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Abstract 

Our work focuses on the calculation of the overall elastic properties of a transversely isotropic 

material containing multiple randomly oriented circular cracks. We first propose a new 

methodology to estimate (approximately) the contribution of a single arbitrarily oriented crack in 

an infinite transversely isotropic media into the overall elastic moduli. This effect is described by 

a forth rank compliance contribution tensor which serves as the basic building block for various 

homogenization schemes aimed at calculation of the overall elastic properties of the materials 

containing multiple inhomogeneities. In this paper we use the Mori-Tanaka-Benveniste scheme 

which coincides with non-interaction approximation for the case of crack-like inhomogeneities. 

The approach is illustrated by examples of Berea sandstone and wet bovine dentin. 

 

Keywords: transverse isotropy, cracks, effective elastic properties, randomly oriented 

 

1. Introduction 

In this paper, we calculate the overall elastic properties of a transversely isotropic material 

containing multiple randomly oriented cracks. Our work is motivated by needs in geophysics and 

biomechanics, where the cracks are typically embedded in microcracked anisotropic background. 

Dentin, cortical bone, and Berea Sandstone shown in Figure 1 serve as examples. To the best of 

our knowledge, there are no explicit analytical expressions for the overall elastic properties of a 

transversely-isotropic material containing randomly oriented cracks. Our approach is based on 

the results of Guerrero et al (2007), who developed the method to evaluate crack opening 
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displacement tensor (see Kachanov, 1993) for an arbitrarily oriented crack in a transversely-

isotropic material of elliptic type (Sevostianov and Kachanov, 2008). 

 The problem about microcracks effect on the overall material properties has been first 

discussed by Bristow (1960), who introduced crack density parameter and expressed the 

effective elastic moduli and overall electric conductivity in its terms (in the framework of the 

non-interaction approximation, NIA). For circular (penny-shaped) cracks, of radii ka  and 

random orientation distribution, their concentration is represented by the scalar crack density:  

 
k

ka
V

31
   (in 2-D case of rectilinear cracks of lengths kl2 , 

k

kl
A

21
 )    (1.1) 

 This parameter was generalized by Budiansky and O’connell (1976) to planar cracks of the 

elliptical shapes, of areas kS  and perimeters  kP   – under rather restrictive assumption that all 

ellipses have the same eccentricity – as   
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For an arbitrary non-random orientation distribution of circular cracks, the crack density tensor 

was introduced by Kachanov (1980) (see also his review of 1992):  

    
k

ka
V

nnα 31
  (in 2-D case,   


k

k
l

A
nnα 21

)         (1.3) 

where n  is a unit normal to a crack; the scalar crack density is its trace: ii  . He also 

identified the fourth-rank tensor 

    
k

ka
V

nnnnβ 31
              (1.4) 

as a second parameter that plays a relatively minor role for traction-free cracks. The extra 

compliances ijklS  due to circular cracks of arbitrary orientations k
n  and radii ka  derived, in 

the NIA, by Kachanov (1980) has the following form  
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where tensors α  and β  are defined by (1.3) and (1.4). 
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 The second-rank crack density tensor α  and fourth rank tensor β  are the proper crack 

density parameters for circular cracks: the expression (1.5) covers all orientation distributions of 

cracks in a unified way. For example, in the case of random orientations (overall isotropy),  

  Iα 3 ,   jkiljlikklijijkl   15 ;           (1.6) 

the effective Young’s and shear moduli are as follows (first given by Bristow 1960):  
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For anisotropic materials, the first analytical results have been obtained by Hoenig (1977, 

1978), who derived formulas (in the integral form) for the stress intensity factors and crack 

opening displacements for an elliptical crack in generally anisotropic media and showed that the 

integrals can be evaluated in closed form only for a transversely-isotropic material if the crack is 

parallel to the plane of isotropy. He also calculated the change in moduli for transversely-

isotropic elastic media with cracks parallel to the plane of isotropy. Later, results of Hoenig 

(1977, 1978) on elliptical crack in a 3-D anisotropic material have been repeated or specified for 

some particular cases (very often without proper citation). Fabrikant (1989) used the method of 

potential functions to calculate crack opening displacement tensor for a single circular crack 

embedded in a transversely isotropic material parallel to the plane of isotropy. The closed form 

analytical expressions for a spheroidal inhomogeneity embedded in a transversely-isotropic 

matrix (with a circular crack considered as a limiting case) with the rotation axis of the spheroid 

and  the symmetry axis of transverse isotropy being aligned have been obtained by various 

methods in papers of Withers, (1989), Yu et. al., (1994), and Sevostianov et al., (2005). These 

results were generalized to the case of piezoelectric materials by Dunn and Wienecke (1997), 

Levin et al. (2000) and Mikata (2000). Kanaun (2007) used the Fourier transform method and 

reduced integral equation for crack opening displacements to evaluation of two convergent 

integrals. The only case when these results can be written in closed explicit form is when the 

crack is parallel to the plane of isotropy of a transversely isotropic material. Kanaun and Levin 

(2009) presented an integral equation for anisotropic medium with elliptical cracks and its 

solution with constant and linear polynomial external fields. They also considered the problem 

about overall properties of an anisotropic media with multiple cracks. 

In 2-D, the main result has been obtained by Tsukrov and Kachanov (2000) who derived a 

closed-form analytical solution for an arbitrarily oriented rectilinear crack in an anisotropic 
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matrix. They showed that the second rank crack opening displacement tensor that relates the 

average crack opening displacement (displacement discontinuity) vector to vector of uniform 

traction applied at the crack faces, for such a crack is independent of the crack orientation if the 

coordinate system coincides with the principal directions of anisotropy. This results inspired 

Guerrero et al. (2007) to consider crack opening displacement tensor for an arbitrarily oriented 

circular crack in a three-dimensional transversely isotropic medium of elliptic type (Sevostianov 

and Kachanov,2008; see Appendix). The authors showed that the independence of the crack 

opening displacement tensor that is exact for 2-D cracks can be used as a good approximation for 

3-D cracks even at very high extent of anisotropy if the anisotropy is of elliptic type.  

In the present work, we use results of Guerrero (2007) to calculate the effective properties of 

a transversely – isotropic material with multiple randomly oriented microcracks. For this goal, 

we first approximate the transversely isotropic material by best-fit elliptic transverse-isotropy 

using formulas (A.4), then we calculate the crack opening displacement for a single arbitrarily 

oriented crack, using results of Fabrikant (1989) for the crack in the plane of isotropy, then we 

evaluate fourth rank compliance contribution tensor and use it in Non-Interaction Approximation 

(that coincides for cracks with Mori-Tanaka-Benveniste scheme) to find the effective elastic 

moduli of the transversely isotropic material containing multiple randomly oriented circular 

cracks. We illustrate the approach on examples of two materials: bovine dentin and Berea 

sandstone. 

 

2. Compliance contribution tensor of a flat cracks 

Compliance contribution tensors have been first introduced in the context of pores and cracks by 

Horii and Nemat-Nasser (1983) (see also detailed discussion in the book of Horii and Nemat-

Nasser, 1993). Components of this tensor were calculated for 2-D pores of various shape and 3-

D ellipsoidal pores in isotropic material by Kachanov (1994). Sevostianov et al. (2005) 

calculated components of this tensor for a spheroidal pore in a transversely-isotropic matrix 

when axis of rotation of the spheroid coincides with the axis of transverse isotropy. Following 

this works, we consider a homogeneous elastic material (matrix), with the compliance tensor 
0

S  

containing an inhomogeneity, of volume *V , of a different material with the compliance tensor 
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S . The compliance contribution tensor of the inhomogeneity is a fourth-rank tensor H  that 

gives the extra strain (per reference volume V ) due to its presence:  

 
 σHε :

V

V* ,  or, in components, *
ij ijkl kl

V
H

V
       (2.1) 

where 

kl  are remotely applied stresses that are assumed to be uniform within V  in the absence 

of the inhomogeneity (“homogeneous boundary conditions”, Hashin (1983). For a pore or a 

crack, the additional strain due to its presence is calculated as an integral over its boundary   

 dSnunu
V

ijjiij   



2

1
         (2.2) 

where u  and n  denote displacements on the pore boundary and a unit normal to it (directed 

inwards the pore). The representation (2.3) directly follows from application of the divergence 

theorem to a solid containing a pore (see, for example, Kachanov et. al. 1994). 

 In the limit of a crack, pore boundary degenerates into a two-sided surface  , with opposite 

directions of normals and displacements discontinuous across  . Therefore, the last formula 

takes the form of the surface integral  

   1

2
ij i j j iu n u n dS

V




                   (2.3) 

where     uuu  is the displacement discontinuity vector on   where the “+” sign denotes 

the side of   corresponding to the chosen positive direction of n ; note that products   ji nu  do 

not depend on the choice of this direction since its reversal changes signs of both multipliers. If 

the crack is flat ( constn ), of area S , the expression (2.3) reduces to  

  
1

2
ij i j j ib n b n S

V
                  (2.4) 

where 
  uub  is the average displacement discontinuity vector.  

 For a flat crack of any shape, second-rank displacement discontinuity tensor B  can be 

introduced that relates b  to the vector of uniform traction σn   induced at the crack site, in 

absence of the crack, by 


σ :  
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 Bσnb  
                    (2.5) 

As follows from dimensional considerations, tensor B  is proportional to a linear dimension of 

the crack.  

 In the coordinate system of the crack ( n , 1τ , 2τ ) where 1τ  and 2τ  are two orthogonal unit 

vectors in the crack plane, component Nnn BB   characterizes the normal compliance of the 

crack and B  its shear compliance in the direction τ : they give the normal and shear 

components of b  produced by uniform tractions of unit intensity applied in the same directions 

(note that SBN  is the volume of the crack subjected to uniform pressure of unit intensity). The 

off-diagonal component nn BB    characterizes coupling of the normal and shear modes (if the 

matrix is isotropic, 0nB ) and 
21

B
 
- coupling between the two in-plane directions.  

 Since tensor B  is symmetric (as follows from application of the reciprocity theorem to the 

normal and shear loadings on a crack), three orthogonal principal directions of the crack 

compliance exist: application of a uniform traction in one of them does not generate components 

of b  in the other two directions. If the matrix is isotropic, n  is one of them, and the other two, t  

and s , lie in the crack plane:  

 ssttnnB ssttN BBB                   (2.6) 

In the case of anisotropic matrix, the representation (2.6) still holds but the mutually orthogonal 

vectors n , s  and t  are not necessarily normal/parallel to the crack.  

 In the limit of a crack, the product *V H  in (2.1) is an indeterminacy 0 ; formulas (2.4) 

shows that, in this limit,  

 *V SH nBn                     (2.7) 

with symmetrization with respect to klij  , ji  , lk   imposed on ijkl  components of H . 

In particular, * nnnn NV H S B . In particular, for a circular crack,  
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 

 
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0 3

*
0 0

16 1 1

3 1 2
V a

E





  
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 
H nnnn n I nn n           (2.8) 

with the above-mentioned symmetrization imposed.  

 

3. Isolated arbitrarily oriented penny-shaped crack in a transversely isotropic material. 

Exact explicit analytical results for an arbitrarily oriented crack in an anisotropic material are 

available in the context of 2-D problem only. Mauge and Kachanov (1994) considered 2D 

orthotropic material and derived crack opening displacement tensor B for an arbitrarily oriented 

crack of length 2l. Tsukrov and Kachanov (2000) showed that, in the coordinate system 

coinciding with the axes of orthotropy of the matrix, tensor B is independent of the crack 

orientation and has the following form: 

2

2 2[(1 D) (1 ) ]l C D   1 1B e e e e        (3.1) 

where 

0 0 02
1 2 12

0 00 0 0 0
12 11 2 1 2

21 2

4

E E vl
C

G EE E E E

 
         (3.2) 

0 02
1 2

0 0

1 2
2

E El
D

E E

 



         (3.3) 

Independence of tensor B of the crack orientation means that, according to (2.7), compliance 

contribution tensor H of a crack reflects the crack orientation only through the unit normal vector 

n. 

Guerrero et. al. (2007) showed that, with good accuracy, tensor B can be considered as 

independent of the crack orientation, if (a) material is elliptically transversely isotropic (see 

appendix) and (b) coordinate axes are chosen along the axes of elastic symmetry of the matrix. In 

this case, we can use solution of Fabrikant (1989) for components of tensor B for a circular crack 

in the plane of isotropy of a transversely isotropic material:  

33 2

11 33 13 44 33

8

3 ( ) /
nn

aG
B B

C C C C C
 


       (3.4) 

 22 11 2

44 66 11 33 13 44 33

16

3 [ ( ) / ]
ss

aG
B B B B

C C G C C C C C



   

 
   (3.5) 
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Where a is the radius of the crack and 

 2 2

44 11 33 13 44 44 11 33( ) 2G C C C C C C C C          (3.6) 

(here, we corrected some minor typos). Then, compliance contribution tensor for an arbitrarily 

oriented circular flat crack can be calculated using (2.7). Taking 3

*

4

3
aV   , 2S a ,   

3
( 0)

4
ijkl i jk lH n B n

a



           (3.7) 

Cartesian components of tensor ijklH  for a circular crack arbitrarily oriented in a transversely-

isotropic material of elliptic type can now be written in the coordinate system coinciding with the 

axes of anisotropy of the matrix as follows 

2 2

1111 2

44 66 11 33 13 44 33

4
os sin

[ ( ) / ]

G
H c

C C G C C C C C
 




 
    (3.16) 

2 2

2222 2

44 66 11 33 13 44 33

4
sin sin

[ ( ) / ]

G
H

C C G C C C C C
 




 
    (3.17) 

2

3333 2

11 33 13 44 33

2
cos

( ) /

G
H

C C C C C






 ; 1122 1133 2211 3322 3311 0H H H H H      (3.18) 

2 2 2

1331 2 2

44 66 11 33 13 44 33 11 33 13 44 33

cos os sin
[ ( ) / ] 2 ( ) /

G G
H c

C C G C C C C C C C C C C
  

 
 

  
 

; 1331 3113 1313 3131H H H H           (3.19) 

2

1212 2

44 66 11 33 13 44 33

sin
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G
H

C C G C C C C C





 
     (3.20) 

2 2 2

2332 2 2
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G G
H

C C G C C C C C C C C C C
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 
 
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            (3.21) 

2

1332 2
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os sin cos
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



 ; 

1332 3132 1323 3123 3213 3231 2313 2331H H H H H H H H           (3.22) 

3112 2
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G
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            (3.25) 
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

 
 ; 1113 1311H H   (3.26) 

2223 2
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



      (3.30) 

Note, that independence of tensor B can be considered only as an approximation. It does not 

hold exactly even in the case of isotropic matrix (with the exception of the case of zero Poisson’s 

ratio). Moreover, the accuracy of this approximation is acceptable only if the material shows 

elastic properties of elliptic type. For general transverse isotropy with high deviation from 

isotropy, the accuracy is too low (Guerrero et al, 2008).  

 

4. Overall elastic properties of a TI material containing multiple randomly oriented 

cracks. 

Compliance contribution tensor serves as the basic building block for various micromechanical 

homogenization techniques. In the case of multiple inhomogeneities, the extra strain du to k-th 

inhomogeneity is        0
σHε :

kkk VV   so that the extra compliance due to all the 

inhomogeneities is given by 

 
     kkV

V
HS

1
                   (4.1) 
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It is advantageous to formulate the problem in terms of the elastic potential 

    klijijklSf 21σ  such that ijij f   . The representation ijklijklijkl SSS  0  where 

ijklS  are due to cracks implies similar representation for the potential:     fff  σσ 0  

where, for general inhomogeneities,    
σHσ :VV:f k

k k 1 . For flat cracks we have, with 

the account of (2.7):  

     
σnBnσ :SV:f

k

k 1                (4.2) 

where kS  are crack areas or, substituting (2.6) and using the identity   nnσσσnInσ :::  ,  
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11
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 σnnnnσnnσσ

βα

:::

--

    
       (4.3) 

This expression consists of three distinctly different terms:  

 The first one is expressed in terms of a second-rank tensor of the α -type (for circular 

cracks, it reduces to α ).  

 The second term contains fourth-rank tensor of the β -type. This term is small (compared 

to the α -term) if the differences between NB  and TB  is small, or if the differences NB –

TB  fluctuate randomly from one crack to another (without correlation with either crack 

orientations n  or crack areas S ), i.e. shape “irregularities” (deviations from circles) are 

random;  

 The third term (that vanishes for elastically axisymmetric cracks, sstt BB  ) contains 

differences 
2
ns –

2
nt  where ns  and nt  are shear stresses induced by the remote 

loading in directions s  and t . If shape “irregularities” are random the sum vanishes.  

Thus, taking into account approximate independence of tensor B of the crack orientation, one can 

write for randomly oriented circular cracks (accounting for (1.6)): 
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 (4.4) 

For microcracked materials, non-interaction approximation coincides with the method of Mori-

Tanaka-Benveniste. Indeed, in this scheme, proposed by Mori and Tanaka (1973) and clarified 

by Benveniste (1986), each inhomogeneity is placed into a uniform field that is equal to its 

average over the matrix part of the composite and that generally differs from the remotely 

applied one. This method belongs to the class of “effective field” methods. The effective 

properties are calculated from the non-interaction approximation, by replacing the remotely 

applied field by the mentioned average one and microcracks do not vary the remotely applied 

field, so that it coincides with the one averaged over the matrix.  

 We now illustrate the procedure of calculation of the overall elastic properties on two 

examples – Berea sandstone and bovine dentine. The compliances of these materials are given in 

Table 1. We first approximate them by best fit elliptic transversely-isotropic constants using 

formulas (A.4). The results of the approximation are given in Table 2. As follows from the 

comparison of two tables, the errors of the approximation calculated by Euclidian norm 

 
   ijkl ijkl ijkl ijkl

pqrs pqrs

C C C C

C C


 
        (4.5) 

where ijklC  are elastic stiffnesses of  the real material and ijklC  are their elliptic approximations are 3% 

and 4.6%  for wet bovine dentin and Barea Sandstone, respectively. We verified the 

independence of tensor B  on the crack orientation for these two materials numerically, 

following the procedure described by Guerrero et al (2007). Expression for Green’s tensor in the 

form given by Pan and Chou (1976) was used for this aim. The crack was modeled by a strongly 

oblate spheroidal pore with aspect ratio 1:100 (Fig. 2) and two coordinate systems were 

introduced – global, associated with matrix material’s symmetry and local, associated with the 

pore. To evaluate the integrals involved in the numerical procedure, the Gaussian quadrature 

method was used with 80 iterations. Figure 3 illustrates the obtained results for components 11B  

and 33B . It is seen that the plots can be approximated by horizontal lines for the entire range of 

variation of the rotation angle (with the exception of 2 , where indefiniteness 0 0  appears) 
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and we can use formulas (3.16)-(3.30) for components of the crack compliance contribution 

tensor. Now applying (4.4), (4.1), and (4.2) for the set of cracks sketched in Figure 4we can 

calculate  

0effS S H            (4.6) 

with nonzero components of  
ijkl

H  given in Table 3. Figures 5 and 6 illustrate dependences 

of the elastic constants of microcracked Berea sandstone and wet bovine dentin, respectively, on 

the crack density assuming that all the cracks are circular and are randomly oriented.  

An interesting observation is related to the effect of microcracks on the extent of the 

overall anisotropy. Generally, microcracking in an elastic anisotropic material weakens the 

anisotropy, provided the orientation distribution of microcracks is more or less random (see 

Mauge and Kachanov (1994) for orthotropic 2-D material with randomly oriented cracks). The 

underlying reason is that a crack normal to the "stiffer" matrix direction produces a larger 

contribution to the overall compliance than a crack of the same size that is normal to the "softer" 

direction; hence, a set of cracks of diverse orientations reduces the anisotropy. In 3-D case the 

situation is complicated by the fact that anisotropy on Young’s moduli and shear moduli may be 

different. Figure 7 illustrates variation of the extent of anisotropy with increasing crack density. 

For wet bovine dentin the anisotropy in Young’s moduli changed its directionality with growing 

crack density while anisotropy in shear moduli is practically not changed. For Berea sandstone, 

the anisotropy in Young’s moduli slightly increases with crack density. The explanation of this 

observation is not fully clear – on one side it reflects the fact that the character of anisotropy in 

3-D is more complex than in 2-D; on the other side it may be result of the approximation error 

used in our approach.  

Remark. We restrict our analysis by Non-Interaction Approximation since it reflects 

qualitatively all the features characterizing effect of microcracks on the overall elastic properties. 

Involvement of Maxwell scheme, differential scheme, or any else homogenization technique 

only complicates the procedure without increasing the quality of the approximation since the 

accuracy of these schemes cannot be evaluated a’priori (i.e. without knowing the exact solution). 

 

5. Concluding remarks 
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We proposed an approximate micromechanical model to evaluate overall elastic properties of a 

transversely isotropic material containing randomly oriented circular cracks. The model is based 

on the observation of Guerrero et al. (2007) the crack opening displacement tensor, that relates 

average displacement discontinuity vector to the vector of uniform traction induced at the crack 

site, is approximately independent on the crack orientation if anisotropy of the material is of 

elliptic type (Sevostianov and Kachanov, 2008). This observation yields approximate explicit 

expressions for the components of the compliance contribution tensor for a crack arbitrarily 

oriented in a transversely isotropic material. Such a tensor serves as the basic building block for 

various micromechanical schemes (see, for example, discussion in section 3 of Sevostianov and 

Kachanov, 2014). We use this tensor to write explicit expressions for overall elastic compliances 

of a transversely isotropic material containing randomly oriented circular cracks (equation (4.4)) 

in the framework of Mori-Tanaka-Benveniste scheme. We illustrate our approach on two 

examples – Berea sandstone and wet bovine dentin. For both these materials we first verified 

independence of the crack opening displacement tensor on the crack orientation and then used 

the proposed methodology to calculate reduction of the elastic moduli in dependence on crack 

density. 
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Appendix. Elliptically orthotropic materials and best fit elliptic orthotropy. 

 Elliptic transverse isotropy represents a special type of transverse isotropy discussed in detail 

by Sevostianov and Kachanov (2008). They call the orthotropy elliptic if the fourth-rank tensor 

of elastic constants D  (that can represent either stiffnesses or compliances) can be expressed as 

tensor function  ωDD   of certain symmetric second-rank tensor ω , this function being 

isotropic (any element of symmetry of ω  - a transformation T  such that ωTω   - is also an 

element of symmetry of D ; more precisely, subjecting ω  to any transformation described by 

orthogonal second-rank tensor Q : njmimnij QQ   would imply subjecting D  to the same 

transformation, qlpknjmimnpqijkl QQQQDD  ) and, secondly, linear:  

 
 

   ijklklijjlikikjliljkjkil

jkiljlikklijijkl

AA

AAD









43

21
      (A.1) 

where coefficients iA  may depend on invariants of ω . Since ω  is a symmetric second-rank 

tensor, the elastic properties are orthotropic, and the orthotropy axes coincide with the principal 

axes of ω . The elliptic type of orthotropy is characterized by reduced number of independent 

constants – only five, due to the following four constraints: 

 024 1122222211111212  DDDD , 

 024 2233333322222323  DDDD ,              (A.2) 

 024 3311111133333131  DDDD , 

       0332233113333221122332222113311221111  DDDDDDDDD  

For transverse isotropy of the elliptic type, only one of the relations (A.2) is non-trivial, thus 

reducing the number of independent constants from five to four.  

 Sevostianov and Kachanov (2008) also proposed the concept that any element of elastic 

symmetry is always present, with certain accuracy (measured by appropriately chosen norm) and 

therefore, the idea of approximate symmetry (widely used, for example in geomechanics, 

Fedorov, 2013) becomes relevant for many practical applications. This concept eliminates the 

symmetry “jumps” that may accompany small changes in elastic constants: they are replaced by 
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small changes in accuracy in the above statement. For example, emergence of weak anisotropy 

means that the error of the statement “the material is isotropic” changes continuously from zero 

to a small value. Sevostianov and Kachanov (2008) also developed a procedure of best-fit 

approximation of general orthotropy by the elliptic orthotropy. For a transversely-isotropic 

material, imposing the three constraints (A.2) that define the elliptic orthotropy and minimizing 

the error by using the Lagrange multipliers technique, yields the following elliptically 

transversely isotropic constants (ETI) 

  1111 1111 1 2 2ETIC C     , 3333 3333 2
ETIC C   , 1122 1122 1 2TIOC C   , 

 1133 1133 2 2TIOC C   , 1313 1313 2 2TIOC C    ,              (A.4) 

where the Lagrange multipliers are  

 1 2
1

9 2

35

f f



 ;  2 1

2

8

35

f f



                   (A.5) 

with 1 1212 1111 2222 11224 2f C C C C    , 2 2323 2222 3333 23234 2f C C C C    ,   

( if  turn to zero if material possesses elliptic symmetry). Note that the paper of Sevostianov and 

Kachanov (2008) contains a typo in formulas for i . 
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Tables. 

 

Table 1. Stiffness constant of two transversely isotropic materials (Ding, et. al. 2006) 

 C1111 C3333 C1122 C1133 C1313 

Wet Bovine Dentin (WBD) 37 39 16.6 8.7 5.7 

Berea Sandstone (BS) 21.17 17.34 4.34 3.84 13.97 

 

 

Table 2. Best fit elliptic transversely-isotropic (ETI) constants 

 1111

ETIC  3333

ETIC  1122

ETIC  1133

ETIC  1313

ETIC  

Wet Bovine Dentin (WBD) 35.47 34.91 16.09 10.75 7.75 

Berea Sandstone (BS) 23.32 23.07 5.06 0.98 11.11 

 

 

Table 3. Result of the compliance contribution tensor for randomly oriented 

circular cracks 

  
1111

H   
3333

H   
1313

H   
1212

H  

Wet Bovine Dentin (WBD) 0.1593 0.1313 0.0726 0.0797 

Berea Sandstone (BS) 0.1593 0.1582 0.0807 0.0822 
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Figure captions 

 

Figure 1. Examples of microstructures of various transversely isotropic materials containing 

multiple randomly oriented cracks: (a) cracks in human dentin subjected to diode laser 

irradiation (from Faria et al., 2011), (b) cracks accumulated in cortical bone of mice due to high-

fat diet (from Ionova-Martin et al., 2011), and (c) cracks in sedimentary rock from the 

Neoarchaean Gamohaan Formation, South Africa (from Mahon et al., 2016).  

 

Figure 2. Local and global coordinates associated with arbitrarily oriented crack. 
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Figure 3. Dependence of the components of tensor B on the angle of crack inclination for wet 

bovine dentine and Berea sandstone.  

 

Figure 4. Multiple penny shaped randomly oriented cracks in a transversely isotropic (TI) media.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Figure 5. Effective Young’s and shear moduli of wet bovine dentin as functions of the crack 

density. 

 

Figure 6. Effective Young’s and shear moduli of Berea sandstone as functions of the crack 

density 
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Figure 7. Variation of the extent of anisotropy, as measured by the ration of Young’s moduli E1 

and E3 and shear moduli G13 and G12 with crack density growth for wet bovine dentin (WBD) and 

Berea Sandstone (BS). 


