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This paper compares and evaluates strain-gradient extensions of the conventional plasticity theory.
Attention is focused on the ability of individual formulations to act as localization limiters, i.e., to regu-
larize the boundary value problem in the presence of softening and to prevent localization of plastic
strain increments into a set of zero measure. To keep the presentation simple and to highlight the essen-
tial properties of the investigated models, only the static, rate-independent response in the small-strain
range and in the one-dimensional setting is considered. These restrictions permit an analytical or semi-
analytical treatment of the problem, while the basic characteristics of the solutions remain valid in the
general, multi-dimensional case. The onset of localization is characterized as a bifurcation from a uniform
state. The subsequent evolution of the localized process zone and of the shape of the strain profile is stud-
ied numerically. It is shown that certain pathologies, e.g., expansion of the plastic region accompanied by
stress locking, may arise at later stages of localization. A similar analysis of models with gradients of
internal variables is presented in a companion paper.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Classical plasticity models, typically used in most engineering
applications, rely on the assumption that the stress at a certain
material point can be uniquely determined from the history of
the strain (directly related to the first-order deformation gradient)
at that point only and, in the thermoplastic extension, from the his-
tory of temperature and the current value of temperature gradient
at that point only. Individual material points are supposed to inter-
act only with their immediate neighbors, and the mechanical part
of the interaction is fully described by the usual symmetric stress
tensor. Force interaction at finite distance is excluded (except for
externally applied body forces), same as the dependence on the
second- and higher-order gradients of the displacement field. In
the actual constitutive equations, the functional dependence on
the strain history is usually replaced by dependence on the current
values of strain and internal variables, but again, this dependence
is strictly local, and gradients of the internal variable fields are
not taken into account. The same holds for the evolution equations
that specify the rates of internal variables.

Constitutive models formulated within the classical framework
of simple nonpolar materials are not equipped with any length
scale that would reflect the typical size and spacing of characteris-
ll rights reserved.

ek).
tic microstructural features; therefore, they are inherently incapa-
ble of describing size effects of the transitional type that are
experimentally observed if the characteristic wave length of the
deformation pattern becomes comparable with the intrinsic mate-
rial length scale. Such models also fail to describe strain localiza-
tion due to softening or nonassociated flow in an objective and
mathematically consistent way, and their application in the post-
critical regime leads to ill-posed boundary value problems.

The remedy has been sought in various enrichments that incorpo-
rate, at least in a simplified way, some information about the material
heterogeneity at the mesoscopic or microscopic levels. Examples of
such enrichments include additional kinematic variables (e.g., inde-
pendent micropolar rotations in unconstrained Cosserat-type
theories), weighted spatial averages, higher-order gradients, or rate-
dependent terms. In the present study we focus on the broad class
of gradient theories, which can be divided into two distinct groups:

� Strain-gradient models, which characterize the deformation at a
material point not only by the conventional strain (related to
the displacement gradient) but also by the strain gradient
(related to the second gradient of displacement). In a general
case, such models can also take into account second- or
higher-order gradients of strain.

� Models with gradients of internal variables, some of which also
incorporate the gradients of the dissipative forces conjugate to
the internal variables.

mailto:Milan.Jirasek@fsv.cvut.cz
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The differences between these two groups of models will be
explained in detail in Section 3.1.

This paper compares a number of gradient-type extensions of
the conventional plasticity theory. Attention is focused on the suit-
ability of individual formulations for problems with strain localiza-
tion due to softening (decrease of yield stress with increasing
plastic strain). To keep the presentation simple and to highlight
the essential properties of the investigated models, we consider
only the static, rate-independent response in the small-strain
range and in the one-dimensional setting. These restrictions permit
an analytical or semi-analytical treatment of the problem, while
the basic characteristics of the solutions remain valid in the gen-
eral, multi-dimensional case.

The entire study is divided into two parts. Part I starts with a
brief summary of the basic equations of standard local plasticity
in Section 2 and with general comments on the classification of
gradient theories in Section 3. A quick overview of the basic con-
cepts of strain-gradient elasticity is provided in Section 4. Experts
in this field may wish to skip the preparatory considerations and
proceed directly to Sections 5–7, devoted to localization analysis
of the specific models that belong to the family of strain-gradient
theories. Plasticity models with gradients of internal variables are
covered in Part II.
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Fig. 1. (a) Bar under uniaxial tension, (b) shear layer.
2. Flow theory of plasticity in one dimension

In the one-dimensional setting, standard (local, gradient-inde-
pendent) elastoplasticity with linear isotropic hardening is
described by the elastic stress–strain law

r ¼ Eðe� epÞ ð1Þ

hardening law

q ¼ �Hj ð2Þ

and evolution laws

_ep ¼ _k
of ðr; qÞ

or
ð3Þ

_j ¼ _k
of ðr; qÞ

oq
ð4Þ

with loading–unloading conditions

_k P 0; f ðr; qÞ 6 0; _kf ðr; qÞ ¼ 0 ð5Þ

In the foregoing relations, r is the stress, e is the (total) strain, ep is
the plastic strain, E is the elastic modulus, H is the plastic modulus
(positive for hardening and negative for softening), j is the harden-
ing variable, q is the dissipative thermodynamic force conjugate to
j, _k is the rate of the plastic multiplier, and

f ðr; qÞ ¼j r j �r0 þ q ð6Þ

is the yield function. Initially, the variables j and q have zero values,
and so the parameter r0 is the initial yield stress. As usual, a super-
imposed dot denotes the derivative with respect to time.

From the thermodynamic point of view, Eqs. (1) and (2) are the
state laws that can be derived from the free-energy potential

qwðe; ep;jÞ ¼
1
2

Eðe� epÞ2 þ
1
2

Hj2 ð7Þ

Eqs. (3)–(5) are the complementary laws that can be derived from
the dual dissipation potential /�ðr; qÞ defined as the indicator func-
tion of the set of plastically admissible states; for a detailed discus-
sion, see e.g., Jirásek and Bažant (2002), Chapter 23.

The basic Eqs. (1)–(5) are written in a form that reflects the
general structure of associated plasticity and reveals a certain sym-
metry in the state laws and complementary laws. Making use of
the particular definition of the yield function (6), it is possible to
replace of=or in (3) by sgnr and of=oq in (4) by 1. According to
the latter equation, rewritten as _j ¼ _k, the plastic multiplier rate
can be replaced by the rate of the hardening variable and elimi-
nated from the basic equations. The flow rule (3), rewritten as
_ep ¼ _jsgnr and combined with the condition _j P 0, then implies
that _j ¼j _ep j, which endows the hardening variable j with the
physical meaning of cumulative plastic strain. To give a clear phys-
ical meaning to the variable that controls the size of the elastic
domain, we can introduce the current yield stress rY ¼ r0 � q
and rewrite the hardening law (2) as rY ¼ r0 þ Hj. After all these
adjustments, the basic equations reduce to

r ¼ Eðe� epÞ ð8Þ
rY ¼ r0 þ Hj ð9Þ
_ep ¼ _jsgnr ð10Þ
_j P 0; f ðr;rYÞ 6 0; _jf ðr;rYÞ ¼ 0 ð11Þ

where the yield function is now given by

f ðr;rYÞ ¼j r j �rY ð12Þ

As an illustrative test problem, consider a bar of a constant cross
section fixed at one end and loaded by an applied displacement at
the opposite end (Fig. 1a). Alternatively, one could consider a
semi-infinite layer of material between two parallel planes, one of
which is fixed and the other displaced in the tangential direction
and free in the normal direction, so that the material is under pure
shear stress (Fig. 1b). In the elastic regime, the response is unique,
and the distribution of strain remains uniform. The same holds in
the elastoplastic regime, provided that the material is hardening.
However, if the material is softening, the governing equations admit
infinitely many solutions with nonuniform strain distributions. Due
to the static equilibrium condition, the stress must remain uniform,
but plastic yielding does not need to occur at all points of the body.
The plastic zone Ip can become arbitrarily small and the bar or shear
layer can fail at arbitrarily small dissipation. These physically inad-
missible properties of the theoretical solutions are the source of a
pathological sensitivity of the numerical results to the computa-
tional grid (e.g., to the finite element mesh), as amply documented
in the literature.

From now on, we focus on the case of softening. To emphasize
that, j will be called the softening variable and Eq. (9) will be
referred to as the softening law.

A linear softening law as stated in (9) has only a limited range of
validity. Since the (tensile) yield stress cannot become negative,
the law must be in fact considered as bilinear, with the softening
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Fig. 2. (a) ‘‘Linear” softening curve consisting of two straight segments, (b)
exponential softening curve.
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curve consisting of a descending segment and a horizontal
segment at zero stress level; see Fig. 2a. The corresponding gener-
alized form of (9) reads

rY ¼ hr0 þ Hji ¼
r0 þ Hj if j 6 jc

0 if j P jc

�
ð13Þ

where h. . .i are the Macauley brackets denoting the positive part,
and jc ¼ �r0=H is the plastic strain at which the yield stress first
vanishes.

We will also consider nonlinear softening laws, for instance in
the exponential form

rY ¼ r0 exp �H0j
r0

� �
ð14Þ

The meaning of parameter H0 (the initial softening modulus) is clear
from Fig. 2b.

3. Gradient-enriched theories

3.1. Classification

In the context of the standard continuum theory with simple
nonpolar material models in the sense of Noll (1972), softening
or nonassociated plastic flow may lead to the loss of ellipticity of
the governing differential equations and to an ill-posed boundary
value problem. In order to arrive at objective numerical solutions
that are not pathologically sensitive to the discretization, an appro-
priate regularization technique must be used. Such techniques
usually enrich the model equations so as to prevent localization
of strain into a set of zero measure, and therefore serve as localiza-
tion limiters. As already alluded to in the Introduction, in the pres-
ent study we focus on the broad class of gradient theories, which
can be divided into
� strain-gradient models, and
� models with gradients of internal variables.

The fundamental difference between these two groups of mod-
els is that strain gradients considered as additional observable
state variables are conjugate to higher-order stresses that enter
the equilibrium equations, while gradients of internal variables
are conjugate to certain dissipative thermodynamic forces that
can enter the evolution equations for internal variables but do
not appear in the equilibrium (momentum balance) equations.
Thus the latter group of theories modifies only the constitutive
description while the kinematic and equilibrium equations remain
standard. In thermodynamic terms, one could say that the theories
with gradients of internal variables enrich only the free-energy po-
tential and the dissipation potential, while the strain-gradient the-
ories require also generalizations of the external and internal work
expressions.

Of course, certain models may have a mixed character. For in-
stance, Zervos et al. (2001) proposed a model that can be inter-
preted as a strain-gradient theory with softening law enriched by
the second gradient of an internal variable. This so-called gradient
elastoplasticity theory will be described and analyzed in Part II,
while in Part I we restrict our attention to the ‘‘pure” strain-gradi-
ent elastoplastic models.

In the elastic regime, the internal variables do not evolve and
remain equal to their initial values (usually zero), and so their gra-
dients vanish. Consequently, the initial response of a model with
gradients of internal variables is governed by standard elasticity,
and gradient effects are activated only by inelastic processes. In
contrast to that, the response of strain-gradient models deviates
from standard models already in the elastic regime, unless the
strain remains uniform. The elastic response of strain-gradient
models is described by the nowadays classical strain-gradient elas-
ticity theory pioneered by Toupin (1962) and Mindlin (1964,
1965).

The terminology used in the literature on gradient-enriched
material models is not unified, which presents a potential source
of misunderstanding. Gradient theories are often classified accord-
ing to the order of the enrichment terms and are called first-gradi-
ent theories, second-gradient theories, etc. But this terminology
should be used only when the context is clear, because it can lead
to confusion. First of all, it is important to know on which field the
gradient operators act. For instance, the basic version of strain-gra-
dient elasticity enriches the free-energy potential by dependence
on the first gradient of strain. Since the strain itself is the symmet-
ric part of the displacement gradient, the strain gradient is directly
related to the second gradient of the displacement field. So one can
consider this theory as a first- or second-gradient theory, depend-
ing on the interpretation.

Another potential source of misunderstanding is hidden in the
fact that enrichments of the observable state variables inevitably
lead to modifications of the corresponding balance laws, and the
same is true for the internal variables and corresponding evolution
equations if the theory is formulated within a thermodynamic
framework. For instance, in strain-gradient elasticity the strain
gradient is work-conjugate to the so-called double stress, and the
second gradient of the double stress appears in the momentum
balance equation. When the basic equations are combined and
the momentum balance is written in terms of displacements, it
turns out to be a fourth-order differential equation, i.e., its order in-
creases by 2 as compared to the standard theory. So even though
the enrichment of the kinematic part of the model is of the first or-
der, duality induces another first-order enrichment of the equilib-
rium equation and the resulting effect is of the second order. On
the other hand, some theories postulate the enrichment of the con-
stitutive equations directly, without using the thermodynamic
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framework, and then two dual first-order enrichments are pre-
sented as one second-order enrichment. A typical example is the
phenomenological gradient plasticity of Aifantis (1984), which
incorporates in the hardening or softening law the dependence
on the second gradient of cumulative plastic strain. It is therefore
considered as a second-gradient theory, but the same constitutive
model could be constructed from a thermodynamically based the-
ory with free energy dependent on the first gradient of cumulative
plastic strain (Svedberg, 1996; Svedberg and Runesson, 1997; Liebe
and Steinmann, 2001).

3.2. Size effects and internal length scale

Since gradients are sensitive to the spatial scale (for geometri-
cally similar bodies with homothetic distributions of state vari-
ables they are inversely proportional to the characteristic size of
the body), gradient enrichments are perfectly suited for incorpo-
rating information about the characteristic length scale(s) dictated
by the internal structure of the material. This is important, for in-
stance, for the description of size effects of a transitional type. The
standard continuum theory does not possess any characteristic
length, and it can be shown that in such a case all scaling laws
must be of a power type (e.g., Bažant, 2002). However, in many
cases a certain property scales differently for ‘‘large” sizes than
for ‘‘small” sizes. A typical example is the nominal strength of
notched quasibrittle structures, which is almost constant for small
structures but decreases in inverse proportion to the square root of
the structure size for large structures. The small-size range can be
described by standard plasticity and the large-size range by linear
elastic fracture mechanics, both being theories with no character-
istic length. To describe the entire range of sizes by one single
model, a length parameter must be incorporated into the theory,
otherwise it is impossible for the model to distinguish between a
small structure and a large one.

Quasibrittle failure is closely related to softening material mod-
eQuasibrittle failure is closely related to softening material models,
but similar examples of transitional size effects can be found for
hardening materials or even for the elastic response; they include
the dispersion of short elastic waves, scaling of the torsional elastic
stiffness of thin wires or bones (Morrison, 1939; Lakes, 1986; Fleck
et al., 1994) and the bending stiffness of thin beams (metallic films)
(Richards, 1958; Stolken and Evans, 1998), or size-dependence of
the apparent hardening curve evaluated from microindentation
tests (Nix, 1989; Ma and Clarke, 1995; Poole et al., 1996). The main
purpose of certain gradient theories is an accurate modeling of
such size effects, and not the objective description of strain locali-
zation due to softening. However, it seems useful to include even
such models in the present comparative study, which scrutinizes
their possible exploitation as localization limiters. Localization
properties of several gradient plasticity models have recently been
investigated by Engelen et al. (2006), who focused on harmonic
incremental solutions from a uniform reference state. In the pres-
ent study we look at incremental solutions with plastic yielding
localized into a single interval.

One should bear in mind that the choice of an appropriate mod-
el and the need for gradient-type or other enrichments depends on
the particular problem type, including the size and shape of the
body of interest, properties of the material and type of loading. If
the strain distribution is smooth and the strain gradients are small
(with respect to the strain amplitude divided by the characteristic
length of the material), as is often the case in the elastic regime, the
standard theory provides a good approximation and no important
deviations from the actual behavior can be observed. However,
gradient effects may play an important role already in the elastic
regime, e.g., in regions of high stress and strain concentrations
around notches and cracks, or if the wave length of elastic waves
is comparable to the size of characteristic heterogeneities in the
material. For metals, this scale is in the order of microns, but for
concrete and other highly heterogeneous composite materials, it
is substantially larger.

Still, in many situations it is perfectly legitimate to describe the
elastic response by the conventional theory. Only in the inelastic
regime, especially after strain localization, the characteristic ‘‘wave
length” of the deformation field decreases, and the influence of
material heterogeneity at the meso- or microscale becomes impor-
tant. For this reason, gradient theories constructed as localization
limiters usually do not modify the elastic part of the response. Gra-
dient enhancements are then applied only to an internal variable
(or thermodynamic force) linked to the dissipative processes. In
plasticity, this is naturally the softening variable (cumulative plas-
tic strain), or the plastic strain itself. The elastic behavior of the
material remains unchanged. In contrast to that, strain-gradient
theories reflect the influence of the length scale on the material
properties already in the elastic range. This is useful, e.g., for mod-
eling of dispersion of elastic waves in heterogeneous materials or
in crystal lattices by homogenized continuum models.

3.3. Strong and weak nonlocality

From another viewpoint, gradient models can be divided into
explicit and implicit ones.

Explicit models enrich the governing equations directly by gradi-
ents of the local state variables or thermodynamic forces. The
dependence on the gradients makes the stress response of one
material point depend on the behavior of a neighborhood of that
point, but that neighborhood can be arbitrarily small. This is why
such models are called weakly nonlocal. Precise definitions of weak
and strong nonlocality are given in Rogula (1982).

Implicit models work with higher-order gradients, too, but do
not insert them directly into the constitutive equations. The differ-
ential operators are not applied to the local internal variable field, f,
but they implicitly define a nonlocal field, �f , constructed, e.g., as
the solution of the Helmholtz-type differential equation

�f � cr2�f ¼ f in V ð15Þ

where r2 is the Laplace operator, V is the domain occupied by the
body of interest, and c is a material parameter with the dimension
of length squared. To uniquely specify �f , Eq. (15) must be supple-
mented by appropriate boundary conditions. The precise form of
these conditions is not obvious, but it seems reasonable to require
that the transformation of f into �f should not alter a constant field.
If f ðxÞ ¼ f0 ¼ const., then �f ðxÞ ¼ f0 satisfies the differential Eq. (15),
and it should also satisfy the boundary conditions, independently
of the value of f0. Clearly, it is not possible to use the homogeneous
Dirichlet boundary conditions, but every constant field satisfies the
homogeneous Neumann boundary conditions

n � $�f ¼ 0 on oV ð16Þ
where $ is the gradient operator, oV is the boundary of the domain
V, and n is the unit vector normal to the boundary. For an infinite
domain, the boundary conditions are replaced by the requirement
that the solution must remain bounded.

Implicit gradient models that incorporate a transformed field
defined as the solution of a boundary value problem such as (15)
and (16) have been developed, e.g., by Peerlings et al. (1996,
1998), Engelen et al. (2003) and Geers (2004) and applied by Peer-
lings et al. (2004), César de Sá et al. (2006) and Tovo and Livieri
(2008). In contrast to explicit gradient models, they are strongly
nonlocal, because the value of the solution �f at a given point x de-
pends on the values of the right-hand side f in the entire body, and
so the stress at x depends on the state of the entire body. In fact,
the implicit gradient models can equivalently be written in an inte-
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gral nonlocal format (Peerlings et al., 1996). To show that, let us
introduce the Green function of the boundary value problem (15)
and (16). Taking the one-dimensional case as an example, the
domain V reduces to an interval L, and the Green function is
a function Gðx; nÞ satisfying for every n 2L the differential
equation

Gðx; nÞ � c
o2Gðx; nÞ

ox2 ¼ dðx� nÞ 8x 2L ð17Þ

and the boundary conditions

oGðx; nÞ
ox

¼ 0 8x 2 oL ð18Þ

The symbol d in (17) denotes the Dirac distribution. SinceR
L

dðx� nÞf ðnÞdn ¼ f ðxÞ, the solution of (15) and (16) can formally
be written as

�f ðxÞ ¼
Z
L

Gðx; nÞf ðnÞdn ð19Þ

Consequently, the transformed field �f , implicitly defined as the
solution of the boundary value problem, is a weighted spatial aver-
age of the local field f, with the Green function playing the role of
the weight function. So, the implicit gradient models are equivalent
to integral-type nonlocal models with special weight functions; see
Bažant and Jirásek (2002) for a general review of integral nonlocal
models and Jirásek and Rolshoven (2003) for a comparative study
on localization properties of integral nonlocal plasticity models.

3.4. Test problem: localization in one dimension

To demonstrate the differences among various formulations of
gradient plasticity and to assess their regularizing capabilities,
we will analyze a simple one-dimensional localization problem.
In the course of analysis, this problem will be interpreted as a uni-
axial tensile test (Fig. 1a), but if the yield condition is pressure-
insensitive and the plastic flow is isochoric, the results are also
valid for localization in a semi-infinite shear layer (Fig. 1b). It is
sufficient to replace the normal stress by shear stress, normal
strain by engineering shear strain, Young’s modulus by shear mod-
ulus, etc. A truly two-dimensional analysis of the shear layer prob-
lem for a strain-gradient plasticity model with a pressure-sensitive
yield condition was presented by Chambon et al. (2001).

For models with gradients of internal variables only, the kine-
matic equation

eðxÞ ¼ u0ðxÞ ð20Þ

and the equilibrium equation

r0ðxÞ þ bðxÞ ¼ 0 ð21Þ

remain standard. Here, u is the displacement, e is the strain, r is the
stress and b are the body forces. We consider a straight bar of length
L and constant cross section A, loaded by an increasing imposed dis-
placement �u at the right end while the left end remains fixed. This
type of loading is described by the kinematic boundary conditions

uð0Þ ¼ 0; uðLÞ ¼ �u ð22Þ

where �u is a monotonically increasing parameter that controls the
deformation process. The reaction at the right support, generated
by the applied displacement, can be evaluated as F ¼ ArðLÞ. A gen-
eralized form of these equations valid for the strain-gradient theo-
ries will be presented in the next section.

Despite the apparent simplicity of the one-dimensional locali-
zation problem, there are many interesting aspects to be explored.
We will look not only at the first bifurcation from a uniform strain
state, which is captured by most of the models in a proper way, but
also at the subsequent evolution of the localized plastic zone up to
complete failure (full softening to zero residual strength). It will be
shown that the model response strongly depends on the particular
formulation and that some formulations lead to very unrealistic re-
sults. Another issue to be addressed is the influence of boundaries,
i.e., the difference between localization in an infinite bar (or suffi-
ciently far from the boundary) and in the proximity of the bar end.
This issue is closely related to the choice of boundary conditions,
which are needed by gradient models but whose physical meaning
is not always clear.

4. Strain-gradient elasticity

The elastic strain-gradient theory has its roots in the pioneering
work of Toupin (1962) and Mindlin (1964). The linear version of
strain-gradient elasticity is derived from a quadratic free-energy
potential that depends not only on the strain but also on its gradi-
ent. In one dimension, we can write

qwðe;gÞ ¼ 1
2

Ee2 þ 1
2

El2g2 ð23Þ

where q is the mass density, w is the free energy per unit mass,
g ¼ e0 is the spatial derivative of strain and l is a material parameter
with the dimension of length. For an elastic material, the dissipation
density D ¼ Pint � q _w must vanish. Since the rate of free energy
density depends not only on the strain rate but also on the strain-
gradient rate (which is locally independent of the strain rate), the
standard expression for the internal power Pint ¼ r _e must be en-
riched by a term v _g where v, called the double stress, is the thermo-
dynamic force conjugate to the state variable g. From the condition
that D ¼ 0 for an arbitrary combination of rates _e and _g, we obtain
the state equations

r ¼ q
ow
oe
¼ Ee ð24Þ

v ¼ q
ow
og
¼ El2g ð25Þ

consisting of the standard stress–strain law of linear elasticity (24)
and another linear elastic law (25) that links the double stress to the
strain gradient. The higher-order elastic modulus El2 has a physical
dimension different from Young’s modulus E and their ratio is con-
trolled by the square of the intrinsic length parameter l. For l ¼ 0,
standard elasticity is recovered as a special case.

The state variables e and g are linked to the displacement field
by the kinematic equations

e ¼ u0 ð26Þ
g ¼ u00 ð27Þ

and the corresponding static equations follow from duality. Inte-
grating by parts the internal power for the entire bar (taken per unit
cross-sectional area), we obtain

Pint ¼
Z
L

Pintdx ¼
Z
L

ðr _eþ v _gÞdx ¼
Z
L

ðr _u0 þ v _u00Þdx

¼
Z

oL

n½ðr� v0Þ _uþ v _u0�dðoLÞ �
Z
L

ðr0 � v00Þ _udx ð28Þ

where oL is the boundary of the interval L ¼ ½0; L� and n is the
‘‘unit outward normal” to this boundary. Of course, in one dimen-
sion oL consists of two points, 0 and L, and n is a scalar equal to
�1 on the left boundary (at x ¼ 0) and to 1 on the right boundary
(at x ¼ L). The formal presentation with integrals over the boundary
(which in one dimension reduce to sums over the boundary points)
emphasizes the general structure of the theory and facilitates its
extension to multiple dimensions.

The standard expression for the external power (per unit cross-
sectional area) supplied by body forces b and surface tractions t is
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Pext ¼
Z
L

b _udxþ
Z

oL

t _udðoLÞ ð29Þ

Substituting this into the power equality Pext ¼ Pint and considering
that the displacement rate must satisfy the essential (kinematic)
boundary conditions but otherwise is arbitrary, we obtain the gen-
eral form of the equilibrium equation

r0 � v00 þ b ¼ 0 ð30Þ

and the boundary conditions

u ¼ �u or nðr� v0Þ ¼ �t on oL ð31Þ
u0 ¼ �e or v ¼ 0 on oL ð32Þ

where �u is the prescribed displacement, �e is the prescribed strain,
and �t is the prescribed traction. The expression for the external
power could contain additional nonstandard boundary forces acting
on the displacement gradients, but such higher-order tractions are
usually assumed to vanish (if not, they replace zero on the right-
hand side of the second condition in (32)).

In the absence of body forces, the equilibrium equation (30) can
be written as

ðr� v0Þ0 ¼ 0 ð33Þ

Due to the contribution of the double stress v, the distribution of
stress r is not necessarily uniform. The quantity that remains uni-
form in space is r� v0, sometimes called the total stress (while r
is more specifically called the Cauchy stress). From the boundary
condition (31b) it follows that r� v0 is equal to the traction
t ¼ F=A applied at the right boundary (where n ¼ 1). So the reaction
force F at the support is related to the total stress and not to the
Cauchy stress.

Probably the first extension of strain-gradient theory to plastic-
ity, proposed by Dillon and Kratochvil (1970), was based on the
elastic theory with second gradients of strain (Mindlin, 1965).
Higher-order effects were loosely motivated by dislocation interac-
tions and activated only after the onset of plastic flow. The main
purpose of the Dillon–Kratochvil model was to reflect the forma-
tion of nonuniform deformation patterns on the microscopic level
in hardening metals. In the subsequent sections we will present
and analyze more recent formulations of strain-gradient plasticity
that can serve as localization limiters.
5. Strain-gradient plasticity model of Chambon et al.

5.1. Model equations

Chambon et al. (1998) proposed a localization limiter based on
the theory of continua with microstructure. They discussed a
rather general framework, but the specific formulation they finally
used can be considered as an elastoplastic extension of strain-gra-
dient elasticity (Toupin, 1962; Mindlin, 1964). This extension is
based on the assumption that the yield function depends only on
r, and not on v. Thus, the yield function as well as loading–unload-
ing conditions and softening law remain the same as in standard
plasticity. Under the assumption of associated flow, plastic defor-
mation is described only by the classical plastic strain. Conse-
quently, the constitutive part of the model consists of standard
plasticity Eqs. (8)–(12) and the higher-order elastic law (25). Note
that, on the constitutive level, the stress–strain relation is fully
decoupled from the relation between the double stress and the
strain gradient. The elastic constitutive equation for the double
stress (25) remains valid without any plastic correction. The dou-
ble stress is linked to the stress by the equilibrium Eq. (30) and
the strain gradient is linked to the strain by the compatibility equa-
tion g ¼ e0 that follows from the kinematic Eqs. (26) and (27).
5.2. Bifurcation from a uniform state

Chambon et al. (1998) outlined the general approach to analyt-
ical treatment of their model in one dimension. For comparison
with other gradient-type formulations, it is useful to provide here
the specific solution of the one-dimensional localization problem
and discuss the main localization properties of Chambon’s model.

To analyze the bifurcation from a uniform state, the equilibrium
Eq. (33) is first integrated in space and then rewritten in the rate
form

_rðxÞ � _v0ðxÞ ¼ _t ð34Þ

Since the stress–strain law is given by the standard equations of
plasticity (8)–(12), the stress rate can be expressed as _r ¼ E _e in the
elastic region and _r ¼ Et _e in the plastic region, with
Et ¼ EH=ðEþ HÞ < 0 being the tangent elastoplastic modulus. The
rate of the double stress is easily expressed from (25). Substituting
all this into (34), we obtain

E _eðxÞ � El2 _e00ðxÞ ¼ _t for x 2 Ie ð35Þ
Et _eðxÞ � El2 _e00ðxÞ ¼ _t for x 2 Ip ð36Þ

where the elastic region Ie is characterized by _e 6 0 and the plastic
region Ip is characterized by _e P 0. The above differential equation
has the general solution

_eðxÞ ¼
_t
E
þ C1 cosh

x
l
þ C2 sinh

x
l

for x 2 Ie ð37Þ

_eðxÞ ¼
_t

Et
þ C3 cos

ax
l
þ C4 sin

ax
l

for x 2 Ip ð38Þ

where

a ¼
ffiffiffiffiffiffiffiffiffi
� Et

E

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� H

Eþ H

r
ð39Þ

is a positive parameter that depends only on the ratio H=E between
the softening modulus and the modulus of elasticity, and Ci,
i ¼ 1;2;3;4, are integration constants. If the elastic region or plastic
region consists of several disjoint intervals, the integration con-
stants are of course different in each contiguous part.

To obtain a valid solution, it is necessary to find the regionsIe and
Ip and determine the integration constants such that the solution
satisfies the boundary conditions at both end sections of the bar
and the appropriate continuity conditions at the internal elastoplas-
tic boundaries. In general, one should enforce continuity of u, u0, v
andr� v0. In the present simple case, continuity of r� v0 is satisfied
automatically (since the same _t is used in (35) and (36)), and conti-
nuity of u would be used to obtain the displacement field by integra-
tion of the strain field but does not need to be considered when
solving for the strains only. So it is sufficient to enforce continuity
of u0 and v, which is equivalent to continuity of e and e0. On each
external boundary, only one of conditions (32) is enforced. Since it
would be physically unrealistic to prescribe the value of strain on
the boundary, the condition to be used is v ¼ 0, which is equivalent
to e0 ¼ 0. As already mentioned in Section 4, a nonzero higher-order
traction could be prescribed on the boundary. This could be useful,
e.g., in shear localization problems, where the higher-order strain
corresponds to a micro-curvature and the higher-order traction is
then a micro-stress couple acting on the boundary. Nevertheless,
in the subsequent analysis we restrict attention to the basic case
with vanishing higher-order traction on the boundary.

The size and location of the elastic and plastic regions are not
given in advance; they must be determined such that the solution
is admissible. Recall that, according to the loading–unloading con-
ditions, the strain rate is nonnegative in Ip and nonpositive in Ie.
Since, for the present model, the strain must be continuous, these
conditions imply that each internal elastoplastic boundary is in the
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regime of neutral loading, with a vanishing strain rate. This pro-
vides a sufficient number of additional conditions that make it pos-
sible to determine the exact location of the elastoplastic
boundaries. However, the number of elastic and plastic intervals
must be selected first. This is a typical situation in one-dimensional
localization analysis. The choice is not unique, but the most inter-
esting solutions are those for which the plastic strain localizes into
one single interval, which can either be adjacent to one bar end, or
form in the interior of the bar. The number of elastic intervals is
then 1 or 2, resp.

Consider first the case of localization near the left end. The bar
domain L ¼ ½0; L� is divided into the plastic region Ip ¼ ½0; Lp� and
the elastic region Ie ¼ ½Lp; L�, where Lp is the size of the plastic re-
gion, still to be determined. Imposing conditions _e0ð0Þ ¼ 0 and
_eðLpÞ ¼ 0 on the general solution (38) and conditions _eðLpÞ ¼ 0
and _e0ðLÞ ¼ 0 on the general solution (37), we obtain a family of
particular solutions described by

_eðxÞ ¼

_t
Et

1�
cos ax

l

cos aLp

l

 !
for x 2 Ip � ½0; Lp�

_t
E

1�
cosh L�x

l

cosh L�Lp

l

 !
for x 2 Ie � ½Lp; L�

8>>>>><
>>>>>:

ð40Þ

This family is parameterized by the unknown length Lp, which can
be determined from the condition of continuity of _e0 at x ¼ Lp. The
resulting equation has the form

tan
aLp

l
þ a tanh

L� Lp

l
¼ 0 ð41Þ

Since an equation of this type plays an important role for this and
several other models (to be discussed later), it is useful to introduce
a function kpða; kÞ, defined implicitly as the smallest positive solu-
tion of the transcendental equation

tan akp þ a tanhðk� kpÞ ¼ 0 ð42Þ

The graph of kp as a function of a is plotted in Fig. 3 for several val-
ues of k. It is easy to show that, for any fixed a, kp is a decreasing
function of k, for k!1 approaching its minimum possible value,

lim
k!1

kpða; kÞ � kp;1ðaÞ ¼
p� arctan a

a
ð43Þ
Fig. 3. Normalized plastic zone size kp ¼ Lp=l as a function of parameter a, for
different values of the normalized bar length k ¼ L=l.

ε ε

x x

. .

+ =

Fig. 4. Symmetric solution obtained by combini
In terms of function kp, the size of the plastic region solved from
(41) can be written as Lp ¼ lkpða; L=lÞ. For very long bars, Lp tends
to its limit value Lp;1 ¼ lkp;1ðaÞ ¼ ðp� arctanaÞl=a. This minimum
size of the plastic region is proportional to the characteristic length
l, but it also depends on the ratio H=E. For very steep softening,
when H is close to its minimum admissible value, �E, parameter
a is very large and the plastic region can become arbitrarily small.
For mild softening, when the absolute value of H is small, parameter
a is close to zero and the plastic region can become arbitrarily large.
For a finite bar, the size of the plastic region is increasing with
decreasing bar length, and if the theoretical size of the plastic region
solved from (41) is larger than the actual bar length, localization is
impossible. The critical bar length below which bifurcation cannot
take place,

Lmin ¼
pl
a

ð44Þ

can be obtained from (41) by setting Lp ¼ L ¼ Lmin and looking for
the smallest positive solution.

The foregoing derivations were based on the assumption that
the plastic region is adjacent to one of the bar ends. Another pos-
sible localization pattern is a plastic region inside the bar, sepa-
rated from the bar ends by two elastic intervals. It turns out that
solutions of this type are symmetric with respect to the middle
section and that each of them can be constructed by combining
two solutions describing localization near the boundary for a bar
of length L=2; see Fig. 4. Such solutions exist only if the bar length
exceeds 2Lmin ¼ 2pl=a. The size of the plastic region is then given
by Lp ¼ 2lkpða; L=2lÞ.

For bar lengths between Lmin and 2Lmin, the plastic strain local-
izes into a region adjacent to one of the bar ends (which end will
attract the plastic region is decided by random imperfections).
For bar lengths that exceed 2Lmin, there are multiple localization
patterns and their number increases with increasing bar length
but always remains finite. According to the criterion proposed by
Bažant (1988) and based on thermodynamic arguments, the actual
solution (stable under displacement control) is that which leads to
the steepest slope of the resulting load–displacement diagram or,
equivalently, to the algebraically largest tangent compliance. In
the present context, the load is the traction t and the displacement
is the total bar elongation �u ¼ uðLÞ. Integrating the strain rate along
the bar, we obtain the elongation rate

_usðLÞ ¼ _t
L
E
þ 2l

aH
akp a;

L
2l

� �
� tan akp a;

L
2l

� �� �� �� �
ð45Þ

for the symmetric solution and

_ubðLÞ ¼ _t
L
E
þ l

aH
akp a;

L
l

� �
� tan akp a;

L
l

� �� �� �� �
ð46Þ

for the solution localized near the boundary. Inspection of (45) and
(46) reveals that _usðLÞ can be obtained from the expression for _ubðLÞ
simply by doubling the characteristic length l. So, to decide which
solution will actually occur, we need to study the dependence of
the compliance on the characteristic length, with all other parame-
ters kept fixed. The structural compliance C ¼ _uðLÞ=_t can be
expressed as a sum of the elastic compliance, Ce ¼ L=E, and the
ε

x

.

ng two solutions localized at the boundary.
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plastic compliance, Cp. The relative plastic compliance Cp ¼ Cp=Ce

depends only on the parameters a and k ¼ L=l:

Cpða; kÞ ¼
1þ a2

ka3 ½tanðakpða; kÞÞ � akpða; kÞ� ð47Þ

In Fig. 5, Cp is plotted as a function of a for several fixed values of k.
The graph shows that the plastic compliance is an increasing func-
tion of k, which can be proven rigorously, based on the fact that kp is
a decreasing function of k and that tanðakpÞ � akp is a negative
increasing function of kp in the range of interest, p� arctana
< akp 6 p. Consequently, for any L > 2Lmin, the plastic compliance
corresponding to the solution localized at the boundary is always
larger than the plastic compliance corresponding to the symmetric
solution, and the plastic strain tends to localize at the boundary. Of
course, this conclusion refers to the properties of the specific model
considered here and to the specific criterion advocated by Bažant
Fig. 5. Dimensionless plastic compliance Cp ¼ Cp=Ce as a function of parameter a
for several fixed values of dimensionless bar length k ¼ L=l.
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Fig. 6. Chambon’s model with linear softening: evolution of (a) plastic strain profiles a
Cauchy stress profiles, (d) double stress profiles.
(1988). For a real specimen, it is hard to reproduce the idealized
conditions of a perfectly uniform cross section and material proper-
ties. So the question where the localized zone would evolve in a
perfectly uniform bar is rather academic. In reality, the localization
process would be strongly affected by random imperfections, and
also by the exact nature of the connection between the specimen
boundary and the loading device.

5.3. Evolution of plastic region

The foregoing analysis referred to the rates at the onset of local-
ization, i.e., at the first bifurcation from a uniform state. Since the
solution depends only on the dimensionless ratios L=l and H=E, it
remains valid as long as these ratios do not change. Clearly,
L and E are constant parameters, and the internal length l is nor-
mally considered as a constant as well. The softening modulus H
is the derivative of the yield stress with respect to the cumulative
plastic strain, and it is constant if the softening law is linear. In this
case, the solution remains valid if the rates are replaced by finite
increments with respect to the state at bifurcation. The size of
the plastic zone and the shape of the plastic strain profile therefore
remain constant, and the plastic strains at all points of the plastic
region grow proportionally to the applied increment of bar elonga-
tion (equal to the displacement of the right end if the left end is
fixed); see Fig. 6a.

For nonlinear softening laws, the solution of the rate problem
changes during the localization process and it cannot be con-
structed analytically. However, if the solution was artificially kept
uniform until a certain state in the post-peak range and only then
the bifurcation was allowed, the plastic region would localize into
an interval whose length can be obtained from the foregoing for-
mulae with H ¼ drY=dj being the current (tangent) softening
modulus. This indicates that if the magnitude of the softening
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modulus decreases during the softening process, the plastic region
is expected to expand. Some limited expansion of the plastic region
would be acceptable, but the problem is that as the current soften-
ing modulus tends to zero, the size of the plastic region grows
without any bounds (Fig. 8a). The bar then cannot fail by yielding
of its limited segment, and all sections must sooner or later start
yielding. This is a spurious, nonphysical effect, which is typically
accompanied by stress locking, manifested by a nonvanishing
residual resistance of the structure even at very large applied elon-
gations. A model exhibiting this kind of behavior cannot correctly
predict complete failure.

Similar pathological effects can be expected for the full form of
the linear softening law (13) with a horizontal branch at zero resid-
ual yield stress. The analytical solution with a constant size of the
plastic region remains valid only if the softening modulus is con-
stant across the entire plastic region, which is true as long as the
maximum plastic strain remains below the critical level jc. The
sudden jump of the tangent softening modulus from a constant
negative value to zero at the critical plastic strain level can be ex-
pected to produce qualitatively similar locking effects as the grad-
ual decrease of the tangent softening modulus characteristic of
nonlinear softening laws.

Numerical calculations confirm the foregoing simplified and
partially intuitive analysis. In the case of a linear softening law
with cut-off at zero stress, the plastic zone is indeed initially of
constant size; see the evolution of plastic strain profiles in Fig. 6a
and the profiles of Cauchy stress and double stress marked as 1
and 2 in Fig. 6c and d. The Cauchy stress distribution (Fig. 6c) is
nonuniform, with two maxima at the elastoplastic boundaries,
where r remains at the initial yield stress level r0, and with a min-
imum at the center of the plastic zone. In the elastic zones, the
stress decreases with increasing distance from the elastoplastic
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Fig. 7. Load–displacement diagrams for Chambon’s model with (a) linear softening,
(b) exponential softening; the solid curves correspond to the actual (localized)
solutions while the dashed curves correspond to the unstable uniform solutions.
boundary and asymptotically approaches a constant level. The size
of the transition layers is in the order of the characteristic length l.
The reason why these layers in Fig. 6c appear so small is that, for
the selected model parameters, the initial plastic zone size Lp is
about 60 times larger than l. The example has been computed with
H=E ¼ �0:01 and L=l ¼ 200, which gives a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H=ðEþ HÞ

p
¼

0:1005 and Lp ¼ 2lkpða; L=2lÞ ¼ 2lkpð0:1005;100Þ ¼ 60:52 l.
When the maximum plastic strain at the center of the plastic

zone attains its critical value jc ¼ �r0=H, the yield stress at that
point vanishes. Upon further loading, an initially small interval
with zero yield stress forms at the center of the plastic zone, and
the plastic zone starts expanding; see Fig. 6b. Typical profiles of
Cauchy stress and double stress corresponding to this loading stage
are shown in Fig. 6c and d and marked by labels 3 and 4. The max-
imum Cauchy stress at the moving elastoplastic boundaries is still
equal to the initial yield stress. The reaction at the bar end (equal to
the total stress r� v0 multiplied by the sectional area) decreases
only slowly with increasing bar elongation. The load–displacement
curve, shown in Fig. 7a, crosses the dashed curve that would corre-
spond to the (unstable) uniform solution. The total work needed to
completely break the bar (given by the area under the load–dis-
placement diagram) is larger than in the absence of localization.
This is clearly a pathological locking effect.

For a nonlinear softening law with a decreasing magnitude of the
tangent softening modulus, the expansion of the plastic zone starts
immediately after localization. This is documented for the exponen-
tial softening law (14) in Fig. 8. At later stages of the softening pro-
cess, high residual reactions are obtained even for large bar
elongations, and the load–displacement diagram eventually crosses
that corresponding to the unstable uniform solution; see Fig. 7b.

Excessive residual forces transmitted at late stages of softening
are certainly inadmissible for quasi-brittle materials in tension-
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dominated failure modes. It may be argued that for other types of
failure (e.g., of ductile materials, or for frictional cohesive materials
under shear and compression) the residual resistance is desirable
and reflects their real physical behavior. In the authors’ opinion,
if a material exhibits some residual strength, this should be incor-
porated into the model at the level of the local stress–strain law
and not obtained as a by-product of the regularization technique.
Otherwise it is hard to control such phenomena and calibrate the
model parameters.
6. Strain-gradient plasticity model of Fleck and Hutchinson
(1997)

6.1. Model equations

Fleck et al. (1994) proposed an extension of the couple-stress
theory to the nonlinear range and interpreted it as a deformation
theory of plasticity. They defined the free energy as a power func-
tion of the combined strain, which is a scalar measure of the strain
and the local curvatures (gradients of the rotational part of the dis-
placement gradient). Once this measure was defined, the stress–
strain relations were easily obtained as the state laws. No internal
variables were used and the dissipation was not considered.

The deformation theory of plasticity cannot realistically de-
scribe unloading, and so it would not be appropriate for the
description of localization phenomena. A more realistic model is
provided by the flow theory of strain-gradient plasticity, which
was first proposed by Fleck and Hutchinson (1993) in the context
of the couple-stress theory, and later reformulated by Fleck and
Hutchinson (1997) in the context of the general strain-gradient
theory, which takes into account not only the microcurvatures
(rotation gradients) but also the stretch gradients. This is the mod-
el to be analyzed next.

In contrast to Chambon et al. (1998), the yield condition is as-
sumed to depend not only on the standard (Cauchy) stress but also
on the double stress. The yield function is defined as

f ðr;v;rYÞ ¼ Rðr;vÞ � rY ð48Þ
where

Rðr;vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2

l2p

s
ð49Þ

is the overall effective stress. Since r and v have different physical
dimensions, the definition of R must contain a scaling parameter
lp related to the internal structure of the material. This plastic char-
acteristic length is in general different from the characteristic
length used by the elastic strain-gradient theory, which will be from
now on denoted as le. The elastic constitutive laws read

r ¼ Eðe� epÞ ð50Þ

v ¼ El2
eðg� gpÞ ð51Þ

where ep is the usual plastic strain and gp is the plastic part of the
strain gradient, considered as an independent internal variable.
Note that g ¼ e0 is the strain gradient, but gp has no direct relation
to the derivative of the plastic strain, e0p.

Within an associated framework, the evolution laws for plastic
strain ep, plastic strain gradient gp and softening variable j are

_ep ¼ _k
of
or
¼ _k

r
R

ð52Þ

_gp ¼ _k
of
ov ¼

_k
v

l2
pR

ð53Þ

_j ¼ _k
of

oð�rYÞ
¼ _k ð54Þ
Under plastic loading, the rate of the plastic multiplier _k can be
determined from the consistency condition _f ¼ 0. After substitution
of (50)–(54) and _rY ¼ H _j into the consistency condition and
algebraic manipulations, the resulting expression reads

_k ¼ ER
r _eþ v _gl2

e=l2
p

HR2 þ Eðr2 þ v2l2
e=l4pÞ

ð55Þ

where H ¼ drY=dj is the tangent plastic modulus.

6.2. Localization analysis

At the first bifurcation from a uniform state, the Cauchy stress r
is constant along the bar and the double stress v vanishes (this is
the unique elastic solution satisfying the appropriate boundary
conditions). Consequently, (55) reduces to _k ¼ E _e=ðEþ HÞ, the evo-
lution laws give _ep ¼ _k and _gp ¼ 0, and the stress rates are _r ¼ Et _e
and _v ¼ El2

e _g where Et ¼ EH=ðEþ HÞ is the tangent modulus of
standard elastoplasticity. The problem is completely identical with
the bifurcation problem for the model of Chambon et al., and its
solution is therefore exactly the same as discussed in Section 5.2.
However, this is true only at the onset of localization. As a nonuni-
form strain profile develops, double stresses build up and the rate
of the plastic strain gradient becomes nonzero. The subsequent
evolution is thus different from that predicted by Chambon’s mod-
el, except for the limit case when lp !1. In this special case, the
Fleck–Hutchinson model reduces to the model of Chambon et al.
(1998), with l ¼ le.

6.3. Evolution of plastic region

As follows from the foregoing analysis, the initial size of the plas-
tic region is controlled by the ratio H=E and by the elastic character-
istic length le. The subsequent evolution is not amenable to an
analytical solution but it can be studied numerically. Fig. 9 shows
the evolution of the strain profile for two different ratios lp=le equal
to 2 and 5 (with H=E ¼ �0:01 and L=le ¼ 200). The initial size of the
plastic zone Lp ¼ 60:52le is in both cases the same and the strain pro-
files during the initial stage of localization are very similar (Fig. 9
top). At late stages of the softening process, the plastic zone is wider
for larger lp (Fig. 9 bottom). In contrast to Chambon’s model, the
active part of the plastic zone shrinks during the softening process,
and the load–displacement diagrams become steeper; see Fig. 10. At
late stages of softening, the shrinking is accelerated and an instabil-
ity develops. Detailed analysis of this intriguing phenomenon is out
of scope of the present paper and will be addressed separately.

7. Mechanism-based strain-gradient plasticity

7.1. Model equations

Fleck–Hutchinson strain-gradient theories of plasticity are
physically motivated by the concept of statistically stored and geo-
metrically necessary dislocations, but their essence remains phe-
nomenological. A micromechanically based strain-gradient law for
the flow strength of materials, derived from the Taylor hardening
model by Nix and Gao (1998), serves as the basis of a group of theo-
ries called the mechanism-based strain-gradient (MSG) plasticity.

The original MSG model (Gao et al., 1999; Huang et al., 2000)
was a nonlinear extension of the Toupin–Mindlin theory, inter-
preted as a deformation theory of plasticity. The Cauchy stress
and double stress were considered as functions of the strain and
strain gradient, without any internal variables that could describe
irreversible processes. Localization analysis of the shear layer prob-
lem using the deformation theory of MSG plasticity was presented
by Shi et al. (2000).
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Fig. 9. Fleck–Hutchinson model: evolution of the strain profile for (a,c) lp ¼ 2le, (b,d) lp ¼ 5le.
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Fig. 10. Fleck–Hutchinson model: (a) normalized load–displacement diagrams (the
dashed curve corresponds to the unstable uniform solution), (b) evolution of the
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Since deformation theories are usually inappropriate for loading
programs that deviate from proportionality, we focus on the flow
theory of MSG plasticity (Qiu et al., 2003). The hardening law is
considered in the form

rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ðjÞ þ 3a2bE2 j g j

q
ð56Þ

where h is a function describing the hardening law rY ¼ hðjÞ in the
absence of strain gradients, a is the Taylor factor with values be-
tween 0.1 and 0.5, and b is the norm of the Burgers vector (spacing
between neighboring atoms in the crystal lattice). This and all sub-
sequent equations refer to the shear layer problem (Fig. 1b), but for
easier comparison with other models we keep using the notation
that corresponds to the tensile test. In the present context, E should
be interpreted as the shear modulus of elasticity, j as the cumula-
tive value of plastic engineering shear strain, r as the shear stress,
rY as the yield stress in shear, e as the engineering shear strain,
and g as its derivative in the direction perpendicular to the bound-
aries of the layer.

The dependence of the yield stress on the magnitude of the
strain gradient g (in multiple dimensions replaced by a suitable
scalar measure of the strain-gradient tensor) is supposed to reflect
the influence of geometrically necessary dislocations. The yield
function preserves its classical form (12), i.e., it takes into account
only the Cauchy stress r but not the double stress v. The consis-
tency condition _r ¼ _rY combined in the usual way with the elastic
stress–strain law (8) leads to the following expressions for the
rates of cumulative plastic strain and of Cauchy stress:

_j ¼ rY _e� 1:5a2bEn _g
rY þ hH=E

ð57Þ

_r ¼ hH _eþ 1:5a2bE2n _g
rY þ hH=E

ð58Þ

plastic zone size.
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Here, H ¼ dh=dj is the (standard) plastic modulus, and n is a signed
unity defined by n ¼ sgnðgÞ if g–0, n ¼ sgnð _gÞ if g ¼ 0.

In MSG plasticity, the rate of double stress is derived by first-or-
der averaging over the mesocell of size le. After simplifications that
correspond to the one-dimensional case, the complicated tensorial
expression given in Qiu et al. (2003) reduces to

_v ¼ El2
e

12
hH _g

ErY þ hH
þ vðerY _j� _rÞ

rY þ hH=E
ð59Þ

where

e ¼ H
h
þ 1

H
dH
dj

ð60Þ

Eqs. (57)–(59) apply to plastic loading. Elastic unloading is charac-
terized by _j ¼ 0, _r ¼ E _e and _v ¼ Eðl2

e=12Þ _g.

7.2. Localization analysis

At bifurcation from a uniform state, the double stress v vanishes
and therefore the second term in (59) drops out. The strain gradi-
ent g also vanishes, and the yield stress is rY ¼ hðjÞ. Taking all this
into account, and substituting (58) and (59) and _g ¼ _e0 into the rate
form of the equilibrium Eq. (34), we obtain the second-order differ-
ential equation

_e� bleffiffiffiffiffiffi
12
p j _e0 j � l2

e
12

_e00 ¼
_t

Et
ð61Þ

in which Et ¼ EH=ðEþ HÞ is the elastoplastic modulus and

b ¼ �3
ffiffiffi
3
p

a2bE2

HrYle
ð62Þ

is a dimensionless parameter. The negative sign in the definition
(62) has been selected such that b is positive for softening
(H < 0), which is the case of our interest. However, Eq. (61) is valid
even for hardening, characterized by a negative value of b. In the
special case of perfect plasticity (H ¼ 0), the elastoplastic modulus
Et vanishes and Eq. (61) must be written in a different way.

Independently of the sign of plastic modulus H, the characteris-
tic equation of (61) has two real roots, one positive and one
negative:

k1 ¼
�

ffiffiffi
3
p

nbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 þ 12

q
le

; k2 ¼
�

ffiffiffi
3
p

nb�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 þ 12

q
le

ð63Þ

Therefore, the general solution of (61) has the form

_eðxÞ ¼
_t

Et
½1þ C1 expðk1xÞ þ C2 expðk2xÞ� ð64Þ

on each interval with a constant value of n ¼ sgnð _e0Þ, i.e., on each
interval where the rate of the strain gradient does not change its
sign.

The foregoing derivation applies to the plastic region. In the
elastic region, the constitutive equations of linear strain-gradient
elasticity _r ¼ E _e and _v ¼ Eðl2

e=12Þ _g substituted into (34) lead to

_e� l2
e

12
_e00 ¼

_t
E

ð65Þ

and the general solution is

_eðxÞ ¼
_t
E
½1þ C3 expðk3xÞ þ C4 expð�k3xÞ� ð66Þ

where k3 ¼ �2
ffiffiffi
3
p

=le.
Let us now look for a solution with plastic strain increments

localized in an interval Ip ¼ ½0; Lp�, adjacent to the boundary of
the shear layer at x ¼ 0. To simplify the problem, we assume that
the layer is sufficiently thick compared to the thickness of the
localized zone, so that we can perform the analysis on a semi-infi-
nite interval ½0;1Þ and replace the boundary condition at the elas-
tic boundary by the requirement that the strain must remain
bounded as x!1, which implies that the integration constant
C4 must vanish. On the plastic boundary (at x ¼ 0) we set v ¼ 0,
and on the elastoplastic interface (at x ¼ Lp) we enforce continuity
of strain and double stress. Note that continuity of strain gradient
is not required and that continuity of total stress is satisfied auto-
matically. The boundary conditions specified above correspond at
the same time to a localized shear band of thickness 2Lp with sym-
metric strain distribution, placed in an infinite (or sufficiently
large) body such that x ¼ 0 corresponds to the center of the band.

Detailed analysis of this problem is relatively tedious and there-
fore is relegated to the Appendix. It reveals that, for the present mod-
el, the bifurcation problem does not possess any solution with plastic
yielding localized into a layer of finite thickness. Even for softening,
localization cannot take place and the solution remains uniform. So
the enhancement of the softening law by the strain-gradient term
cannot be used as a localization limiter in the usual sense, because
it would completely exclude localization, even into a finite interval.

8. Conclusions

Three specific enhancements of the standard flow theory of
plasticity have been considered here, all of them incorporating
the influence of the gradient of total strain:

� The model initially proposed by Chambon et al. (1998), which
combines the standard elastoplastic stress–strain law with a lin-
ear elastic higher-order law linking the strain gradient to the
double stress.

� The 1997 version of the Fleck–Hutchinson (F & H) model, for
which the yield function depends on the Cauchy stress and on
the double stress, and the strain and strain gradient both have
a plastic part.

� The mechanism-based strain-gradient (MSG) plasticity model
(Qiu et al., 2003), for which the strain gradient affects the hard-
ening law.

Detailed analysis of the onset of localization, considered as a
bifurcation from a uniform state and investigated in the one-dimen-
sional setting, has shown that the first two models act as proper
localization limiters, preventing localization of plastic yielding into
a set of zero measure and at the same time allowing localization into
a process zone of a finite thickness. The MSG model tends to sup-
press localization completely and thus should not be used in prob-
lems with expected formation of localized plastic bands.

The models of Chambon et al. (1998) and of Fleck and Hutchin-
son (1997) lead to the same incremental solution at the onset of
localization but differ by the subsequent evolution. For the former
model, locking phenomena arise at later stages of softening and the
plastic zone tends to expand over the entire specimen. For the lat-
ter model, the evolution of the plastic zone is controlled by an ex-
tra internal length parameter, which can be chosen such that the
active part of the plastic zone shrinks and no locking effects ap-
pear. However, another problem arises. At late stages of softening
the shrinking accelerates and an instability develops.

Other enhancements of the plasticity theory, dealing with gra-
dients of internal variables, are studied in the second part of this
paper. They include among others the 2001 version of the Fleck–
Hutchinson model (Fleck and Hutchinson, 2001) and the model
by Zervos et al. (2001), which combines strain gradients with gra-
dients of internal variables.

For a quick overview, the main ingredients of the strain-gradi-
ent plasticity models that have been investigated are summarized
in Table 1. The Zervos et al. (2001) gradient elastoplasticity (GEP)



Table 1
Overview of strain-gradient plasticity models.

Model Sec. Stress–strain laws Yield function

Chambon 5 r ¼ Eðe� epÞ v ¼ El2g f ðr;jÞ ¼ r� rY ðjÞ
F&H 6 r ¼ Eðe� epÞ v ¼ El2ðg� gpÞ f ðr;v;jÞ ¼ Rðr;vÞ � rY ðjÞ
MSG 7 r ¼ Eðe� epÞ (59) f ðr;j;gÞ ¼ r� rY ðj;gÞ
GEP II.4 r ¼ Eðe� epÞ v ¼ El2ðg� e0pÞ f ðr;v;jÞ ¼j r� v0 j �rY ðj;j00Þ
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model is also included in the table for comparison, even though it
will be described only later, in Section 4 of Part II.
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Appendix

This appendix contains the detailed proof that the MSG model
does not admit a localized solution of the one-dimensional prob-
lem. The governing equations are outlined in Section 7.2. The gen-
eral form of the solution is given by (64) in the plastic region and
by (66) in the elastic region. We look for a solution with plastic
strain increments localized in an interval Ip ¼ ½0; Lp�, adjacent to
the boundary of the shear layer at x ¼ 0, and we further assume
that the layer is sufficiently thick compared to the thickness of
the localized zone, so that the analysis can be performed on a
semi-infinite interval ½0;1Þ. The boundary condition at the elastic
boundary is then replaced by the requirement that the strain must
remain bounded as x!1, which implies that the integration con-
stant C4 in (66) must vanish.

Boundary condition vð0Þ ¼ 0 and continuity conditions for eðxÞ
and vðxÞ at x ¼ Lp lead to a set of three linear equations, from
which it is possible to determine the three remaining integration
constants. To simplify the subsequent derivations, we introduce
symbols l ¼ H=E, ei ¼ expðkiLpÞ, i ¼ 1;2;3, and

K12 ¼ k1k2ðe1 � e2Þ ð67Þ
K3 ¼ k3ðk1e2 � k2e1Þ ð68Þ
K ¼ lK12 þ ð1þ lÞK3 ð69Þ

The integration constants can then be expressed in the simple form

C1 ¼
k2k3

K
ð70Þ

C2 ¼ �
k1k3

K
ð71Þ

C3 ¼
K12

e3K
ð72Þ

Note that the size of the plastic region, Lp, is still undetermined. For
an arbitrary Lp > 0, we can construct a formal solution that satisfies
the equilibrium equation and the boundary and continuity condi-
tions. However, the solution is admissible only if it also satisfies
the loading–unloading conditions _jðxÞP 0 for 0 6 x 6 Lp and
_rðxÞ � _rYðxÞ 6 0 for Lp 6 x.

Since

_rðxÞ � _rYðxÞ ¼ _t½1þ ð1� nblÞC3 expðk3xÞ� ð73Þ

and k3 is negative, the condition _rðxÞ � _rYðxÞ 6 0 written for x!1
implies that the traction rate _t must not be positive. Provided that
_t < 0, condition _rðxÞ � _rYðxÞ 6 0 is satisfied for all x P Lp if it is
satisfied at x ¼ Lp, which is the case if
1þ ð1� nblÞC3e3 P 0 ð74Þ

This is equivalent to
ð1þ lÞðK12 þK3Þ � nblK12

K
P 0 ð75Þ

Nonnegative value of the plastic strain rate

_jðxÞ ¼
_t
H

1þ 1�bnlk1

k3

� �
C1 expðk1xÞþ 1�bnlk2

k3

� �
C2 expðk2xÞ

� �
ð76Þ

at x ¼ Lp is guaranteed if

ð1� nbÞK12 þK3

K
6 0 ð77Þ

The signed unity n is defined as the sign of the strain-gradient rate
in the plastic region, and can be evaluated as

n ¼ sgn _e0ðLpÞ ¼ sgn
_t

Et
ðC1e1k1 þ C2e2k2Þ

� �

¼ sgn
_t

KEt
k1k2k3ðe1 � e2Þ

� �
ð78Þ

Since _t < 0, k1 > 0, k2 < 0, k3 < 0, e1 ¼ expðk1LpÞ > expðk2LpÞ ¼ e2,
and sgnEt ¼ sgnl (here we tacitly assume that 1þ l > 0, i.e.,
Eþ H > 0, which is the usual assumption that excludes snapback
in the stress–strain diagram under uniform strain), we get
n ¼ �sgnl sgnK ð79Þ
According to the definition of b, Eq. (62), we have sgnb ¼ �sgnl,
and so sgnðbnÞ ¼ sgnK.

Now we are ready to discuss conditions (75) and (77). Recall
that K12 and K3 are negative. K must not be zero, otherwise the
integration constants would tend to infinity.

(1) If K is negative, then bn is negative and the numerator in
(77) is negative; consequently, this condition is violated.

(2) If K is positive, then bn is positive. Inequalities (75) and (77)
rewritten for the numerators only can be combined to get
l 6 � K12 þK3

ð1� nbÞK12 þK3
ð80Þ
However, since bn is now positive, the right hand side in (80)
is smaller than �1. Values of l ¼ H=E smaller than �1 are not
allowed because the material model would exhibit snapback
in the stress–strain diagram under uniform strain.
In summary, with l > �1 it is impossible to satisfy conditions
(75) and (77) simultaneously, and the localized solution is never
admissible.
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