

displacement results calculated from the theory of linear elasticity are larger than those from 

the elastic theory of large deformation at the same lithiation time, leading to that the nanowire 

quickly reaches the critical state for the onset of buckling. This result reveals that the theory 

of linear elasticity underestimates the critical buckling time induced by the diffusion of solute 

atoms due to the negligence of the higher order terms in the diffusion-induced strain and the 

nonlinear terms in strain tensor. 

 All of the results suggest that both theories give the same trend; the theory of large 

deformation likely gives more complete results, and the use of the theory of linear elasticity 

can approximately provide the critical buckling time. Thus, the analysis based on the theory 

of linear elasticity is used to determine the critical length of nanowires, below which there is 

no occurrence of buckling.  

 From the governing equations for the diffusion-induced buckling in the theory of linear 

elasticity in Appendix B, one can determine the critical amount of solute atoms in a nanowire 

for the onset of buckling as 

 
 

0

2

1 20

2
.

3

R
h

h

E I
E CRdR

L





    (46) 

Denote tb as the critical buckling time. The corresponding critical SOC at the onset of 

buckling, SOCbuckling, can be expressed as 

 
 

0

0

2

max 0

2 ,
.

R

b

buckling

C R t RdR
SOC

C R



  (47) 

Substituting Eq. (47) into Eq. (46) yields the SOC at the onset of buckling of a nanowire as 
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2

22

0 1 max

3
,

4 /
bucklingSOC

L R C







  (48) 

where L/R0 is the dimensionless length of the nanowire, and Ω1Cmax is the volumetric strain at 

the fully lithiated state.  

Equation (48) represents the relationship among SOC at the onset of buckling, effective 

length factor of χ, dimensionless length, and the volumetric strain at the fully lithiated state. 

One can calculate one of the parameters if other three parameters are given. For example, one 

obtains the critical SOC of 2.47% for the onset of buckling for a silicon nanowire of a length 

of 20R0 with the fixed condition at both ends since the effective length factor of χ is 0.5 and 

Ω1Cmax at the fully lithiated state is 3 (Zhao et al., 2011). 

It is known that SOC can vary from 0% to 100%. Thus, the state with SOC=100% 

represents the critical state for the possible occurrence of buckling, and the critical length of a 

nanowire, Lcr, below which no buckling can occur, is found as 

 0

1 max

3
/ ,

2
crL R

C







  (49) 

The critical length is proportional to the initial radius of the nanowire and inversely 

proportional to the square root of the volumetric strain at the fully lithiated state. Note that 

the critical length is independent of the influx value due to the use of the fully lithiated state, 

and is the upper bound within the framework of linear elasticity. 

0 1 2 3 4 5
0

3

6

9

12

L
cr

/R
0


1
C

max

 =0.5

 =0.7

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 

Figure 9. Variation of the critical length with the volumetric strain at fully lithiated state for 

two different constraints to the ends of a nanowire 

 Figure 9 shows the variation of the critical lengths with the volumetric strain at the fully 

lithiated state for two different constraints to the ends of a nanowire. It is evident that the 

critical length decreases with the increase of the volumetric strain at the fully lithiated state, 

suggesting that the radial expansion can mitigate the occurrence of the buckling of the 

nanowire. A nanowire with two fixed ends has a larger critical length than the same nanowire 

with a fixed end and a pinned end for the same value of Ω1Cmax. For a silicon nanowire with 

two fixed ends and Ω1Cmax = 3, the critical length is 3.14R0. 

 Chakraborty et al. (Chakraborty et al., 2015) proposed a modified Euler’s critical load to 

determine the critical length below which no buckling will ever occur. Their proposed 

formula can be expressed as 

 
 

2

2
,m h CF

cr

E I
F

L




   and ICF = π

4

0 1
u

R
R

  
  
  

/4 (50) 

where ICF is the inertia moment of the nanowire in the current configuration. This modified 

buckling criterion may be more suitable for determining the critical length of nanowires with 

large deformation. In the theory of linear elasticity, the inertia moment of a deformed 

nanowire is 

  
0

4

0

1
.

4
CF R R

I R u


    (51) 

Substituting the expression of the radial displacement, u, in Appendix B into Eq. (51), one 

obtains 

 
0

4

4

0 1
0

0

1 2 1
1 .

4 3

R

CFI R CRdR
R




 
   

 
   (52) 

Substituting Eq. (42) into Eq. (52) yields 

 

4

4

0 1 max

1 1
1 .

4 3
CFI R C SOC




 
   

 
  (53) 

Using Eq. (53) in Eq. (B-14), one obtains the nanowire length at the onset of the 

diffusion-induced buckling of a nanowire in terms of SOC as 
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1
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,

12
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L

R

 


 

 
  

    (54) 

where θ=Ω1CmaxSOC, which represents the volumetric strain for a given SOC. The minimum 

value of L/R0 of Eq. (54) can be found at θ=1/(1+ν) from d(L/R0)/dθ=0. The critical length is  

 1 max

0

8 1
1 , ,

13 3

crL
for C SOC

R





   


  (55) 

Note that SOC varies from 0 to 100%. Eq. (55) is valid only for Ω1Cmax ≥1/(1+ν). For Ω1Cmax 

<1/(1+ν), the L/R0 of Eq. (54) reaches minimum value at SOC = 1. Thus, the critical length 

can be summarized as 

 

 
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  (56) 

According to Eq. (56), for Ω1Cmax <1/(1+ν), a nanowire, which is shorter than the critical 

length, will be fully lithiated before the onset of buckling; for Ω1Cmax ≥1/(1+ν), a nanowire, 

which is shorter than the critical length, will never buckle when the increasing rate of the 

critical buckling load due to the increase of radius is greater than the increasing rate of the 

axial force induced by diffusion. 

 The variation of the critical lengths determined by the modified buckling criterion and the 

classical Euler’s criterion with different volumetric strains at the fully lithiated state is shown 

in Fig. 10, taking ν as 0.28 and χ as 0.5. It is evident that the difference between the two 

critical lengths is negligible for small Ω1Cmax, since the difference of the inertia moment 

between a deformed nanowire and an un-deformed nanowire is small. The difference between 

the two critical lengths increases with the increase of Ω1Cmax due to the increase of the inertia 

moment of the nanowire in the current configuration with the increase of Ω1Cmax. Note that 

the numerical result of the critical length for silicon nanowires given by Chakraborty et al. 

(Chakraborty et al., 2015) is 35.6R0, which is significantly different from the results of 3.14R0 

and 10.94R0 given by Eq. (49) and Eq. (56), respectively. Such differences are due to the use 
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of elastoplastic deformation in the buckling analysis by Chakraborty et al. (Chakraborty et al., 

2015). The axial compressive force, which causes the buckling of a nanowire of a long length 

at the state of elastoplatic deformation, is smaller than that at the state of elastic deformation 

under the condition of the same SOC, resulting in the great difference in the critical lengths. 
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Figure 10. Variation of the critical lengths determined by the modified buckling criterion and 

classical Euler’s criterion with volumetric strain at the fully lithiated state for nanowires with 

two fixed ends 

 Note that both the critical length and the critical buckling SOC of a nanowire are 

dependent on the critical load. For a nanowire with two fixed ends and L/R0=11.5 subjected to 

an influx of j0=0.1 mol·m
-2

·s
-1

, the critical buckling SOC is found to be 6.46% from the 

classical Euler’s buckling load and 42.63% from the modified Euler’s buckling load. Such a 

difference is due to the use of the nanowire radius at the deformed state in the calculation of 

the modified Euler’s critical load, which allows the nanowire to withstand a large 

compressive, axial force before the onset of buckling. Thus, the nanowire can accommodate 

more lithium before the onset of buckling; the critical buckling SOC calculated from the 

modified Euler’s critical load is then larger than that from the classical Euler’s critical load.  
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Figure 11. Variation of axial forces with SOC of nanowires with different influxes in 

comparison with (a) classical Euler’s critical load, and (b) modified Euler’s critical load. 

(Nanowires are fixed at two ends.) 

 As given in Eq. (56), the critical length, which is based on the theory of linear elasticity, 

is independent of the influx of j0, while the influx may plays a role in determining the critical 

length if the theory of large deformation is considered. To evaluate the effect of the influx on 

the critical length, the variation of the axial force with SOC for nanowires subjected to 

different influxes and the variation of the critical buckling load with SOC for nanowires with 
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different aspect ratios are depicted Fig. 11. The critical length from the classical Euler's 

critical load can be determined, as shown in Fig. 11a, from the intersection between a critical 

load line and an axial force line at SOC=100%. From Fig. 11a, the critical lengths for 

nanowires with j0=0.01 and j0=0.1 are ~3.5R0 and ~3.2R0, respectively, which were calculated 

from the theory of large deformation by solving the governing equations in Sections 2.1 and 

2.2 using COMSOL. The difference of the critical lengths is less than 10%, suggesting that 

the influence of surface flux on the critical length is relatively small. Also, the intersection of 

the curves of axial force with the line of the critical buckling load gives the SOCs, at which 

the buckling of nanowires occurs at the same buckling load. For example, the curve with 

black square intersects with the green line at SOC ≈ 87%, as shown in Fig 11a, suggesting 

that the nanowire with an aspect ratio of 3.4 will buckle at an axial load of 3.1×10
-4

 N, and 

the critical buckling SOC is about 87%.  

 The critical length from the modified Euler's critical load can be determined, as shown in 

the embedded figure in Fig. 11b, when a critical load curve is tangent to an axial force curve. 

From Fig. 11, the critical lengths for nanowires with j0=0.1 mol·m
-2

·s
-1 

are ~3.5R0 and 

~11.5R0, which were determined by the classical Euler’s criterion and the modified buckling 

criterion, respectively. These values are compatible with 3.14R0 and 10.94R0 calculated from 

Eq. (49) and Eq. (56), respectively, which are based on the theory of linear elasticity without 

or with the consideration of the contribution of the change of the cross-sectional area of the 

nanowires. Using the method discussed above, the critical length as a function of the influx is 

calculated from the modified Euler’s critical load and shown in Fig. 12. The critical length 

increases slightly with the increase of the value of the influx for j0 less than 1 mol·m
-2

·s
-1

 and 

rapidly with the increase of the value of the influx for j0 larger than 1 mol·m
-2

·s
-1

. This trend 

suggests that the theory of linear elasticity can be used to calculate the critical length 

calculated for the influx of j0 less than 1 mol·m
-2

·s
-1

, if plastic deformation is negligible. 

 It needs to point out that the volumetric strain will lead to movement of the boundary of 

solid during the migration/diffusion of solute atoms, while boundaries are referred to the 

un-deformed state in the theory of linear elasticity. The relationship presented in Eq. (56) 

incorporates the movement of the boundary in the calculation of the critical length. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

28 

0.001 0.01 0.1 1 10

11

12

13

14

15

16

C
ri

ti
ca

l 
le

n
g

th
 (

L
cr
/R

0
)

j
0
 (mol·m

-2
·s

-1
)

 

Figure 12. Effect of influx on the critical length calculated from the modified Euler’s critical 

load (Nanowires are fixed at two ends.) 

4.  Diffusion-induced buckling of a nanowire with axial diffusion 

 The above analyses have been based on the diffusion path being in the radial direction. In 

general, there exists axial diffusion, as shown by Huang et al. (Huang et al., 2010) in the 

in-situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. For 

the deformation due to axial diffusion of lithium, the approximation of plane strain is 

inapplicable. It is a three-dimensional problem, which is difficult to be solved analytically. 

Here, the diffusion-induced buckling of a nanowire with axial diffusion was analyzed 

numerically.  

 Figure 13 shows a nanowire of initial length of L and radius of R0 with axial diffusion, i.e., 

lithium flows into the nanowire from top surface. Finite element software of ABAQUS with 

large deformation was used to analyze the diffusion-induced buckling of the nanowire with 

axial diffusion. A 3D finite element model of the nanowire was constructed, using 8-node 

fully integrated thermally coupled brick elements with the element size of R0/12 in radial 

direction and R0/5 in axial direction. The convergence of the FEM model has been checked to 

ensure the accuracy of the numerical calculation. The material properties and parameters used 

in the numerical analysis are listed in Table I.  
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Figure 13. Schematic of a nanowire electrode with axial diffusion 

 Two steps were used in the numerical analysis to calculate the critical buckling time and 

analyze the post-buckling behavior. The first step calculates the buckling mode of the 

nanowire; the second step calculates the post-buckling deformation of the nanowire, using the 

buckling mode determined in the first step as an imperfection. In the second step, the onset of 

the buckling is determined when the resultant axial force is equal to the Euler’s critical load 

given in Eq. (23), which is also validated in Appendix A.  

 For simplicity, the chemical potential used in the numerical analysis is assumed to be 

concentration-dependent only due to the difficulty in including the effect of stress on 

chemical potential of Eq. (29) in ABAQUS. The chemical potential reduces to 

 ln ,gR T c  0   (57) 

and the diffusion problem is analogous to a problem of heat transfer. A transient coupled 

thermal-mechanical step in the FEM model was set for the post-buckling calculation. 

 In the simulation, lithium migrates into the nanowire from the fixed end (the bottom 

surface), and there are no fluxes from the other surfaces into the nanowire. For galvanostatic 

charging, the boundary condition for the bottom surface (fixed end) in the Eulerian 

description is 

   00
, , 0,

z
t t


 j x n j n   (58) 

and the corresponding boundary condition in the Lagrangian description is  

     00
, det , 0,T

Z
t t


 J X N F j F N   (59) 

The boundary condition for other surfaces in the Eulerian description is 

  0 , 0, 0,t t j x n   (60) 

and the corresponding boundary condition in the Lagrangian description is  
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  0 , 0, 0,t t J X N   (61) 

The initial condition for the nanowire without solute atoms incipiently in the Eulerian 

description is  

  0( ,0) 0, 0 ,c t  x x x   (62) 

and the corresponding initial condition in the Lagrangian description is  

 0( ,0) 0, 0 .C   X X X   (63) 

The nanowire is stress-free at t=0. There is no surface loading applied to the nanowire. One 

end of the nanowire is fixed, and the other is pinned.  
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Figure 14. Variation of the critical buckling time with the influx of j0 for the onset of the 

buckling of nanowires with different ratios of length to radius due to axial diffusion 

 Figure 14 shows the variation of the critical buckling time with the value of j0 for 

nanowires of different lengths due to axial diffusion. It is evident that the critical buckling 

time decreases with the increasing value of j0, as expected. The comparison of the critical 

buckling times between the axial-diffusion-controlled buckling and the 

radial-diffusion-controlled buckling shows that it requires a larger critical buckling time for a 

nanowire with axial diffusion than that for the same nanowire with radial diffusion. For 

example, the critical buckling time is 1.57×10
-2

 for a nanowire of L=20R0 with the axial 

diffusion and 5.51×10
-4

 for the same nanowire with the radial diffusion for j0=0.1 (10
-1
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mol·m
-2

·s
-1

). The trend is due to the differences in the diffusion distance and the total area for 

the diffusion of lithium. More lithium can diffuse into the nanowire with the radial diffusion 

for the same diffusion time since the area of the side surface is much larger than the 

cross-sectional area. 
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Figure 15. Variation of the critical buckling time with the parameter of j0 for the onset of the 

buckling of a nanowire of L=20R0 with different diffusion paths 

 In reality, diffusion can occur on all the surface of a suspended nanowire. Figure 15 

shows the critical buckling time for a suspended nanowire of L/R0=20 with the lithium 

migration into the nanowire on all surfaces. For comparison, the results with the axial 

diffusion or radial diffusion only are also included in Fig. 15. It is evident that the critical 

buckling time is the largest for the case with only axial diffusion (blue curve) due to the 

smallest surface area for the lithium diffusion, which requires the longest time for the axial, 

compressive force to reach the critical buckling load. There is no significant difference 

between the critical buckling time for the buckling controlled by the radial diffusion and that 

by the diffusion into all surfaces. The contribution from the axial diffusion is negligible in 

comparison with the radial diffusion for large ratio of length to radius. 

 Figure 16 shows the variation of the critical buckling time with the ratio of length to 

radius for a nanowire with different diffusion paths. Note that the critical length is ~10R0, so 

the aspect ratios in the result were selected from 10L/R0 to 15L/R0. The contribution from the 
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diffusion in axial direction is negligible even for small aspect ratio, and the critical buckling 

time change slightly with the increasing aspect ratio, owning to the small end surface in 

comparison with the side surface. 
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Figure 16. Variation of the critical buckling time with the ratio of length to radius for the 

onset of the buckling of a nanowire with different diffusion paths 

5.  Summary 

 In summary, this study is focused on the diffusion-induced buckling of nanowires. The 

elastic theory of large deformation has been incorporated in analyzing the diffusion-induced 

buckling of the nanowires with radial diffusion. Numerical analyses have been performed to 

examine the dependence of the critical buckling time on the nanowire length, current density, 

and constraint to the motion of the ends of the nanowires. The numerical results show that the 

critical buckling time decreases with the increase of the nanowire length or current density 

with different mechanisms. The increase of the nanowire length reduces the Euler’s critical 

load for the onset of buckling, while the increase of the current density causes the increase of 

the axial, compressive force. A nanowire with two fixed end has a larger critical buckling 

time than that for the nanowire of the same length with a fixed end and a pinned end. Both 

the aspect ratio of a nanowire and current density play important roles in determining the 

critical SOC for the onset of buckling. Analytical solution for the critical length of a nanowire 

with radial diffusion, below which there is no buckling, has been obtained, using the model 
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from the theory of linear elasticity. The critical length is dependent on the constraints to the 

ends of the nanowire and the volumetric strain at the fully lithiated state. This analytical 

solution is compared with the numerical results from the elastic theory of large deformation, 

and the result shows that the analytical solution is valid for the influx less than 1 mol·m
-2

·s
-1

 

and configurations considered in the work. 

 Finite element method has been used to analyze the diffusion-induced buckling of 

nanowires with axial diffusion. The critical buckling time decreases with the increasing value 

of j0 and the ratio of length to radius, similar to the results with radial diffusion. It needs a 

larger critical buckling time for a nanowire with axial diffusion than that for the same 

nanowire with radial diffusion. For nanowires of large ratios of length to radius with diffusion 

from all surfaces, the contribution from the axial diffusion is negligible in comparison with 

the radial diffusion even for small aspect ratio, and the critical buckling time does not change 

a lot with the increasing aspect ratio 

 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

34 

Appendix A: Post-buckling Analysis of a Nanowire 

 A 3D finite element model of a nanowire with a radius of R0 and a length of 30R0 was 

constructed. The material properties of the nanowire are listed in Table I. One end of the 

nanowire is fixed (i.e. all 3 translational DOF and 3 rotational DOF are zero), and the other 

end is pinned (all 3 translational DOF are zero). The nanowire is subjected to a surface flux 

either on the side surface or on the bottom surface. The value of j0 is 0.1 (10
-4

 mol·m
-2

·s
-1

). 

For the axial diffusion, lithium migrates from the fixed end into the nanowire, and there are 

no fluxes on other surfaces. A linear buckle analysis was firstly performed to obtain the 

buckling mode of the first order, which was used as the imperfection in analyzing the 

post-buckling of the nanowire. Here, the stress terms in the chemical potential of Eq. (29) are 

neglected in the finite element analysis due to the difficulty in incorporating the stress terms 

in the finite element code. The chemical potential used in the analysis is expressed as 

 ln ,gR T c  0   (A-1) 

As discussed above, the diffusion problem is analogous to a problem of heat transfer. Thus, a 

transient coupled thermal-mechanical analysis with 8-node fully integrated thermally coupled 

brick elements was performed. 

 Figure A1 shows the temporal evolution of the resultant axial force in the nanowire. The 

solid line represents the result obtained from the FEA simulation, and the black squares 

represent the numerical result (Fig. A1a) obtained from the solutions of the equations in 

Section 2.1 and 2.2 using the PDE module in COMSOL. The dashed line represents the linear 

extension of the COMSOL result (Fig. A1a) using the same chemical potential in Eq. (A-1) 

and the linear extension of the linear portion of the ABAQUS result (Fig. A1b). The red 

square in Fig. A1a represents the Euler’s critical load calculated from Eq. (25) using the 

concentration-dependent chemical potential of Eq. (A-1). The red square in Fig. A1b 

represents the Euler’s critical load, which was calculated from Eq. (B-14). It is evident that 

the Euler’s critical load represents the critical load at which the resultant axial force becomes 

a nonlinear function of time (Figs. A1a and A1b), i.e. the initiation of the buckling. These 

results validate that the Euler’s critical load can be used to determine the critical diffusion 

time for the onset of the diffusion-induced buckling of a nanowire. 
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Figure A1. Temporal evolution of resultant axial force in a nanowire with (a) radial diffusion 

and (b) axial diffusion 
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Appendix B: Governing equations for diffusion-induced buckling of a nanowire in the theory 

of linear elasticity  

 Consider a nanowire in a cylindrical coordinate system (R, Θ, Z). The constitutive 

equation in the theory of linear elasticity can be written as 

   11
,

3
R R Z

h

C

E
    


        (B-1) 

   11
,

3
R Z

h

C

E
     


        (B-2) 

   11
,

3
Z Z R

h

C

E
    


        (B-3) 

where εi and σi (i = R, Θ, Z) are the strain components and stress components, respectively. 

The strain components are calculated from the derivatives of the radial displacement, u, and 

the axial displacement, w, as 

 , , .R Z

u u w

R R Z
  

 
  
 

  (B-4) 

The equilibrium equation in the absence of body force is 

 0.RRd

dR R

  
    (B-5) 

From the theory of linear elasticity (Timoshenko and Goodier, 1970), one obtains the radial 

displacement and axial displacement as 

 1

0

1 1
, ,

1 3

Rv B w
u CRdR AR q

v R R Z

 
   

    (B-6) 

where A, B and q are constants to be determined from the boundary conditions. The stress 

components, in terms of A, B and q, are  
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


  
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  (B-9) 

For a nanowire with length much larger than radius, the stress state of the nanowire can be 

approximated as plane strain, which gives q=0. The finite value of the radial displacement in 
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the nanowire gives B=0. The traction-free condition on the surface of the nanowire gives 

 
0

0,R R R



   (B-10) 

from which one obtains 

 
  

 
0

1 2 0
0

1 1 2 1
.

3 1

Rv v
A CRdR

v R

 
 

    (B-11) 

and the axial stress, σZ, as 
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2 0
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E E
CRdR C

R
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

 

 
 

    (B-12) 

The resultant force, FZ, acting on the nanowire in the axial direction is calculated from Eq. 

(B-12) as 

 
0 02

1
0 0 0

2
.

3

R R

Z Z hF RdRd E CRdR


          (B-13) 

 Substituting Eq. (B-13) into Eq. (24) yields 

 
 

0
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1 20

2
,

3

R
h

h

E I
E CRdR

L





    (B-14) 

which determines the condition for the onset of the diffusion-induced buckling of a nanowire. 

 The mass transport equation in the cylindrical coordinate system (R, Θ, Z) is  

 
    ,,

0.
RJ R tC R t

t R R


 

 
  (B-15) 

and the diffusion flux is  

 .J MC
R


 




  (B-16) 

Substituting the stress components, the strain components, and Eq. (29) into Eq. (33), one 

obtains  

 1 2 .
3 2

R Z R R Z Z

g g

C CC
J D

R R T R R T R

          
       

        
 (B-17) 

The initial and boundary conditions corresponding to galvanostatic charging are 

   0,0 0, 0 ,C R R R     (B-18) 

  0 0, .J R t j   (B-19) 

Substituting the solution of the diffusion equation into Eq. (B-14), one can calculate the 
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critical buckling time and critical concentration distribution of lithium. 
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Appendix C: Comparison of linear and non-linear Euler formulas 

 De Pascalis et al. (De Pascalis et al., 2011) gave the expression of the non-linear 

correction to the Euler formula for compressed cylinders with guided-guided end conditions, 

which is written as 

 

2 42

0 0

3 2

0

,
4 96

cr h
NL

N E R R

R L L






   
    

   
  (C1) 

where 

        
2

33 213 12 2
2 12 1 2 3 1 2 1 2 1 2

1
NL hE

 
    



 
       


A B C  (C2) 

with A, B and C  being the Landau constants. 

 Figure C1 shows the variations of the critical load with the ratio of length to radius for 

the buckling of a slender structure using the material parameters given in Table II collected 

by Porubov (Porubov, 2003). Here, Eq. (23) and Eq. (C1) were used respectively to calculate 

the critical load. The results show that difference between the results calculated respectively 

from these two formulas is negligible for the ratio of length to radius being larger than 5. 
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Figure C1. Variations of the critical load with the ratio of length to radius for the buckling of 

a slender structure  
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Table II. Young’s Module, Poisson's ratio and Landau third-order elastic moduli for silica (10
9
 

N·m
-2

) 

Material Eh ν A B C 

Silica 73.14 0.1684 -44 93 36 
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