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Abstract

Based upon linear fracture mechanics, it is well known that the singular order of stresses near the crack tip in homo-
geneous materials is a constant value —1/2, which is nothing to do with the material properties. For the interface cracks
between two dissimilar materials, the near tip stresses are oscillatory due to the order of singularity being —1/2 + i¢ and
—1/2. The oscillation index ¢ is a constant related to the elastic properties of both materials. While for the general interface
corners, their singular orders depend on the corner angle as well as the elastic properties of the materials. Owing to the
difference of the singular orders of homogeneous cracks, interface cracks and interface corners, their associated stress
intensity factors are usually defined separately and even not compatibly. Since homogenous cracks and interface cracks
are just special cases of interface corners, in order to build a direct connection among them a unified definition for their
stress intensity factors is proposed in this paper. Based upon the analytical solutions obtained previously for the multib-
onded anisotropic wedges, the near tip solutions for the general interface corners have been divided into five different cat-
egories depending on whether the singular order is distinct or repeated, real or complex. To provide a stable and efficient
computing approach for the general mixed-mode stress intensity factors, the path-independent H-integral based on reci-
procal theorem of Betti and Rayleigh is established in this paper. The complementary solutions needed for calculation
of H-integral are also provided in this paper. To illustrate our results, several different kinds of examples are shown such
as cracks in homogenous isotropic or anisotropic materials, central or edge notches in isotropic materials, interface cracks
and interface corners between two dissimilar materials.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Electric devices are composed of many different parts. Because each part may be made from different mate-
rials and may have different shapes, it is very possible that many interface corners exist in several local fields of
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an electric device. Due to the mismatch of thermal or elastic properties, stress singularity usually occurs near
the interface corners, which may initiate failure of structures. Therefore, it is important to design a proper
joint shape to prevent the failure initiation and propagation. The singular order of stresses near the interface
corners is a good index for the understanding of failure initiation. However, in engineering applications one
usually feels only the knowledge of singular orders is not enough for the prediction of failure initiation. The
most apparent examples are homogeneous cracks whose singular order is —1/2 which is a constant value and is
nothing to do with the surrounding environment and outside loading of cracks. These influential factors are
reflected through another important parameter — stress intensity factor. Therefore, in addition to the singular
orders one is always interested to know their associated stress intensity factors of interface corners.

Although several detailed studies have been done about the determination of the associated singular orders
and stress intensity factors for interface corners, very few failure criteria were successfully established based
upon these parameters. Even the cracks in homogeneous media or the cracks lying along the interface between
dissimilar materials are the special cases of the interface corners, the definitions of stress intensity factors pro-
posed in the literature are usually not consistent with that of cracks. Therefore, to have a universal failure cri-
terion for the homogeneous cracks, interface cracks and interface corners, a unified definition for the stress
intensity factors is indispensable. In the literature the stress intensity factors of interface corners are usually
defined by the way similar to the homogeneous cracks, e.g., (Sinclair et al., 1984; Dunn et al., 1997), which
may encounter trouble when the stress distributions near the interface corners exhibit the oscillatory charac-
teristics like the interface cracks discussed in (Rice, 1988; Wu, 1990; Suo, 1990; Gao et al., 1992; Hwu, 1993).
Thus, even for the interface cracks some definitions of their stress intensity factors proposed in the literature
are not compatible with the conventional definitions for homogeneous cracks. To build a direct connection
among the homogeneous cracks, interface cracks and interface corners, in this paper a unified definition
for the stress intensity factors is proposed.

According to the experience of crack problems, finding a stable and accurate approach to calculate the
stress intensity factors is also important. By the definition of the stress intensity factors proposed in this paper,
to calculate their values we need to know the stresses near the tip of interface corners. By employing the Stroh
formalism for anisotropic elasticity (Ting, 1996), the near tip solutions for elastic composite wedges have been
obtained analytically (Hwu et al., 2003). Moreover, consideration of the thermal effects, the solutions for the
temperature, heat flux, displacement and stress in the field near the apex of multibonded anisotropic wedges
are also obtained (Hwu and Lee, 2004). Based upon the analytical solutions obtained from (Hwu and Lee,
2004), in this paper the near tip solutions for the general interface corners are divided into five different cat-
egories depending on whether the singular order is distinct or repeated, real or complex. However, due to the
singular and possibly oscillatory behaviors of the near tip solutions, it is not easy to get convergent values for
the stress intensity factors directly from the definition. To overcome this problem, a path-independent H-inte-
gral (Stern et al., 1976; Sinclair et al., 1984; Labossiere and Dunn, 1999) is employed to compute the possibly
mixed-mode stress intensity factors, in which the complementary solutions needed for calculation are derived
in this paper. By using the H-integral, the complexity of stresses around the tip of interface corners can then be
avoided.

2. Near tip solutions for multibonded anisotropic wedges

To study the singular behavior of interface corners and to provide a proper definition for their associated
stress intensity factors, like the concept of fracture mechanics it is important to know the near tip solutions. By
employing Stroh formalism for anisotropic elasticity, the near tip solutions for multibonded anisotropic
wedges have been obtained as (Hwu et al., 2003; Hwu and Lee, 2004)

wi(r,0) = "E; (0K, 1wy, k=1,2,3,...,n, (2.1)

in which (r, 0) is the polar coordinate with origin located on the wedge apex; wi(r,0), k=1,2,...,n,isa6x 1
vector composed of the displacements and stress functions of the kth wedge; wy is a 6 x 1 coefficient vector
related to wi(r,0y) by w(r,0q) = W, E;(0) and K,_; are 6 x 6 matrices related to the material properties
of the wedges. They are defined by (Note that for simplicity the symbols 1 — ¢ and (K,),_; used in
(Hwu and Lee, 2004) has been replaced by A and K;_;)
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u(r,0) = {uz(r, 0) ¢, ¢(r,0)= {(bz(n 0) ¢,

us(r,0) ), ¢5(r,0) ), (2.2)
E;(0) =NX0,0,1), k=123 ...,n,

I, k=1,

K= k]:[IEk,i:Ek,lEk,z E\, k=23,....n,

in which E, = E(0;) = N,f(@k, 0r_1), and 6y, 0,_, are the angular location of the two sides of the kth wedge
(Fig. 1(a)). u;, i =1, 2, 3, are the displacements in x-directions, ¢;, i = 1, 2, 3, are the stress functions related
to the Cartesian stress components g; and surface traction vector t by

o = —¢i2 O =Py, (2.3a)
t = 0¢/0s, (2.3b)
where s is the arc length measured along the curved boundary such that when one faces the direction of
increasing s the material lies on the right side. From (2.3b), we have t = ¢, for a radial line surface and

t = ¢ o/r for a circular surface, and hence, the stresses in polar coordinate can also be calculated from the
stress functions ¢ by

Ogp = mT¢ Izl Op = _nT¢ 9/}", 0,90 = nT¢ o _mT¢ 0/}",
’ ’ ’ ’ (2.4a)
06: = (¢ﬁr)z7 Oz = _<¢,9)z/r’
where
n' = (cos sinf 0), m"'=(—sin0 cos® O0). (2.4b)
In (2.2), N is a 6 x 6 matrix related to the Stroh fundamental matrix N (Ting, 1996) by
Nz(@, Qk—l) = [COS(@ — Qk_l)l + sin(@ — Ok_l)Nk(Hk_l)]A, (25)

in which I is a 6 x 6 identity matrix. Because in general / is not an integer, to calculate the A power of N one
usually use the transformation through the eigenvalues and eigenvectors of N. By this way, it has been proved
that (Hwu et al., 2003)

Ak Kk

B, A
Bk Ek A

NH0, 0, 1) = -
k k

: (2.6)

(i2(0,0-1)) 0

0 (i(0,0¢-1))
in which the overbar denotes the complex conjugate; the angular bracket () stands for a diagonal matrix in
which each component is varied according to the subscript *, e.g., (z,) = diag.[z},2,,23]; the superscript T de-

notes the transpose of a matrix. A and B are two 3 X 3 material eigenvector matrices and (0, 0;_,) is related
to the material eigenvalues . by

i(0,0,_,) = [cos(0 — O4_y) +sin(0 — 0, ), (0,-1)]", *=1,2,3, (2.7a)

and

W, cos 0;,_ — sin 0;_,
Ky (0/(71 ) == . .
M, S Qk—l -+ cos Qk,l

(2.7b)

In the above, 4 — 1 is the order of the stress singularity which will be influenced by the wedge configurations (n
wedge angles) and properties (21# elastic constants), and the boundary conditions of wedge surfaces. For free—
free wedge ¢(r,0p) = ¢,(r,0,) =0, detailed derivation will lead to (Hwu and Lee, 2004)
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41X,

@ positive in counter-clockwise direction.

C=C,+C +C,+C,:aclosed contour

Cr =—=Cy : in a counterclockwise direction

Fig. 1. (a) n-Multibonded anisotropic wedges. (b) Schematic diagram of H-integral contour.

¢, =0, K%u =0, (2.8a)
where K® is one of the submatrices of K which is related to E, by
n KO K®
K= HEH+l =EE,,...E, K= K9 K (2.8b)
k=1

Nontrivial solution of u, exists only when the determinant of K¥ is equal to zero, i.e., |[K®|| = 0, which will
give us the singular order 4 — 1. After obtaining the singular orders that may be real or complex, distinct or
repeated, the nonzero values of uy can then be calculated through (2.8a),. With 1 and wy = (uy 0)" determined,
the near tip solution (2.1) can now be expanded as
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w(r,0) = ’”)"{EZU)(@)K/(J—)l + E;Q)(Q)K/(j—)l}“()»

(2.9a)
9:(r,0) = {EDOKL, + ED 0K, u,
where E;”(0) and K\ | are the submatrices of E;(0) and K_; defined by
T EPO) EYO)] K K

From (2.82a), and the definitions given in (2.2) and (2.5)—(2.7), we see that the singular orders are totally deter-
mined through the material properties and configurations of all wedges. Since we consider the singular fields
and the strain energy cannot be unbounded, only the values located in the range of 0 < Re(4) <1 are consid-
ered in this paper. If more than one A locate in this range, we select the one whose real part is minimum as A,
i.e., the one with the most critical singular order 4. — 1. If /. is a complex number, it has been proved that its
conjugate Z. is also a root of |[K®|| =0 (Hwu et al., 2003).

When r — 0, i.e., the near tip field, the terms associated with 1. will dominate the stress behavior. Neglect-
ing all the other singular and nonsingular terms, and expanding the near tip solution (2.1) for the terms asso-
ciated with 1., we may express the displacement and stress function vectors in terms of the eigenvector ugy
obtained from (2.8a),. However, an eigenvalue /. may correspond several linearly independent eigenvectors
u,. If A is a nonrepeated root, only one arbitrary scalar is needed to describe uy. When 4. is a double root,
two arbitrary scalars are needed. While for a triple root /., three arbitrary scalars are needed. If /. is complex,
the arbitrary scalar associated with ug is also complex which contains two real scalars. With the above under-
standing, the near tip solutions (2.9a) may now be rewritten as

Case 1: A is distinct and real, 1. = Ag,

u(r,0) = cr*“p(@),

) (2.10a)
¢(r,0) = cr'q(0).
Case 2: . is double and real, 1. = /g,
u(r, 0) = r® 0) + 0)},
(r,0) ”) {e1p(0) + c2py(0) } (2.10b)
@(r,0) = r'*{c1q,(0) + c2q,(0) }.
Case 3: A is triple and real, A, = /g,
u(r,0) = {erpy (0) + 203 (0) + 20 (0)}, 100
é(r,0) = r'*{c1q,(0) + c20,(0) + c3q;(0)}.
Case 4: A is distinct and complex, 1. = A =+ i,
u(r,0) = r{erp(0) + e p(0)},
. o (2.10d)
$(r,0) = r{erq(0) + o q(0) }.
Case 5: one is real Ag and the others are complex Ar = i,
u(r,0) = {erp,(0) + o, (0) + espy(0)}
(2.10e)

9(r,0) = ' {erq,(0) + e q,(0) + e305(0) }

In the above, p(0) and q(60) (or p,(0) and q{6), i = 1, 2, 3) are functions related to E;(i)(Q), K,(Ql and ug in which
the number of arbitrary scalars is dependent on the multiplicity of A.. Note that the solutions shown in (2.10a—
e) are valid for any wedge of the multibonded wedges, and hence from now on unless special notification is
needed the subscript k& denoting the wedge has been neglected for simplicity.
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3. A unified definition for stress intensity factors

It is known that a semi-infinite crack in homogeneous materials can be represented by letting 6y = —n
and 0, == for a single wedge. Moreover, an interface crack can be represented by a bi-wedge with
0p = —mn, 0; =0 and 0, = n. These two important special cases indicate that to propose a proper definition

for the stress intensity factors of interface corners, it is better to review the corresponding definition for
the crack problems.

A conventional definition for the stress intensity factors k of a crack in homogeneous media is (Broek,
1974)

K[[ 00
k=<K, ;= ling V2nrd oy p = lirr(} V2nre,, (3.1
K 0=0 09: 0=0

in which the third equality of (3.1) comes from the relations given in (2.4); § = 0 is a line along the crack. Due
to the oscillatory behavior of the stresses near the tip of interface cracks, this definition cannot be applied to
the cracks lying on the bimaterial interface. A proper definition for the bimaterial stress intensity factors has
been given by Hwu (1993) as

Ky 0
K, ¢ =lim V2rrA((r/€) VAT agg o, (3.2a)
K 0=0 0¢:

or in matrix form

k = lim V2mrA((r/0)*)A' ¢, (3.2b)
0=0
where
A=[a @ @l (3.3a)
& (s, * =1, 2, 3, are the eigenvalues and eigenvectors of
(M* — &™M*)q = 0, (3.3b)

in which M" is the bimaterial matrix related to the material eigenvector matrices A;, B;, i = 1, 2 (Hwu, 1993;
Ting, 1996). In (3.2), £ is a length parameter which may be chosen arbitrarily as long as it is held fixed when
specimens of a given material pair are compared. Different values of ¢ will not alter the magnitude of k but will
change its phase angle. In application, the reference length ¢ is usually selected to be the crack length.

Combining (3.1) and (3.2), and considering the consistence of definitions, we now propose a unified defi-
nition for the stress intensity factors of interface corners, which is also applicable for the cracks in homoge-
neous materials or bimaterial interfaces, as

Ky _ 00
K, ¢ =lim 2 R A((r/0) YA Ggp (3.4a)
K 0=0 00;

or in matrix form
k = lim 2 R A((r /) TVAT @, (3.4b)
00
in which A is a matrix related to the wedge configurations and properties. In general, if /. is real, i.e.,
e. =0, A is not required for the definition of k since A((r/£) " )A™" in (3.4) is equal to the identity matrix

I. With this understanding, only cases 4 and 5 shown in (2.10d and e) need a proper definition for the
matrix A.
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Differentiating the stress function vector ¢(r,0) with respect to r for each case shown in (2.10a-¢), and
substituting the results into (3.4b), we can get the relations between the coefficients ¢; (or simply ¢) and the
stress intensity factors k as follows.

Case 1:
k = V2ncirq(0). (3.5a)
Case 2:
k = V2nigA'c, where A" = [q,(0) q,(0)], ¢ = {Cl } (3.5b)
(&)
Case 3:
C1
k = V2migA'c, where A" = [q,(0) ¢,(0) q;(0)], e=<{ ¢ . (3.5¢)
C3
Case 4:
k' = V2nA((Zr +ie.)0™)e, where A = [q*(0) ¢ (0)]. c= {C} (3.5d)
c
Case 5:
¢
k = V2nA((Zr +ie.)0™)c, where A = [q(0) q(0) q;(0)], =< ¢ . (3.5¢)
C3

Note that in case 2 A* is a 3 X 2 matrix, while in case 3 A* is a 3 X 3 matrix. In case 4 k™ is a 2 x 1 vector that
could be (K, K;)" or (K;, K;77)" depending on the contents of the 2 x 1 vector q*(0) which may contain the first
two components or the last two components of the 3 x 1 vector q(0). The associated diagonal matrix denoted
by () shown in (3.5d) is a 2 x 2 matrix in which each component is varied according to the subscript * =1, 2,
and & = ¢, &, = —&. While in case 5, the associated diagonal matrix is a 3 X 3 matrix in which each component
is varied according to the subscript * =1, 2, 3 and ¢; = ¢, &, = —¢, ¢3 = 0. Thus, A is a 2 X 2 matrix in case 4
and a 3 X 3 matrix in case 5.

A general matrix form for the relations shown in (3.5a—e) may be written as
k = V2rA((Jg +ie.)0)e, (3.6)

in which the contents of matrices k, A and ¢ depend on whether the singular order is distinct or repeated, real
or complex as those described in (2.10).

From the above discussion, we see that the definition for the stress intensity factors proposed in (3.4) is
applicable not only to the interface corners but also to the cracks in homogeneous media or bimaterial inter-
faces. The conventional definition (3.1) is just a special case of (3.4) with lg = 1/2 and ¢ = 0, while the defi-
nition for the bimaterial stress intensity factor (3.2) is a special case of (3.4) with Ag = 1/2. With this unified
definition, it becomes possible that the failure criteria developed for the crack problems may be useful for the
prediction of the failure of interface corners. Moreover, the fracture toughness measured from the standard
crack specimen may also have a direct connection with the toughness of interface corners.

It should be noted that the unified definition proposed in (3.4) is valid only for the most critical singular
order 4. — 1. For the cases that two or more but different eigenvalues exist in the range 0 < Re(4) < 1, defini-
tion (3.4) cannot provide meaningful constant factors for the lower critical singular orders. For example, if
¢, — ciia’q,(0) + c2i2r27'q,(0) when r — 0, no constant values of k, related to 4, can be got through
the unified definition shown in (3.4). The possible way to get k, is further modifying the definition with ¢,
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replaced by ¢', where ¢, = ¢, — c14.”<71q,(0), which means that the near tip stresses of (3.4a) should be sub-
tracted by the dominant portion of 4. — 1. Since this will make the unified definition more complicated than
before, in this paper we just focus on the stress intensity factors of the most critical singular order.

4. Path-independent H-integral for computing stress intensity factors

According to the definition of the stress intensity factors proposed in (3.4), to calculate their values we need
to know the stresses near the tip of interface corners. However, due to the singular and possibly oscillatory
behaviors of the near tip solutions (2.1) for multibonded anisotropic wedges, it is not easy to get convergent
values for the stress intensity factors directly from the definition (3.4). To overcome this problem, several path-
independent integrals have been proposed for the special cases of interface corners such as J-integral (Rice,
1968), L-Integral (Choi and Earmme, 1992), M-integral (Im and Kim, 2000) and H-integral (Sinclair et al.,
1984) for crack problems. Since these integrals have a special feature that they are independent of paths,
the complexity of stresses around the crack tip can then be avoided. The interface corners are usually in
the status of mixed-mode intensity. Thus, employing H-integral to compute the stress intensity factors defined
in (3.4) may be a good choice.

The path-independent H-integral is based on the reciprocal theorem of Betti and Rayleigh (Sokolnikoff,
1956). It states that: if an elastic body is subjected to two systems of body and surface forces, then the work
that would be done by the first system in acting through the displacements due to the second system of forces is
equal to the work that would be done by the second system in acting through the displacements due to the first
system of forces. If we choose the first system to be the (actual) one we consider, and the second system to be
the complementary (or called virtual) one. In the absence of body forces, this theorem can be written in the
following form

f (u't—a"t)ds =0, (4.1)

where u and t are the displacement and traction vectors of the actual system, and @ and t are those of the com-
plementary system. C is any closed contour in a simply connected region, which is selected to be
C.+ C, + Cp + C, as shown in Fig. 1(b). Because the two outer surfaces of the multibonded wedges are con-
sidered to be free of tractions, t = t = 0 along C; and C,, and hence,

/C (W'E- T ds = - / (W't — @Tt)ds /C (0"t — @7t ds, 42)

Cpr

where both C, and Cy are the paths emanate from the lower wedge flank (6 = 0;) to the upper wedge flank
(0 = 0,) counterclockwisely. In other words, the H-integral defined by

H= / (ut — a"t)ds, (4.3)

is path-independent for free-free multibonded wedges when the path I emanates from 6, and terminates on 6,
in counterclockwise direction.

By shrinking the inner path C, inside the region dominated by the singular field and making a judicious
choice for the complementary solution, we can get an analytical expression for the H-integral in terms of
the coefficients ¢; (or simply ¢) which have a direct relation with the stress intensity factors as shown in
(3.5). Thus, if one can evaluate the H-integral from the other path far from the tip, through the path-indepen-
dent property shown in (4.2) we can calculate the stress intensity factors. With this understanding, we will now
try to find the suitable complementary solutions and then derive formulae for the coefficients ¢; of each case
shown in (2.10a-¢).

Since the integral path can be selected arbitrarily from the lower wedge flank 0, to upper wedge flank 0, for
simplicity we choose a circular counterclockwise path through the region dominated by the singular field.
Along this path, the traction t = ¢ o/r, which has been shown in (2.3b), and ds = rd0, so Eq. (4.3) becomes
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911
H= (u'y— ﬁTqS_’g)dH. (4.4)
by
Case 1: Substituting the near tip solution (2.10a) into (4.4), we see that the suitable complementary solution,
which will make the H-integral be independent of r, should be the one with eigenvalue — /g, i.e.,

u(r,0) = er =*p(0), ¢(r,0) = ér=*q(0), (4.5)

where p(6) and q(6) can be obtained from (2.9a) with uy determined by (2.8a) whose eigenvalue is —Ag. Thus,

it is important to know whether —/ is also an eigenvalue of K”uy = 0 when / is. Since the explicit expression

of the determinant of matrix K® is quite complicated, it is not easy to perform rigorous proof. Instead,

numerical check has been done in this paper, which shows that when / is a root of K®uy =0, so is —A.
Substituting (2.10a) and (4.5) into (4.4) with ¢ = 1, we get

c=H"H, (4.6a)
where
= | (T (0)i (0) — P (0)q'(0) } dO. (4.6b)

The prime o’ in (4.6b) denotes differentiation with respect to 0. Note that formula (4.6) is derived from the
path through the singular field. By the path-independent property of H-integral, the value H appeared in
(4.6a) can now be evaluated using (4.3) through any convenient path I" far away from the tip. In (4.3), the
displacement u and traction t of the actual state can be obtained from any other methods such as finite element
or boundary element method, while @ and t of the virtual state is from the complementary solution (4.5) whose
¢=1and t = d¢/ds.

Case 2: Similar to the discussion of Case 1, the suitable complementary solution will be the one associated
with eigenvalue —/1g, i.e.,

u(r, 0) = r*{ep1(0) + &2p2(0)},

; e . (4.7)
é(r,0) = r*{c1q:(0) + ¢2q2(0)}.
Substituting (2.10b) and (4.7) into (4.4) with ¢, =1, ¢, =0, and ¢; =0, ¢ = 1, respectively, we get
Hl = C]HEI + CZHEZ’ (483)
Hz = C1H21 +CQH22,
where
0,
= [ {00 - 5O )0, ij=1.2 (4.8b)

and H, is the value calculated from (4.3) with ¢; = 1, ¢; = 0 for the complementary solution, while H, is the
one associated with ¢, = 0, ¢, = 1. From (4.8), the coefficient ¢; can now be evaluated by simply matrix inver-
sion as

{} [HTI HTz]'{Hl}. (49)
(%) Hy  H, H,
Case 3: Similar to Case 2, the complementary solution can be written as
a(r,0) = r~*{eip1(0) + e2p2(0) + 3ps (0)},
o(r,0) = r {2141 (0) + &8:(0) + &343(0) ).

Substituting (2.10c) and (4.10) into (4.4) with ¢, =1,¢,=0,¢3=0,and ¢, =0,¢, =1, ¢, =0, and ¢, =0,
¢, =0, ¢3 = 1, respectively, and then by matrix inversion, we get

(4.10)
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-1

Ci HT] HTz HTa H,
¢ o= |Hy Hy Hy H, », (4.11)
a3 Hy Hy, Hi H;

in which H :‘] has the same definition as (4.8b) for i, j = 1, 2, 3; H, is the value calculated from (4.3) with¢; =1,
¢, = 0, ¢3 = 0 for the complementary solution, H, is the one associated with ¢, = 0, ¢, = 1, ¢; = 0, while H; is
the one associated with ¢; =0, ¢, =0, ¢3 = 1.

Case 4: Each term of the solution shown in (2.10d), although its value is complex, satisfies all the basic
equations and boundary conditions for the multibonded wedges. In this sense, the coefficient ¢, even is com-
plex, can also be evaluated by the way of Casel. That is, with the complementary solution

(r,0) = er-"RH950), @(r, 0) = er RTG(0), (4.12)

¢ is related to the H-integral by (4.6a), i.e., c = H* 'H, where H* and H are, respectively, calculated from
(4.6b) and (4.3) with ¢ = 1. Similarly, the coefficient ¢ can also be calculated by (4.6a) with a complementary
solution having exponent —(/1g — i¢) of r. Since ¢ and ¢ are complex conjugate, their results calculated sepa-
rately by (4.6) can be used as a check for correctness.

Case 5: As the explanation described for case 4, in this case Agr and /g =+ ie can be treated as three distinct
roots. The complementary solutions associated with eigenvalues /g and A + i¢ have been shown, respectively,
in (4.5) and (4.12). Their associated coefficients ¢; and ¢ can therefore be evaluated separately by (4.6). The
coefficient ¢ associated with eigenvalue 1z — i¢ is then obtained by taking the conjugate of c.

From the above discussion, we see that the coefficients ¢; (or simply ¢) can be evaluated from the relations
(4.6), (4.9), (4.11) or (4.12) through the path-independent H-integral. A general matrix form for these relations
can then be shown as

c=H""h, (4.13)

where the dimensions of vector ¢, matrix H* and vector h depend on whether the singular order is distinct or
repeated, real or complex as those described in (2.10). The component H ;; of H" is calculated through (4.8b),
whereas the component H; of h is calculated from the H-integral defined in (4.3) through any convenient path
I' emanating from 0, and terminating on 0,, in counterclockwise direction. When calculating H; through (4.3),
u and t of the actual state can be obtained from any other methods, while & and t of the virtual state is from the
complementary solution such as (4.5), (4.7), (4.10) with ¢; =1 and ¢; = 0, j # i. Combining (3.6) and (4.13),
the relation between the stress intensity factors k and the H-integral h is obtained as

k = V2rA((Jg +ie.)0* )H 'h. (4.14)

With this relation, the stress intensity factors defined in (3.4) can be computed in a stable and efficient way no
matter what kind of interface corners is considered.

5. Numerical examples

A unified definition for the stress intensity factors of cracks, interface cracks and interface corners is pro-
posed in Eq. (3.4). No matter what kind of stress singularity occurs for the general interface corners/cracks,
(distinct or repeated, real or complex), an efficient and stable approach of calculating the stress intensity fac-
tors is suggested by using the relation (4.14) with the path-independent H-integral defined in (4.3). Detailed
studies about the convergency and efficiency of the H-integral as well as the validity of the range and shape
of the path have been done through several different kinds of examples. To save the space of this paper, only
selected examples are shown to illustrate the versatility of the unified definition, such as (1) cracks in homo-
geneous isotropic or anisotropic materials, (2) central or edge notch in isotropic materials, (3) interface cracks
between two dissimilar isotropic materials, and (4) interface corners between two dissimilar materials. In the
first example, the singular order is —1/2 which is a repeated root associated with opening, shearing and tearing
stress intensity factors. Example 2 is a case of single wedge problem whose singular order is generally less than
that of crack (here, we compare the absolute value of the singular order), and is generally real. Example 3
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shows the variation of the stress intensity factors of the interface cracks versus the stiffness ratio of the two
materials. No matter what kinds of combination of the bimaterials, the singular orders of this example are
always —1/2 and —1/2 = ie, which belong to the category of case 5 discussed in Section 2. The last example
shows a typical example of interface corners, which occurs frequently in electric devices. The singular order
of this case is generally complex.

Note that in the following calculation, the stresses and displacements of the actual system are obtained
from the commercial finite element software ANSYS. For convenience, the paths are usually selected to pass
through Gauss points or nodal points. Otherwise, interpolation technique is used to get the values of displace-
ments and stresses. In our example all the integration paths are selected to pass through nodal points. Since
the numerical output will depend on element meshes and integral paths, both studies have been done in (Kuo,
2006) before performing the following examples. Kuo’s results show that the convergent and stable values will
be obtained if the normalized element size b/a is less than 0.05 and the normalized integral paths r/a lie within
0.2 <r/a <0.8, where b is the grid size of the meshes in the region 2a X 2a centered on the crack/notch tips, r is
the radius of circular integral path and « is the crack or notch length.

It should be noted that although the path independency of H-integral has been proved theoretically in Sec-
tion 4, numerical studies through several different shapes and ranges of paths show that the stress intensity
factors calculated from the paths with r/a less than 0.2 become unstable and will change rapidly, which
may come from the incorrect stress information near the crack/notch tip provided by FEA. Therefore, when
using H-integral to calculate the stress intensity factors we avoid to take the values near the range of r/a < 0.2,
which is the advantage of the path-independent integrals.

Example 1. Cracks in homogeneous isotropic or anisotropic materials

Since this kind of problems has been done vastly in the literature, for the purpose of comparison we now
select two cases presented by Stern et al. (1976). One is an edge crack in a rectangular homogeneous isotropic
plate subjected to uniform tension, and the other is the same plate subjected to uniform end shear and fully
clamped at the other end, as shown in Fig. 2a and b, respectively. The Young’s modulus E and Poisson’s ratio
v of the plate are: E =300 GPa,v =0.25. The uniform stress applied at the end of the plate is ¢ = 1 MPa.
Table 1 is the comparison of our results with those presented by Stern et al. (1976), which shows that our
results well agree with those of Stern et al. (1976). Moreover, the path-independent property of H-integral
is confirmed through this numerical computation in which four different paths used in our calculation are
shown in Fig. 3. Following the requirement that the normalized element size b/a be less than 0.05, the results
shown in Table 1 are based on the FEA meshes of 8284 elements and 25,331 nodes.
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Fig. 2. Schematic diagram of an edge crack in an homogeneous isotropic plate subjected to (a) uniform tension; (b) uniform end shear.
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Table 1

Stress intensity factors of edge cracks in isotropic media

Present

(i) Uniform tension

r=20.225 K;=9.254
r=20.375 K;=9.309
r=10.450 K;=9.359
r=0.600 K;=9.367
Stern et al. (1976) K;=9.300
(ii) Uniform end shear

r=0.225 K;=133.448 K;r=4.446
r=20.375 K;=33.675 K =4.406
r=0.450 K;=33.745 Ky =4.459
r=0.600 K;=33.725 K;;=4.483
Stern et al. (1976) K;=34.000 K;;=4.550

Unit: r - mm; K; and K;; — MPa * mm®>.

To show that the proposed approach is not only valid for isotropic materials but also for the most general
anisotropic materials, a central crack embedded in an anisotropic plate is considered (Fig. 4). The plate is sub-
jected to uniform stress ¢ = 10 MPa at far ends. The anisotropic materials are made by rotating the principal
direction of an orthotropic material 45 degrees (i.e. y =45° in Fig. 4). The material properties of the ortho-
tropic material are

Ell = 13445 GPa, E22 = E33 =11.03 GPa,
G12 = G13 =5.84 GPa7 G23 =2.98 GPa,
Vip = Vi3 = 0301, Vo3 = 0.49.

To compare our results with the analytical solution for a crack in the infinite anisotropic media, « = 1 mm, a/
W =1/60 and a/L = 1/58 are used in our example to approximate an infinite plate. Table 2 shows that the
values of K calculated from H-integral well agree with the analytical solution K; = g/ma.

Example 2. Central or edge notch in isotropic materials

Notch problems such as the one shown in Fig. 5 have also been studied vastly in the literature. However, in
the literature most of the stress intensity factors of the notches are defined in the following way:

0'99(020) ZK]}")'_I, 0',9(020) ZK”}")'_I, 0'92(020) :K”]l”/l_l

Although they are correct in the sense of stress intensity, they are different from the conventional definition of
cracks by a scaling factor v/2m. Moreover, it will cause trouble when /4 is a repeated or complex root, like those
discussed in Section 2 for Cases 2-5. Since crack is a special case of notches whose notch angle o = 0° (Fig. 5),
it is better that the stress intensity factors are defined by the same definition. Thus, in this example the com-
parison is done by the using the definition proposed in Eq. (3.4). Table 3 shows the stress intensity factors of
central notch and edge notch for o = 90°, whose singular order 1, — 1 = —0.456. Again, good agreement is
shown in the comparison between our results and those of Dunn et al. (1997). The material constants and load
considered in this example are: E=300GPa, v=0.25 a=1mm, a/W=1/20, and a/L=1/60, and
g =10 MPa.

Example 3. Interface cracks between two dissimilar isotropic materials

Consider a center crack or edge crack lying along the interface between two dissimilar isotropic mate-
rials. The geometry and loading of this problem are shown in Fig. 6. The reference length used in the
definition (3.4) is selected to be half of the crack length for center crack and crack length for edge crack,
which are all denoted by a in Fig. 6. Both of the materials above and below the interface are isotropic.
Their properties are EV) =300 GPa, v\!) = v? =0.25, and E® varies according to the stiffness ratio £/
EYY given in Table 4. The singular order and the stress intensity factor versus the stiffness ratio for the
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Fig. 3. H-integral paths for example 1.

center interface crack and edge interface crack are presented in Table 4. The reference values shown in
Table 4 are those calculated from the analytical solutions for the center interface cracks in infinite plates
(Rice, 1988; Hwu, 1993). Since the values of a/W and a/L have been purposely selected to be small
enough to simulate the infinite plates, our results are well agreed with the reference values. Note that

the selection of the reference length ¢ will not alter the magnitude of k (means /K7 + Kj,) but will change

the individual values of K; and Kj;, and hence when comparing with other solutions one should be careful
about its selection.
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Fig. 4. Schematic diagram of a central crack in an anisotropic plate.
Table 2
Stress intensity factors of central cracks in anisotropic media
Present
r=10.500 K;=17.633
r=0.600 K;=17.631
r=10.700 K;=17.630
r=0.800 K;=17.636
Analytic solution
o\/Ta K;=17.725
Unit: r — mm; K; — MPa * mm®?>,

Fig. 5. Schematic diagrams of notches in isotropic plates: (a) central notch (b) edge notch.
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Example 4. Interface corners between two dissimilar materials

In this example we consider an interface corner between two dissimilar materials subjected to uniform ten-
sion ¢ = 10 MPa at far ends. The geometry, loading, and boundary conditions are shown in Fig. 7. The inter-
face length d = 5 mm, the reference length ¢ used in the definition (3.4) is selected to be 10 mm. The material
above the interface is isotropic whose properties are: £ = 10 GPa and v = 0.2, while the other portion is ortho-
tropic whose properties are the same as those given in Example 1.
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Table 3

Stress intensity factors of central notches and edge notches

K,

o =90° Central notch Edge notch
Present

r=10.540 22.490 23.152
r=0.630 22.482 23.146
r=20.720 22.479 23.143
Dunn et al. (1997) 22.464 23.191

Unit: r — mm; K; — MPa * mm

Fig. 6. Interface cracks between two dissimilar isotropic materials: (a) central crack (b) edge crack.
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The singular order of this problem is calculated to be 1. = 0.467-0.037i. The stress intensity factors k versus
the near tip distance r are shown in Table 5, Figs. 8 and 9 for the values calculated from (3.4) and (4.14). Fig. 8
shows that the values of K; and Kj; calculated directly from the definition (3.4) become unstable when r — 0,
which causes trouble to determine the limiting values. While in Fig. 9, K; and Kj; calculated from H-integral
are quite independent of the paths, in which r stands for the radius of the circular path. The range of r shown
in Fig. 8 15 0.0006 < r < 0.017 while that of Fig. 9is 0.3 <r < 0.8. The former is the near tip region, from which
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Table 4

Stress intensity factors of interface cracks vs. ratio of Young’s modulus £?/EV

EX/ED Je—1 K; K; Ky K3
Center interface crack

0.01 —0.5000 + 0.10801 16.4802 17.9611 2.2408 24914
0.1 —0.5000 + 0.0891i 17.0004 17.8856 1.9252 2.0579
0.2 —0.5000 + 0.07191 17.2926 17.8296 1.5916 1.6636
0.3 —0.5000 + 0.05781 17.4543 17.7923 1.2948 1.3365
0.4 —0.5000 + 0.0458i 17.5508 17.7671 1.0347 1.0599
0.5 —0.5000 + 0.03551 17.6108 17.7502 0.8067 0.8223
0.6 —0.5000 + 0.0266i 17.6486 17.7389 0.6058 0.6157
0.7 —0.5000 + 0.0187i 17.6720 17.7317 0.4280 0.4342
0.8 —0.5000 + 0.0118i 17.6856 17.7274 0.2697 0.2732
0.9 —0.5000 + 0.00561 17.6925 17.7252 0.1277 0.1293
1.0 —0.5000 + 0.0000i 17.6844 17.7245 0.0000 0.0000
E®/ED Je—1 K; Ky
Edge interface crack

0.01 —0.5000 + 0.10801 29.7183 8.3921
0.1 —0.5000 + 0.08911 26.1536 6.1506
0.2 —0.5000 + 0.07191 23.8200 4.5734
0.3 —0.5000 + 0.0578i1 22.3822 3.4920
0.4 —0.5000 + 0.04581 21.4531 2.6903
0.5 —0.5000 + 0.03551 20.8368 2.0641
0.6 —0.5000 + 0.02661 20.4263 1.5543
0.7 —0.5000 + 0.01871 20.1538 1.1240
0.8 —0.5000 4 0.0118i 19.9800 0.7548
0.9 —0.5000 + 0.00561 19.8760 0.4300
1.0 —0.5000 + 0.00001 19.8375 0.0000

Unit: K, Ky, Kj and K, — MPa = mm®>.

Note: K; and K7, are the values for infinite plates calculated from the formulae provided in (Rice, 1988; Hwu, 1993).

Fig. 7. Schematic diagram of interface corner between dissimilar materials.
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the results are usually unstable, however, it is unavoidable because the definition requires » — 0; whereas the
latter is away from the unstable region, which is the advantage of the path-independent integrals. Since the
calculation from definition (3.4) requires r approach to zero, the values obtained from the stable region like
that used in Fig. 9 are not correct and are not near constant, which can be seen from the values shown in

Table 5.

Example 5. Effects of interface corner angles
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Table 5
Stress intensity factors of interface corners calculated by (3.4) and (4.14)
K; Kn
H-integral, Eq. (4.14)
r=10.3375 72.5264 8.8041
r=0.4500 72.6637 9.0112
r=10.5625 72.7715 9.1537
r=10.6750 72.8586 9.2604
r=20.7875 72.9351 9.3466
Definition, Eq. (3.4)
r=0.0006 69.8714 19.3757
: As shown in Fig. 8. As shown in Fig. 8.
r=10.0169 72.9669 7.5119
r=10.0281 71.6144 10.4688
r=10.0422 71.6611 7.4874
r=0.1125 72.5257 8.1184
r=0.2250 73.3319 6.5985
r=10.3375 74.4222 6.5252
r=0.4500 75.0793 6.3836
r=10.5625 75.6997 6.2747
r=0.6750 76.3009 6.1677
r=20.7875 76.8890 6.0497
r=0.9000 77.5679 5.9326
Unit:  — mm; K; and Kj; — MPa *mm®*%7.
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Fig. 8. Stress intensity factors of interface corners calculated directly from the definition, Eq. (3.4).

It is known that the interface crack is a special case of interface corner with angle « = 0 (Fig. 7), and the
crack in homogeneous materials is a special case of interface crack between two identical materials. Therefore,
with the unified definition proposed in this paper, it is interesting to know the variation of stress intensity fac-
tors with respect to corner angles and material properties (Kuo, 2006). Followings are the results based upon
Example 4 (see Fig. 7) by varying the angle « of interface corner. All the stress intensity factors in this example
are calculated from (4.14) with circular integral path of r = 0.7875 mm.
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Fig. 9. Stress intensity factors of interface corners calculated indirectly from H-integral, Eq. (4.14).

Fig. 10a shows the first three orders of stress singularity for interface corner o= 0°~ 160°, while
Fig. 10b shows their corresponding stress intensity factors of the most critical singular order A.— 1.
It is interesting to see that A, — 1 change from real value to complex value when o <40° and their
associated stress intensity factors also change abruptly at o =40°. In this example, all the second
and third orders of stress singularity, 4, — 1 and A; — 1, are real values, and their associated stress
intensity factors are not presented since the unified definition proposed in this paper is defined only
for the most critical order of stress singularity. When o =0 the interface corner becomes the interface
crack, and its associated orders of stress singularity reduce to the values 4 — 1= -0.5, —0.5 4+ 0.06331
(as shown in Fig. 10a), which are exactly the same as those calculated by the closed form solution
(Ting, 1986).

6. Conclusions

The near tip solutions for the general interface corners have been divided into five categories depend-
ing on whether the singular order is distinct or repeated, real or complex. These five categories cover all
the possibilities of the interface corners including the homogenous cracks and interface cracks. Based
upon the conventional definitions for the cracks in homogeneous materials and the interface cracks in
bimaterials, a unified definition for the stress intensity factors of general interface corners and cracks
is proposed in (3.4). With the knowledge of the near tip solutions, an important relation connecting this
newly defined stress intensity factor and the path-independent H-integral is obtained in (4.14). To calcu-
late the stress intensity factors through this relation, both the near tip solutions associated with the crit-
ical singular order A. and the complementary solutions associated with —/. are needed, which can be
obtained from (2.8)—(2.10). With these solutions, the H-integral can be calculated effectively by inputting
the displacements and tractions of the actual state directly from any numerical method such as finite
element or boundary element method. To illustrate the versatility of the unified definition of the stress
intensity factors and the accuracy and efficiency of the H-integral, five different kinds of examples are
shown such as cracks/notches in homogeneous materials and interface cracks/corners between dissimilar
materials.
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