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Abstract

The problem of interface decohesion in laminated beams is addressed with reference to the debonding double cantilever
beam test geometry (DCB). The paper deals with the analysis of the influence of nonuniform bonding properties or inter-
facial defects on the crack propagation process and its stability. To this aim, the classical analytical approach based on the
Euler–Bernoulli beam on an elastic foundation is extended to the presence of a general distribution of microcracks ahead
of the macrocrack tip. The main features and limitations of this approach are carefully analyzed. In particular, it is shown
that this simplified approach does not consider the unilateral contact condition along the interface, thus admitting a pen-
etration between the two arms of the beam. A comparison with a finite element formulation is proposed to assess if this
violation of the constraints inequalities, usually adopted in the case of uniform bonding, is still acceptable when interfacial
defects are present. In order to fully describe the whole nonlinear behavior of the interface, a generalized interface consti-
tutive law is used. The models comparison shows that, in the presence of interfacial defects, the effect of contact plays a
crucial role in the description of the mechanical response of the joint.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays the problem of debonding occurring at the interface between different materials is the subject of
extensive research. Most of the contributions in this field have focused on the mathematical and numerical
modeling of the nonlinear mechanical response of the interface (Carpinteri et al., 2007; Paggi, 2005; Wriggers
et al., 1998). In this framework, cohesive models are largely adopted to set up a local interface constitutive law.
The origin of such laws can be traced back to the work of Dugdale (1960) and Barenblatt (1962), where trac-
tions on zones near the crack tip were used to model plastic yielding in ductile materials. Extensions to the
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analysis of the nonlinear fracture process zone in quasi-brittle materials were also proposed by Hillerborg
et al. (1976), whereas Carpinteri firstly applied a cohesive formulation to the study of ductile-brittle transition
and snap-back instability in concrete (Carpinteri, 1985, 1989a,b; Carpinteri and Colombo, 1989; Carpinteri
et al., 1986). More recently, we have proposed an interpretation of size-scale effects in metal matrix composites
and their connection with superplasticity by modeling the debonding between fibers and matrix with a cohe-
sive formulation (Carpinteri et al., 2005).

According to this approach, the localized damaged zone can be modeled as a pair of surfaces with no vol-
ume between them. The local stress state can be replaced by an equivalent traction acting on the surfaces,
which nonlinearly depends on the amount of displacement discontinuity. It has been recently demonstrated
that the maximum stress that can be supported by the interface, as well as the total area under the trac-
tion-separation curve, (which is a measure of the fracture energy), are the fundamental parameters character-
izing the behavior of the interface. A less important role is played by the shape of the traction-separation curve
(Williams and Hadavinia, 2002). Such input parameters are usually estimated according to conventional
mechanical tests designed to evaluate the properties of the interface (Cognard, 1986, 1987; Crosley and
Ripling, 1991; RILEM, 1985). Among them, the debonding double cantilever beam geometry (DCB) is widely
adopted for the evaluation of the Mode I fracture energy (see Fig. 1 for a scheme of the tested geometry and
refer to ASTM (1993) for more details on the testing procedure).

Most of the available analytical models for the analysis of these problems in the framework of Nonlinear
Fracture Mechanics are based on the theory of a beam on an elastic foundation (Massabó and Cox, 1999) and
assume uniform bonding properties (Kanninen, 1973; Li et al., 2004; Qiao et al., 2003; Williams and Hadavi-
nia, 2002). The issue of compressive stresses ahead of a macrocrack in a DCB specimen does not require a
special attention when the whole beam is modeled, as for instance in Linear Elastic Fracture Mechanics. How-
ever, in the context of the theory of a beam on an elastic foundation, the actual beam geometry is simplified by
considering only one half of the beam supported by elastic springs simulating the presence of interface cohe-
sive tractions. Thus, positive and negative vertical displacements occur along the beam axis and the unilateral
contact condition along the interface is not fulfilled, admitting hence an interpenetration between the two arms
of the cantilever beam. This simplification is usually considered acceptable in the case of uniform bonding,
since these compenetrations are thought to be recovered by the finite thickness of the adhesive. In addition,
if the influence of the shear deformation is taken into account, the effect of contact is expected to be less impor-
tant (Cannarozzi and Tralli, 1984). On the other hand, when multiple defects are present along the interface,
traction-free portions have to be considered. In this case, the problem of enforcing the satisfaction of the uni-
lateral contact constraint arises and is crucial (see e.g., Andrews et al., 2004 for the vibration of laminated
beams with multiple cracks).
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Fig. 1. Scheme of a DCB with multiple microcracks ahead of the macrocrack tip and shape of the cohesive law used for the analytical
model.
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Concerning the numerical models, the finite element method is usually employed with a proper discretiza-
tion of the candidate contact zones with interface elements. In general, a great attention is given to the cohe-
sive law, whereas a minor attention is provided to the contact problem, which is not explicitly addressed
(Iannucci, 2006; Point and Sacco, 1996; Tenchev and Falzon, 2006). In fact, in most of the commercial FE
programs, a penalty-like relation is directly added to the cohesive formulation to deal with the problem of
crack closure, and only in a few cases the contact unilateral constraint is properly modeled (Ortiz and Pan-
dolfi, 1999).

Concerning the problem of decohesion in laminated beams with interfacial defects, this study is motivated
by the fact that adherend surface preparation plays a critical role in developing bonded joints. Inadequate sur-
face roughening, environmental effects, peel ply chemical contamination, and other factors (both mechanical
and chemical) can prevent adhesives from bonding properly to composites, resulting in interfacial failures and
localized regions of extremely weak bonding (Bardis and Kedward, 2002). As a consequence, the mechanical
response of the DCB test expressed in terms of pulling force, P, vs. crack mouth opening displacement,
CMOD, results in an extremely jagged curve (see Fig. 2).

In this context, aiming at modeling such unstable mechanical responses, we extend the classical analytical
approach based on the Euler–Bernoulli beam on an elastic foundation to the presence of a general distribution
of microcracks ahead of the macrocrack tip. The main features and limitations of this approach are analyzed.
In particular, since the contact constraint is not fulfilled with this method, a finite element model is also pro-
posed with the aid of a generalized interface constitutive law. The advantages and the limitations of the two
formulations are deeply discussed, with special emphasis to the issue of stability of crack propagation.
2. Analytical model

2.1. Mathematical formulation

Let us consider a DCB composed of two arms made of the same material and bonded along the z-axis, as
schematically shown in Fig. 1. A number of debonded regions are considered along the symmetry line to
model manufacturing imperfections. At this stage, we remark that no restrictions upon their distribution
are made. Along the bonded portions of the beam we postulate the existence of a cohesive traction-separation
law representing an elastic-perfectly brittle mechanical behavior (see Fig. 1). This relationship has been
adopted by several researchers as a simplified version of a more realistic cohesive law (see e.g., Kanninen,
1973; Wriggers et al., 1998).

To determine the relationship between the critical load required for delamination, P, and the crack length,
a, or equivalently the crack mouth opening displacement, CMOD, we model the upper arm of the composite
CMOD

P

Fig. 2. A typical unstable mechanical response of a DCB test due to nonuniform bonding properties (experimental data adapted from
Bardis and Kedward (2002)).
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structure as an Euler–Bernoulli beam on an elastic foundation (see e.g., Williams and Hadavinia, 2002, for
similar applications under the assumption of uniform bonding properties along the whole interface). This
approach is widely followed in the literature and recent developments include the analysis of the effects of
shear deformation (Li et al., 2004) and the study of decohesion in tapered joints with a nonconstant beam
depth (Qiao et al., 2003).

In our proposed formulation, crack propagation takes place when the energy release rate equals its critical
value, i.e., when GI = GIC, where GIC = ruvu/2, as defined by Williams and Hadavinia (2002) and according to
Fig. 1. Therefore, debonding occurs when the vertical displacement at the macrocrack tip becomes equal to vu.
This implies that, to solve the problem, the vertical displacements along the interface have to be preliminary
determined.

Assuming for convenience the origin of the reference system at the macrocrack tip, two domains have to be
separately discussed: the bonded domain, Cb ¼

Snþ1
j¼1 Cb;j, and the debonded one, Cd ¼

Sn
j¼1Cd;j (see Fig. 1). In

this formulation the parameter n denotes the total number of defects. Neglecting the effect of shear deforma-
tion, the following fourth order ODE can be considered for the vertical displacements of the bonded portions
of the beam, in agreement with the Euler–Bernoulli beam theory (Carpinteri, 1997):
d4v
dz4
¼ q

EI
¼ � Br2

u

2EIGIC

v ¼ � 4

D4
v ð1Þ
where the distributed load is due to the cohesive tractions multiplied by the thickness of the beam, q = �Br,
that are a linear function of the interface opening, v, as shown in Fig. 1. The parameter D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EIGIC=ðBr2

uÞ4
p

has the dimension of length and represents a characteristic parameter of the interface. The solution of this
ODE is:
vðzÞ ¼ e�
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D B4j�3 sin
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þ B4j�2 cos

z
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z
D
þ B4j cos
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D

� �
ð2Þ
As usual, beam rotation, u, bending moment, M, and shear force, T, can be simply obtained after differenti-
ation of v (Carpinteri, 1997).

For the debonded portions of the beam, the cohesive tractions q in Eq. (1) are equal to zero and the solution
of this fourth order ODE is:
vðzÞ ¼ D4j�3

6
z3 þ D4j�2

2
z2 þ D4j�1zþ D4j ð3Þ
Also in this case, beam rotation, bending moment and shear force can be obtained after differentiation.
As a result, we have 4n + 4(n + 1) = 4 + 8n unknowns that have to be determined by imposing the bound-

ary conditions. More specifically, four boundary conditions consist in the values of the bending moment and
shear force at z = 0 and at z = l, i.e., at the macrocrack tip and at the end of the beam:
Mð0Þ ¼ Pa0

T ð0Þ ¼ P

MðlÞ ¼ 0

T ðlÞ ¼ 0

ð4Þ
Moreover, continuity conditions of deflection, rotation, bending moment and shear force at the cross-sections
between bonded and debonded beam portions have to be imposed:
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vðCb;jÞ ¼ vðCd;jÞ
uðCb;jÞ ¼ uðCd;jÞ
MðCb;jÞ ¼ MðCd;jÞ
T ðCb;jÞ ¼ T ðCd;jÞ
vðCd;jÞ ¼ vðCb;jþ1Þ
uðCd;jÞ ¼ uðCb;jþ1Þ
MðCd;jÞ ¼ MðCb;jþ1Þ
T ðCd;jÞ ¼ T ðCb;jþ1Þ

ð5Þ
where the symbol ð�Þ denotes the boundary of the corresponding domains and the index j ranges from 1 to n.
As a result, 4 + 8n equations are derived and the corresponding equation set can be symbolically written as:
Kx ¼ f ð6Þ

where the vector x collects the 4 + 8n unknowns of the problem. The solution of this equation set provides a
closed-form relationship between the unknowns in the vector x and the variables governing the debonding
problem. Such variables are, for a given macrocrack length, the external load, the parameters of the cohesive
law, as well as the distribution and the number of defects. Once the problem is solved for a trial value of the
external load, the critical force for delamination can be simply determined by imposing the condition
v(z = 0) = vu.

This computation can be repeated by considering different macrocrack lengths ranging from a0 to a0 + lb,1,
where lb,1 denotes the length of the first ligament region, Cb,1. At that point of the simulation the macrocrack
tip reaches the first microcrack. Subsequent macrocrack length increments require a modification of the equa-
tion set (6) by eliminating the continuity conditions (5) corresponding to the first defect, i.e., the equations
with the index j = 1. The same reasoning has to be repeated when the macrocrack tip reaches the subsequent
microcracks.

2.2. Closed-form solution example

As a case study, let us consider a DCB test with the following geometrical and mechanical parameters:
a0 = 30 mm, l = 70 mm, h = 1.5 mm, B = 1 mm, E = 69 GPa, ru = 57 MPa, GIC = 10 kN/m. We consider
the existence of internal debonded regions, each one having a length equal to that of the bonded portions,
and periodically distributed along the interface. Under these conditions, the length of the regions Cd,i and
Cb,i is equal to ld = l/(2n + 1). Considering a number of defects, n, ranging from 0 up to 10, the load for delam-
ination is computed as a function of the crack mouth opening displacement for crack extensions ranging from
a0 up to a0 + ld, i.e., up to reaching the first microcrack (see Fig. 3).
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Fig. 3. Force vs. CMOD curves for a DCB test with n periodically distributed defects.
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The solution of the problem (6) with the suitable boundary conditions set (4) and the continuity conditions
set (5) has been obtained using MATLAB. Fig. 3 clearly shows that the peak load corresponding to the onset
of delamination and the initial stiffness of the composite beam, measured as the slope of the P vs. CMOD
curves before reaching the peak load, are both decreasing functions of the number of defects. Moreover,
the analytical model predicts that, for the mechanical parameters herein considered, the P vs. CMOD curves
corresponding to n = 0, 1, and 2 are almost coincident. This result can be easily interpreted by recalling the
fundamental properties of the mathematical formulation of a beam on an elastic foundation. In fact, accord-
ing to this model, it is well-known that, for a semi-infinite beam subjected to a concentrated force, P, and to a
bending moment, M = Pa0, on the left hand side, the induced vertical displacements tend to vanish for z > pD.
Hence, defects whose locations are beyond this distance from the macrocrack tip are expected to have a neg-
ligible effect on the behavior of the interface, as compared to the totally bonded case. For the present case
study we have D = 4.7 mm and hence pD = 14.7 mm. As a consequence, since the beams with n = 1 and 2 have
their first defect located, respectively, at ld = 23 mm and at ld = 14 mm from the crack tip, the corresponding
crack propagation curves are similar to that for n = 0.

The predicted reduction in peak load and in stiffness is summarized in Fig. 4, where the ratio, R, between
the peak load or stiffness and the corresponding outcomes for a beam without defects is plotted as a function
of the nondimensional defect size, ld/D. These nondimensional curves establish a useful one-to-one correspon-
dence between the mechanical response of the bonded beam and the length of the periodically distributed
defects placed along the interface. For instance, the peak load ratio can be evaluated from a single experimen-
tal DCB test. The corresponding nondimensional length of the defects can be determined from Fig. 4 and used
to assess the quality of the bonding process. However, as it will be shown in the sequel using the finite element
model, this analytical approach overestimates the degradation of the interface properties.

Finally, the results of the simulation of the whole debonding process for a DCB with n = 3 defects is shown
in Fig. 5. The point A corresponds to the achievement of the critical condition GI = GIC at the macrocrack tip
for a macrocrack length equal to a0. Points from A to B are representative of macrocrack growth from a0 up to
a0 + ld. At that point of the simulation the first bonded portion of the interface is totally debonded. Hence, a
sudden reduction in the force P takes place, down to the reference curve CD which corresponds to the
mechanical response of the DCB with one debonded length equal to a0 + 2ld plus one defect. Therefore,
the point D corresponds to the achievement of the critical condition GI = GIC at the macrocrack tip for the
new macrocrack length equal to a0 + 2ld. Exactly the same behavior is repeated when the next microcracks
are encountered.

2.3. Limits and capabilities of the analytical model

As shown in the previous section, the proposed analytical model can be used to predict the vertical load vs.
CMOD curve not only for DCB tests with totally bonded interfaces, but also in the presence of interfacial
0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ld

R

Stiffness

Peak load

Fig. 4. Ratio between the stiffness or the peak load for a defective beam and the corresponding outcomes in case of a totally bonded
interface.



0
2
4
6
8

10
12
14
16
18

0 0.05 0.1 0.15 0.2 0.25

CMOD [m]

P[
N

]

A

B

C

D

Fig. 5. Force vs. CMOD curves for a DCB test with n = 3 periodically distributed defects.

A. Carpinteri et al. / International Journal of Solids and Structures 45 (2008) 129–143 135
defects. Moreover, although the example deals with a periodically distribution of defects, no restrictions upon
the size and the location of the debonding regions exist and a fully random distribution of defects can be
accounted for. The cohesive parameters can also be varied along the interface and parametric analyses can
be easily carried out in order to match the unstable experimental curves like the one depicted in Fig. 2.
For all of these reasons, the proposed methodology is physically sound and it represents a useful extension
of previous works concerning totally bonded interfaces to the more realistic case of partially bonded joints.

However, a main limitation of this approach exists and relies in the fact that interpenetration takes place
along the interface since the contact inequalities are totally disregarded in this formulation. In the model, in
fact, the material between the mid-plane of the DCB and the centroidal axis of an arm is modeled as a Winkler
elastic foundation bonded to a rigid surface which represents the plane of symmetry. The analysis proceeds by
considering a semi-infinite beam having stiffness Bh3/12, supported on an elastic foundation of stiffness k, (see
also the original model proposed by Kanninen (1973)). In our case the ground stiffness can be related to the
slope of the cohesive traction-separation curve. The displacements of the beam for z > 0 are those of a classical
beam on an elastic foundation, which have both negative and positive sign. As a result, when the displace-
ments change sign, interpenetration among the beams would take place, since the contact constraints are
not enforced along the interface. This situation is schematically shown in Fig. 6, where the nondimensional
vertical displacement, v/vu, is depicted as a function of the nondimensional beam length, z/D, for a DCB with
a totally bonded interface. As a result, cohesive tractions are present in the region from the crack tip and
z/D = 0.85, as well as in the range 4 < z/D < 7. On the contrary, the displacements in the intermediate range,
i.e., for 0.85 6 z/D 6 4, violate the unilateral contact condition which would require v/vu > 0.
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Fig. 6. Vertical displacements along the beam for a totally bonded interface according to the analytical model.
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Hence, in spite of the relative simplicity of the considered problem, which is under pure Mode I deforma-
tion, a contact problem takes place due to the decohesion. This contact phenomenon, which is generally
neglected when the interface is totally bonded, may have an important effect on the global response of the
DCB test when multiple microcracks are present. Moreover, the occurrence of contact makes the problem
highly nonlinear, since the extension of the contact area is a priori unknown. The use of the finite element
method is then invoked to solve the problem, as shown in the next section.
3. Finite element model

3.1. Mathematical formulation

To deal with the above-described problem, interfaces are modeled according to a contact formulation
which can handle cohesive forces. Contact constraints can be enforced using a modified penalty method.
Depending on the contact status, an automatic switching procedure is adopted in order to choose between
cohesive and contact models. According to the node-to-segment contact strategy (Wriggers, 2002), for each
node along the master contact surface it is possible to compute the normal gap that is a measure of the relative
displacement of the two arms of the DCB. The generalized interface constitutive law, proposed in Paggi (2005)
and Paggi et al. (2006), is particularly suitable for the analysis of coupled contact and decohesion problems
occurring in interface mechanical problems.

When opening takes place, interface tractions are computed according to a cohesive formulation, which is a
function, respectively, of the gap measured in the normal direction, gN, of a critical value of the opening dis-
placement, lNc, and of the material strength, ru:
rN ¼ rN ðgN ; lNc; ruÞ ð7Þ
A linear softening cohesive law is usually adopted when the problem of cohesive crack propagation takes place
inside a structural component without the presence of preexisting material discontinuities (see e.g., Carpinteri,
1989a,b; Carpinteri and Colombo, 1989; Carpinteri et al., 1986). In such a case, the cohesive tractions trans-
mitted along the crack faces are always decreasing functions of the crack opening displacements, starting from
ru at gN = 0, down to zero when the opening is equal to the critical value, i.e., gN = lNc. On the other hand,
when an interface already exists, this line is usually the weakest link and the crack path is a priori known. In
these situations the cohesive models proposed in the literature consider cohesive tractions increasing from zero
up to a maximum, ru, in correspondence of a given interface opening, and then decreasing down to zero when
gN = lNc (see e.g., the polynomial model proposed by Tvergaard (1990)). In some cases, a simplified tension
cut-off relationship, like the one adopted in the derivation of the analytical model, is used to make the problem
analytically treatable.

In the numerical scheme, when the inequality gN < lNc holds, the cohesive tractions computed as a function
of the interface displacements are multiplied by the corresponding area of influence belonging to each Gauss
point along the interface element. To do it, an enhanced formulation of the node-to-segment contact FE for-
mulation has to be used (see Zavarise et al., 2001).

During closure, i.e., for gN 6 0, contact forces deriving from the interaction of the debonded interfaces can
be expressed with a penalty-like model (Zavarise et al., 1992a):
F N ¼ Cgm
N ð8Þ
where the parameters C and m depend on the deformation assumptions of the profiles in contact. Instead of
making an attempt to list the variety of approaches in the literature, we refer the reader to the survey available
in Paggi et al. (2006) and Zavarise et al. (2004, 2007). Here we simply adopt a penalty formulation which is
recovered by setting the penalty parameter m equal to the unity in Eq. (8).

Both in case of decohesion and contact, contributions of cohesive and contact forces are added to the glo-
bal virtual work equation:
dW ¼ AðF NdgN Þ ð9Þ
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where the symbol A denotes an assembly operator for all the interface nodes either inside the process zone or
in contact.

Within the analysis, a main difficulty due to the contact constraints is related to the fact that the debonded
regions are a priori unknown, and the corresponding boundary value problem has to be solved with an iterative
method. The Newton–Raphson solution procedures, commonly used for solving nonlinear problems, require
the determination of the tangent stiffness matrix. Consistent linearization of the equation set (9) leads to:
DdW ¼ @F N

@gN
DgNdgN þ F NDdgN ð10Þ
where symbols d and D denote, respectively, variations and linearizations. In Eq. (10) the normal forces are
given by either the cohesive formulation, or the contact model. Linearizations and variations of the normal
gap can be found in Zavarise et al. (1992b) for the contact model and in Paggi (2005) for the cohesive law,
as well as the discretized version of these expressions for a direct implementation in the finite element
formulation.
3.2. Interface discretization

Interfaces can be properly modeled in the finite element framework as contact surfaces with the virtual node
technique (Zavarise et al., 2001). The basic idea underlying this method consists in changing the integration
scheme usually adopted for the node-to-segment contact elements. In this formulation the cohesive/contact
contribution to the stiffness matrix and the internal force vector are integrated on the contact element through
a n-point Gauss integration scheme. In this context, the classical node-to-segment scheme can be seen as a
2-point Newton–Cotes integration one. In this way, an arbitrary number of Gauss points can be specified
inside each contact element placed along the interface, regardless of the discretization used for the continuum.
This method permits to achieve a fine discretization of the interface, where the interfacial constitutive laws
exhibit a strong nonlinearity, without refining the discretization of the continuum.

To show the effectiveness of this method, an example of decohesion between two bonded rectangular blocks
is illustrated. The adhesive zone is 2 m long and the Young’s moduli of the two materials are equal to 1000 Pa,
whereas the Poisson’s ratios are equal to 0.3. A coarse mesh is used for the discretization of the continuum in
the horizontal direction. During the simulation, vertical displacements with a linear variation along the hor-
izontal direction from zero to vmax are imposed to the bottom side of the lower block (see the deformed mesh
depicted in Fig. 7).

Debonding is modeled according to a polynomial nonlinear cohesive model (Tvergaard, 1990). The critical
normal separation, lNc, and the peak value of the cohesive traction, ru, are assumed equal to 0.2 lm and 30 Pa,
respectively. Starting from the left side and denoting with x the distance along the interface, the variation of
the normal gap measured at the Gauss points, gN, is depicted as a function of x in Fig. 8a. Due to the displace-
ment field interpolation, the expected linear variation is achieved, regardless of the number of Gauss points
Fig. 7. Deformed mesh of the test problem.
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considered in the model. On the other hand, a completely different trend is obtained for the normal cohesive
tractions (see Fig. 8b). In fact, due to the nonlinearity of the interface constitutive law, the mechanical
response is significantly influenced by the discretization adopted for the interface. This is particularly evident
in the interface region characterized by small relative vertical displacements, where the cohesive zone-model
exhibits a strong nonlinearity (see Fig. 8b in the range 0 < x < 1). For all of these reasons, this proposed dis-
cretization technique is very well suited for the DCB test geometry, where the problem of mesh dependence
occurs until when the element size is small enough to correctly reproduce the interlaminar stresses (Corigliano
and Ricci, 2001).

For the proposed examples concerning defective beams with n defects, the geometrical discretization based
on the node-to-segment strategy is adopted, introducing the master–slave contact segments. Such segments are
simple lines in the proposed two-dimensional model. This technique allows an arbitrary sliding of a node of a
slave segment over the entire master segment, which is not usually permitted with interface elements in this
context (see Wriggers and Zavarise, 2004 for further details). Moreover, by subdividing the whole interface
into 2n + 1 contact segments, it is possible to specify different parameters of the interface constitutive law
for each segment. In this way, the defects are simply treated by setting equal to zero the cohesive forces during
interface opening.

3.3. Numerical examples

The application of our generalized interface constitutive law implemented in the finite element code FEAP
(courtesy of Prof. Taylor) permits to analyze the decohesion problem taking into account the whole nonlinear
interface behavior. This fact is very well evidenced in Fig. 9, where the deformed meshes for the DCB test with
and without taking into consideration the contact constraints are compared. Clearly, when contact is disre-
garded, interpenetration of the two arms of the beam takes place, which is a physically unacceptable situation.

Fig. 10 shows a comparison between the finite element results in the case of a totally bonded interface (the
input data are those of the beam previously analyzed according to the analytical model). The finite element
solutions take into account the effect of contact along the interface and consider three different cohesive laws:
the tension cut-off relationship between cohesive tractions and opening displacements, which has been used in
the analytical model, a linear softening law (Carpinteri, 1989a,b; Carpinteri and Colombo, 1989; Carpinteri
et al., 1986), and a polynomial relationship (Tvergaard, 1990). The cohesive parameters ru and GIC are the
same for all the models. The good agreement between the computed P vs. CMOD curves obtained using
the three cohesive models demonstrates that the shape of the cohesive law does not play a major role.

The comparison between the outcome of the analytical model and the finite element solutions is also pro-
posed in Fig. 10. The analytical method yields stiffer results as compared to the finite element solutions due to
fact that it completely disregards the enforcement of the unilateral contact constraints along the interface. In
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fact, when the problem of contact is taken into account, the transverse displacement at the macrocrack tip is
increased for a given applied pulling force, P. As a consequence, the critical load for delamination becomes
lower than that analytically provided and a higher compliance is observed (see Fig. 9). On the other hand,
if the compenetration of the two arms of the beam is allowed in the finite element solution, by retaining only
the cohesive relationship in the interface constitutive law, then we expect to obtain an approximation of the
analytical solution (see the curve with square dots in Fig. 10). In this case, since the problem is discretized with
a finite number of degrees of freedom, the numerical approximation turns out to be stiffer than the analytical
one.

The finite element results for a DCB test with n = 5 and 10 defects are shown in Fig. 11. As already pointed
out for the results obtained from the application of the analytical model, the peak load corresponding to the
onset of delamination and the initial stiffness of the composite beam are both decreasing functions of the num-
ber of defects. Also in this case, the initial stiffness of the composite is measured as the slope of the load vs.
CMOD curve before reaching the peak load. However, the expected large reduction in peak load and in stiff-
ness predicted by the analytical model is diminished when the contact condition is taken into account. In fact,
although the number of defects is increased from 5 to 10, most of them fall into a compressed zone (whose
extension is approximately equal to 0.85 < z/D < 4, as expected from Fig. 6) and do not contribute to the stiff-
ness reduction. More precisely, for the proposed example with n = 5, we have ld/D = 1.36, i.e., the first defect is
entirely inside the compressed zone. Similarly, for n = 10, we have ld/D = 0.72, i.e., only a small part of the
first defect (0.72 < ld/D < 0.85) is outside the compressed zone. As a result, the overall mechanical response
is similar in the two cases.
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Transverse stresses in the region close to the crack tip are also shown in Fig. 12, indicating the presence of
compressive stresses due to contact.

Finally, it has to be pointed out that the finite element algorithm permits to follow the whole delamination
process. Under displacement control, when the first bonded portion of the interface fails, a sudden reduction
in the reaction force, P, takes place in response to the microcrack, when a jump in the macrocrack length
occurs from a0 + ld to a0 + 2ld (see points A and B in Fig. 13). After that, another bonded portion of the beam
is involved and the reaction force progressively increases (see points B and C in Fig. 13). The same curve BC
could be followed in case of a DCB with initial crack length equal to a0 + 2ld (see the dashed line connecting
the origin of the plane with the point B in Fig. 13). Exactly the same behavior is repeated when the other
defects are encountered.

The jumps in the reaction force, caused by a discrete crack advancement through the defected zone, are a
typical example of crack growth instability as those found by Carpinteri and Monetto (1999) in case of frac-
ture evolution in multi-cracked solids. As firstly noted by Carpinteri (1999), it is interesting to point out that
the case of a macrocrack with a regular distribution of discrete microcracks ahead of its tip (Fig. 14a) is
Fig. 12. Deformed mesh and contour plot of the transverse stresses in the region close to the macrocrack tip.
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Fig. 14. Analogy between microcracked and reinforced zones ahead of a macrocrack tip.
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analogous to that of a macrocrack with a regular distribution of discrete reinforcements (Fig. 14b) (Carpinteri
and Massabò, 1996). In both cases the structural response presents a discrete number of instabilities with
related peaks and valleys. For the microcracked process zone, the valleys represent the stage of approach
of the macrocrack tip to a microcrack tip. In this situation the stress state is particularly high and therefore
a lower load is adequate to produce GI = GIC. On the other hand, the peaks represent the stage subsequent to
the macrocrack–microcrack coalescence, when the new macrocrack tip is still far from the next microcrack tip.
Thus its stress concentration is still relatively low. In this latter case, a higher load is needed to have GI = GIC

at the driving tip. The analogy between reinforced zone and microcracked zone consists therefore in a multiple
irregular mechanical response, where the valleys and the peaks represent, respectively, the crack arrest at the
fibers or the crack-slip coalescence, and the fiber crossing or the crack growth after coalescence.

4. Conclusion

In this contribution the problem of interface decohesion of laminated beams with nonuniform interface
properties has been addressed. To this aim, an analytical model has been proposed for the analysis of deco-
hesion in laminated beams with a generic number of microcracks randomly placed along the interface. Focus-
ing our attention to the case of periodically distributed defects, it has been shown that the analytical model
would suggest a significant reduction in peak load and stiffness when the defects are close to the crack tip, thus
influencing the distribution of the cohesive tractions.

However, a careful analysis of the mechanical response provided by this model shows that its solution
violates the unilateral contact conditions along the interface. This fact poses some limitations to the applica-
bility of the foundation model to the problem of decohesion with multiple defects. The implementation of a
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generalized interface constitutive law in the finite element framework permits to overcome such drawbacks
and to model the whole nonlinear behavior of the interface, with particular attention to the contact problem.
Moreover, cohesive laws more realistic than the tension cut-off relation can be easily considered.

The numerical results show that, in case of a totally bonded interface, the analytical approach and the
numerical model are in reasonable agreement, whereas in presence of multiple defects the analytical approach
significantly underestimates the value of the critical load corresponding to delamination.
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Andrews, M., Massabó, R., Cox, B., 2004. Elastic interaction of multiple delaminations in laminated structures. In: Proceedings of XXI
International Congress of Theoretical and Applied Mechanics ICTAM, Warsaw, Poland.

ASTM, 1993. Standard test method for fracture strength in cleavage of adhesives in bonded joints. Tech. Rep. D3433-93, American
Society for Testing and Materials.

Bardis, J., Kedward, K., 2002. Surface preparation effects on Mode I testing of adhesively bonded composite joints. Journal of Composites
Technology and Research 24, 30–37.

Barenblatt, G., 1962. The mathematical theory of equilibrium cracks in brittle fracture. In: Dryden, H., Karman, T.V. (Eds.), Advances in
Applied Mechanics, vol. VII. Academic Press, New York, pp. 55–129.

Cannarozzi, A., Tralli, A., 1984. On the analysis of unilaterally supported plates by finite element models. International Journal of Solids
and Structures 20, 179–189.

Carpinteri, A., 1985. Interpretation of the Griffith instability as a bifurcation of the global equilibrium. In: Shah, S. (Ed.), Application of
Fracture Mechanics to Cementitious Composites (Proceedings of a NATO Advanced Research Workshop, Evanston, USA, 1984).
Martinus Nijhoff Publishers, Dordrecht, pp. 287–316.

Carpinteri, A., 1989a. Cusp catastrophe interpretation of fracture instability. Journal of the Mechanics and Physics of Solids 37, 567–582.
Carpinteri, A., 1989b. Softening and snap-back instability in cohesive solids. International Journal for Numerical Methods in Engineering

28, 1521–1537.
Carpinteri, A., 1997. Structural Mechanics: a Unified Approach. Chapman & Hall, London.
Carpinteri, A. (Ed.), 1999. Nonlinear Crack Models for Nonmetallic Materials. Kluwer Academic Publisher, Dordrecht.
Carpinteri, A., Colombo, G., 1989. Numerical analysis of catastrophic softening behaviour (snap-back instability). Computers &

Structures 31, 607–636.
Carpinteri, A., Lacidogna, G., Paggi, M., 2007. Acoustic emission monitoring and numerical Modeling of FRP delamination in RC beams

with non-rectangular cross-section. RILEM Materials & Structures 40, 553–566.
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