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A fast method for solving the volume integral equation is introduced for the solution of forward and
inverse multiple scattering problems in an elastic 3-D full space. For both forward and inverse
scattering analysis, the volume integral equation in the wavenumber domain is used. By means of the
discrete Fourier transform, the volume integral equation in the wavenumber domain can be dealt with
as a Fredholm equation of the 2nd kind with respect to a non-Hermitian operator on a finite dimensional
vector space. The Bi-CGSTAB method is employed to construct the Krylov subspace in the wavenumber
domain. The current procedure establishes a fast and simplified method without requiring the derivation
of a coefficient matrix. Several numerical results validate the accuracy and effectiveness of the current
method for both forward and inverse scattering analysis. According to the numerical results, the recon-
struction of inhomogeneities of the wave field is successful, even for multiple scattering of several cubes.
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1. Introduction

The analysis of elastic wave propagation and scattering is an
important issue in fields such as earthquake engineering, non-
destructive testing and exploration for energy resources. It is well
recognized that the boundary integral equation method has played
an important role in the analysis of both forward and inverse scat-
tering problem since the 1980s. For example, Colton and Kress
(1998) provided a survey of a vast number of articles on forward
and inverse scattering analyses. They also presented integral equa-
tion methods for acoustic and electromagnetic wave propagation,
based on the theory of operators (Colton and Kress (1983, 1998)).
Recently, Guzina et al. (2003), Fata and Guzina (2004), Guzina
and Chikichev (2007) have dealt with inverse scattering problems
in elastodynamics.

The type of volume integral equation known as the Lippmann–
Schwinger equation (Colton and Kress, 1998) has been an efficient
tool for theoretical investigation in the field of the quantum
mechanics (see, for example, Ikebe, 1960). Recently, applications
of the volume integral equation to scattering analysis have also
appeared. For example, De Zaeytijd et al. (2008) presented the
MLFMA-FFT method to analyze electro-magnetic waves, and Yang
et al. (2008) employed a CG-FFT approach to solve elastic scatter-
ll rights reserved.
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ing problems. Those methods established a fast algorithm to solve
the volume integral equation via a Fast Fourier transform, which is
used for efficient calculation of the convolution integral.

This paper presents another fast method for the volume integral
equation, applicable to the direct forward and inverse elastic wave
scattering problems, which is an extension of the author’s
approach for an elastic half space (Touhei, 2009). The starting point
of the analysis is the volume integral equation in the wavenumber
domain, which includes the operators of the Fourier integral and its
inverse transforms. By replacing these operators with discrete Fou-
rier transforms, the volume integral equation in the wavenumber
domain can be treated as a Fredholm equation of the 2nd kind with
a non-Hermitian operator on a finite dimensional vector space. The
spatial differential operations with respect to the displacement
field are resolved by means of a discrete Fourier transform. The
Krylov subspace to approximate the solution of the equation is
constructed in the wavenumber domain using the Bi-CGSTAB
method and FFT. These points differ from previous volume integral
equation methods such as the CG-FFT method (Yang et al., 2008),
in which the formulation is carried out in the space domain in
terms of particle velocities and stress tensors.

An important property of the volume integral equation in the
wavenumber domain is that it separates the scattered wave field
from the fluctuation of the medium. This property yields the pos-
sibility of inverse scattering analysis. It is true that there are sev-
eral methods for inverse scattering analysis that make use of the
volume integral equation (for example, Kleinman and van den Berg
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(1992): Colton and Kress (1998)). In these methods, they investi-
gate the relationship between the far field patterns and the fluctu-
ation of the medium in the volume integral equation in the space
domain. Under these circumstances, the investigation of the
possibility of solving the volume integral equation in the wave-
number domain is also needed for the inverse scattering analysis.

In the following, the definition of the direct forward and inverse
scattering problem dealt with in this paper is clarified. After pro-
viding an explanation of the properties of the volume integral
equation in the wavenumber domain, a fast method for the
forward and inverse scattering analyses is provided. Several
numerical calculations are presented to validate this formulation.

2. Method for forward and inverse scattering analysis

2.1. Definition of the problem

Fig. 1(a) shows the concept of the problem defined in this paper.
A plane incident wave is propagating towards an inhomogeneous
region where material properties fluctuate with respect to their
reference values. The forward and inverse scattering problems
dealt with in this paper can be described as follows:

Definition 1. The forward scattering problem is to determine the
scattered wave field from information about the regions of
Fig. 1. Spatial spreads of the fluctuatio
fluctuation, the background structure of the wave field, and the
plane incident wave.
Definition 2. The inverse scattering problem is to reconstruct the
fluctuated areas from information about the scattered waves, the
background structure of the wave field, and the plane incident
wave.

The purpose of this section is to provide the basic equations and
an integral equation to state the above problems in a mathematical
way.

The wave field considered in this paper is 3-D elastic full space,
in which a Cartesian coordinate system is employed. A spatial
point in the wave field is expressed as:

x ¼ ðx1; x2; x3Þ 2 R3 ð1Þ

where the subscript index indicates the component of the vector.
The fluctuation of the medium is expressed by the Lamé constants
so that:

kðxÞ ¼ k0 þ ~kðxÞ
lðxÞ ¼ l0 þ ~lðxÞ; ðx 2 R3Þ

ð2Þ

where k0 and l0 are the background Lamé constants of the wave
field, and ~k and ~l are their fluctuations. The back ground Lamé con-
n of the Lamé constants ~k and ~l.
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stants are positive and bounded. The magnitudes of the fluctuations
in this paper are assumed to satisfy

j ~kðxÞj < k0; j ~lðxÞj < l0 ð3Þ

Let the time factor of the wave field be expð�ixtÞ, where x is
the circular frequency and t is the time. Then, the equilibrium
equation of the wave field is expressed as:

@jrij þ qx2ui ¼ 0 ð4Þ

where rij is the stress tensor, @j is the partial differential operator, q
is the mass density, and ui is the total displacement field. The sub-
script indices i and j in Eq. (4) are the components of the Cartesian
coordinate system to which the summation convention is applied.
The constitutive equation showing the relation between the stress
and strain tensors is as follows:

rij ¼ kdij�kk þ 2l�ij ð5Þ

where dij is the Kronecker delta, and �ij is the strain tensor given by

�ij ¼ ð1=2Þð@iuj þ @juiÞ ð6Þ

Substituting Eqs. (6) and (5) into Eq. (4) yields the following
governing equation for the current problem:

ðLijð@1; @2; @3Þ þ dijqx2ÞujðxÞ ¼ Nijð@1; @2; @3; xÞujðxÞ ð7Þ

where Lijð@1; @2; @3Þ and Nijð@1; @2; @3; xÞ are the differential operators
constructed by the background Lamé constants and their fluctua-
tions, respectively. The explicit forms of the operators Lij and Nij

are given by

Lijð@1; @2; @3Þ ¼ ðk0 þ l0Þ@i@j þ l0dij@k@k ð8Þ
Nijð@1; @2; @3; xÞ ¼ �ð~kðxÞ þ ~lðxÞÞ@i@ j � dij ~lðxÞ@k@k

� @i
~kðxÞ@j � dij@k ~lðxÞ@k � @j ~lðxÞ@i ð9Þ

The volume integral equation can now be presented here. As-
sume the right side of Eq. (7) as the inhomogeneous term for the
equation. Then, the solution of Eq. (7) is expressed by the following
volume integral equation:

uiðxÞ ¼ uðIÞi ðxÞ �
Z

R3
gijðx; yÞNjkð@1; @2; @3; yÞukðyÞdy ð10Þ

where uðIÞi and gij are the plane incident wave and the Green’s func-
tion, respectively, which satisfy the following equations:

ðLijð@1; @2; @3Þ þ dijqx2ÞuðIÞj ðxÞ ¼ 0 ð11Þ
ðLijð@1; @2; @3Þ þ dijqx2Þgjkðx; yÞ ¼ �dikdðx� yÞ ð12Þ

Note that dð�Þ in Eq. (12) is the Dirac delta function. It is conve-
nient to express the volume integral equation in terms of the scat-
tered wave field

v iðxÞ ¼ uiðxÞ � uðIÞi ðxÞ ð13Þ

which becomes:

v iðxÞ ¼ �
Z

R3
gijðx; yÞNjkð@1; @2; @3; yÞuðIÞk ðyÞdy

�
Z

R3
gijðx; yÞNjkð@1; @2; @3; yÞvkðyÞdy ð14Þ

By means of Eq. (14), the forward and inverse scattering problems
can be stated mathematically. The forward scattering problem is
to determine v i after gij;Njk and uðIÞk have been provided. The inverse
scattering problem determines ~k and ~l in Njk in Eq. (14) after gij;v i

and uðIÞk have been provided. A method for dealing with Eq. (14) is
explained in the remainder of this section.
2.2. The Fourier transform and its application to the volume integral
equation

The following Fourier integral and its inverse transforms:

ðFuiÞðnÞ ¼
1ffiffiffiffiffiffi
2p
p 3

Z
R3

uiðxÞ expð�ix � nÞdx

ðF�1ûiÞðxÞ ¼
1ffiffiffiffiffiffi
2p
p 3

Z
R3

ûiðnÞ expðix � nÞdn
ð15Þ

play an important role in the formulation in this paper, where
n ¼ ðn1; n2; n3Þ 2 R3 is a point in the wavenumber space, x � n is the
scalar product defined by

x � n ¼ x1n1 þ x2n2 þ x3n3 ð16Þ

and F and F�1 are the operators for the Fourier and its inverse
transforms, respectively. In the following formulation, the symbol
^ attached to a function is used to express the Fourier transform
of the function. For example, ûi denotes the Fourier transform of
ui. The domain of the operators for F and F�1 defined in Eq. (15)
is assumed to be L2ðR3Þ, so that the convergence of the integrals
should be understood in the sense of the limit in mean. In the fol-
lowing formulation, the domain of F and F�1 for the Green’s func-
tion is assumed to be extended from L2ðR3Þ to the distribution
(Hörmander, 1983).

The Fourier transform of the equation for the Green’s function
defined by Eq. (12) becomes

Lijðin1; in2; in3Þĝjkðn; yÞ ¼ �
1ffiffiffiffiffiffi
2p
p 3 dik expð�in � yÞ ð17Þ

Eq. (17) leads to

ĝijðn; yÞ ¼
1ffiffiffiffiffiffi
2p
p 3 expð�in � yÞĥijðnÞ ð18Þ

where ĥijðnÞ is expressed by

ĥijðnÞ¼
dij

l0ðjnj
2�k2

T � i�Þ
�

ninj

2l0ð1�m0Þ
1

ðjnj2�k2
T � i�Þðjnj2�k2

L � i�Þ
ð19Þ

In Eq. (19), m0 is the Poisson ratio obtained from the back ground
Lamé constants k0 and l0; kL and kT are the wavenumber of the P
and S waves obtained from

kL ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0 þ 2l0Þ=q
p

kT ¼
xffiffiffiffiffiffiffiffiffiffiffi
l0=q

p ð20Þ

jnj2 is given by

jnj2 ¼ n2
1 þ n2

2 þ n2
3 ð21Þ

and � is the infinitesimally small positive number.
Now, let us investigate the Fourier transform of function wi gi-

ven in the form

wiðxÞ ¼
Z

R3
gijðx; yÞfjðyÞdy ð22Þ

to obtain the Fourier transform of the volume integral equation.
Note that fjðyÞ is in SðR3Þ, that is, the space of rapidly decreasing
functions (Reed and Simon, 1975). An interchange of the order of
integration yields
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ŵiðnÞ ¼
1ffiffiffiffiffiffi
2p
p 3

Z
R3

Z
R3

gijðx; yÞfjðyÞdy
� �

expð�ix � nÞdx

¼ ĥijðnÞ
1ffiffiffiffiffiffi
2p
p 3

Z
R3

fjðyÞ expð�in � yÞdy ¼ ĥijðnÞf̂ jðnÞ ð23Þ

In particular, the Fourier transform of wi can be separated into
the product of ĥij and f̂ j. Based on literature (Hörmander, 1983),
fj can be extended to distributions with compact support. Accord-
ing to Eq. (23), the Fourier transform of the volume integral equa-
tion shown in Eq. (14) becomes:

v̂ iðnÞ ¼ �ĥijðnÞðFNjkuðIÞk ÞðnÞ � ĥijðnÞðFNjkF
�1v̂kÞðnÞ ð24Þ

In the case where an explicit form of the plane incident wave is
provided, NjkuðIÞk shown in the right side of Eq. (24) can be simpli-
fied. As an example, a plane incident pressure (P) wave propagating
along the x3 axis has the following form:

uðIÞi ðxÞ ¼ a@i expðikLx3Þ ð25Þ

where a is the amplitude of the P wave potential. In this case, NjkuðIÞk

can be expressed as

NjkuðIÞk ðxÞ ¼ qjðxÞ expðinp � xÞ ð26Þ

where

q1ðxÞ ¼ ak2
L@1

~kðxÞ
q2ðxÞ ¼ ak2

L@2
~kðxÞ

q3ðxÞ ¼ ak2
L ð@3 þ ikLÞð~kðxÞ þ 2~lðxÞÞ

ð27Þ

Note that np is the wavenumber vector of the plane incident wave
whose components are:

np ¼ ð0;0; kLÞ ð28Þ

As a result, Eq. (24) can be rewritten as

v̂ iðnÞ ¼ �ĥijðnÞq̂jðn� npÞ � ĥijðnÞðFNjkF
�1v̂kÞðnÞ ð29Þ

A method for forward and inverse scattering analysis is devel-
oped in the following based on Eq. (29).
2.3. Method for forward scattering analysis

At this point, let us rewrite Eq. (29) in the following form:

v̂ iðnÞ ¼ f̂ iðnÞ �Aikv̂k ð30Þ

where f̂ i is given by

f̂ iðnÞ ¼ �ĥijðnÞq̂jðn� npÞ ð31Þ

which can be treated as a given function and Aik is the linear oper-
ator such that

Aik ¼ ĥijðnÞFNjkF
�1 ð32Þ

Eq. (30) shows clearly a Fredholm integral equation of the sec-
ond kind, in which the linear operator is constructed by the multi-
plication operator ĥij, the Fourier and its inverse transforms, and
the differential operator Njk. For the actual numerical calculations
in this paper, the Fourier and its inverse transforms are dealt with
by means of the discrete Fourier transform. Naturally, the discrete
Fourier transform is evaluated by means of an FFT. Let us denote
the operators for the discrete Fourier transforms as FD and F�1

D .
For the operators FD and F�1

D , the subsets in R3 below are defined
as follows:

Dx ¼ fðn1Dx1; n2Dx2;n3Dx3Þjn1 2 N1;n2 2 N2;n3 2 N3g � R3 ð33Þ
Dn ¼ fðn1Dn1;n2Dn2;n3Dn3Þjn1 2 N1;n2 2 N2; n3 2 N3g � R3 ð34Þ
These subsets define a finite number of grid points, where
Dxj; ðj ¼ 1;2;3Þ is the interval of the grid in the space domain,
Dnj; ðj ¼ 1;2;3Þ is the interval of the grid in the wavenumber
space, and N1;N2 and N3 are sets of integers defined by

N1 ¼ fnj � N1=2 6 n < N1=2g
N2 ¼ fnj � N2=2 6 n < N2=2g
N3 ¼ fnj � N3=2 6 n < N3=2g

ð35Þ

where ðN1;N2;N3Þ defines the number of grid points in R3. For the
discrete Fourier transform, note that there is a relation between
Dxj and Dnj such that

DxjDnj ¼
2p
Nj
; ðj ¼ 1;2;3Þ ð36Þ

The explicit form of the discrete Fourier and its inverse trans-
forms are expressed as

ðFDuðDÞÞðnðlÞÞ ¼
Dxffiffiffiffiffiffi
2p
p 3

X
k2N1�N2�N3

uðDÞðxðkÞÞ expð�ixðkÞ � nðlÞÞ

ðF�1
D ûðDÞÞðxðkÞÞ ¼

Dnffiffiffiffiffiffi
2p
p 3

X
l2N1�N2�N3

ûðDÞðnðlÞÞ expðixðkÞ � nðlÞÞ
ð37Þ

where Dx and Dn are denoted by

Dx ¼ Dx1Dx2Dx3; Dn ¼ Dn1Dn2Dn3 ð38Þ

and xðkÞ and nðlÞ expressed by

xðkÞ ¼ xðkÞ1 ; xðkÞ2 ; xðkÞ3

� �
; nðlÞ ¼ nðlÞ1 ; n

ðlÞ
2 ; n

ðlÞ
3

� �
ð39Þ

are the points in Dx of the kth grid and in Dn of the lth grid, respec-
tively. In addition, uD and ûD are the discrete functions defined on
the grids Dx and Dn.

Based on the discrete Fourier transform, a calculation for the
derivative of a function is made possible. For example, @jf ðxÞ is ex-
pressed by

@jf ðxÞ ¼ ðF�1
D ðinjFDf ÞÞðxÞ; x 2 Dx; n 2 Dn ð40Þ

Therefore, treatments for the operator Njk are also made possi-
ble by the discrete Fourier transform. Let NðDÞjk be the discretization
of the operator for Njk by means of the discrete Fourier transform.
Then, the discretization for the operator Aij is defined by

AðDÞik ¼ ĥijðnÞFDNðDÞjkF�1
D ð41Þ

As a result of the discretization, Eq. (30) becomes

v̂ ðDÞiðnÞ ¼ f̂ ðDÞiðnÞ �AðDÞijv̂ ðDÞjðnÞ ðn 2 DnÞ ð42Þ

The domain and range of the linear operator in Eq. (41) are in
the set of functions defined on finite number of grids in the wave-
number space Dn. Namely, the domain and range for the operator
are finite dimensional vector spaces. Note that the operator NðDÞjk
included in AðDÞij is bounded since the differential operations are
approximated by the discrete Fourier transform. In the case that
the domain and range of operator are finite dimensional vector
spaces, the operator has matrix representations (Kato, 1980). Based
on this result, a treatment for the linear algebraic equation such as
the Krylov subspace iteration method (Barrett et al., 1994) is appli-
cable to Eq. (42). It is known that the Krylov subspace iteration
methods have been developed for systems of algebraic equations
in matrix form:

Ax ¼ b ð43Þ

where A is the matrix, x and b are unknown and given vectors,
respectively. The Krylov subspace is defined by

Km ¼ span fb;Ab;A2b . . . ;Ambg ð44Þ
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where m is the number of iterations. The Krylov subspace iteration
method determines the coefficients of the recurrence formula to
approximate the solution from the orthonormal basis of Km during
the iterative procedure. Note that matrix A can be regarded as the
linear transform on a finite dimensional vector space. In this aspect,
the construction of the Krylov subspace is possible, even if the lin-
ear transform is constituted by the discrete Fourier transforms.
Namely, it is possible to solve Eq. (42) by the Krylov subspace
iteration method, where the construction of the Krylov subspace
is carried out by FFT. As a result, a fast method for the volume inte-
gral equation without the derivation of the matrix is expected to be
established. The current method is also expected to use less com-
puter memory for numerical analysis. Since the operator AðDÞij is
non-Hermitian due to the presence of NðDÞjk, the Bi-CGSTAB method
(Barrett et al., 1994) is selected to solve Eq. (42). The algorithm for
the Bi-CGSTAB method is shown in Fig. 2, where (n+1) denotes the
parameter for the number of iterations. In the following numerical
examples, the number of iterations will be discussed by means of
the parameter (n+1).
2.4. Method for inverse scattering analysis

According to Eq. (27) the explicit form of q̂jðn� npÞ shown in the
first term of the right side of Eq. (29) becomes:

q̂1ðn� npÞ ¼ ak2
L in1

~̂kðn� npÞ

q̂2ðn� npÞ ¼ ak2
L in2

~̂kðn� npÞ

q̂3ðn� npÞ ¼ ak2
L in3ð~̂kðn� npÞ þ 2 ~̂lðn� npÞÞ

ð45Þ

It is found from Eq. (45) that q̂j is the function describing the
fluctuation of the medium. Therefore, the inverse scattering analy-
sis becomes possible if q̂j is obtained from Eq. (29) after the scat-
tered wave field v̂ i and the background structure of the wave
field represented by ĥij have been provided. We introduce the vec-
tor Qi such that qiðxÞ ¼ ak3

L k0QiðxÞ to obtain the equation for the in-
verse scattering analysis in dimensionless form. Let us multiply
both sides of Eq. (29) by ð�ĥ�1

ij =ðak0k3
L ÞÞ, which leads to

ĉjðnÞ ¼ bQ jðn� npÞ þ
1

ak3
Lk0

ðFNjkF
�1v̂kÞðnÞ ð46Þ

where ĉj is defined by

ĉjðnÞ ¼ �ĥ�1
ji ðnÞv̂ iðnÞ=ðak0k3

L Þ ð47Þ
Fig. 2. Algorithm for the Bi-CGSTAB method.
Next, let the second term of Eq. (46) be modified, thus:

1

ak3
L k0

FNjkF
�1v̂kðnÞ ¼FMjkF

�1 bQ kðnÞ ð48Þ

where Mjk is the differential operator determined by the scattered
wave field. The remainder of this section is on how to obtain an
explicit form for Mjk, so that Eq. (46) can be used for obtaining bQ ,
which makes an estimation for fluctuation of the medium possible.
To obtain the explicit form for Mjk, define aj ¼ Njkvk, which can be
expressed as

aj ¼ �ð~kþ ~lÞ@jDv � ~lgj � ð@j
~kÞDv � 2ð@k ~lÞ�kj ð49Þ

where Dv and gj are defined by

Dv ¼ @lv l

gj ¼ ð@
2
1 þ @

2
2 þ @

2
3Þv j

ð50Þ

and �jk is the strain tensor due to the scattered wave field defined by
Eq. (6). Let the separation of the fluctuation of the medium and the
scattered wave field for aj be denoted by

aj ¼ �mjkpk ð51Þ

where pk is the state vector for the fluctuation of the medium whose
components are

p1 ¼ @1
~kðxÞ=kL; p2 ¼ ~kðxÞ; p3 ¼ ~lðxÞ ð52Þ

and mjk is the differential operator including the effects of the scat-
tered wave field so that

½mjk� ¼
kLDv @1Dv @1Dv þ g1 þ 2�1l@l

0 Dv@2 þ @2Dv @2Dv þ g2 þ 2�2l@l

0 Dv@3 þ @3Dv @3Dv þ g3 þ 2�3l@l

2
64

3
75 ð53Þ

Likewise, let the separation of the fluctuation of the medium
and the scattered wave field for Q j defined by Eq. (27) be denoted
by

Qj ¼ jjkpk ð54Þ

where jjk is also the operator including the effects of the scattered
wave field so that:

½jjk� ¼
1

kLk0

kL 0 0
0 @2 0
0 ð@3 þ ikLÞ 2ð@3 þ ikLÞ

2
64

3
75 ð55Þ

According to Eqs. (54) and (55), the formal representation of the
relation between pj and Q j becomes

pj ¼ sjkQk ð56Þ

where sjk is the inverse of jjk whose components are

½sjk� ¼ k0kL

k�1
L 0 0

0 @�1
2 0

0 �ð1=2Þ@�1
2 �ð1=2Þð@3 þ ikLÞ�1

2
664

3
775 ð57Þ

Based on Eqs. (51) and (54), the following relation can be
derived:

aj ¼ Njkvk ¼ �mjkpk ¼ �mjksklQl ð58Þ

As a result, the operator Mjk defined by Eq. (48) can be con-
structed as follows:

Mjl ¼ �
1

ak3
L k0

mjkskl ð59Þ

By means of the operator, Eq. (46) is modified into
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ĉiðnÞ ¼ bQ iðn� npÞ þ ðFMijF
�1ÞbQ jðnÞ ð60Þ

At this point, we have two tasks for Eq. (60). One is to modify
Eq. (60) into the form of a Fredholm equation of the second kind.
The other goal is to clarify the treatment of the operator sjk, which
includes @�1

2 and ð@3 þ ikLÞ�1. To modify Eq. (60) into a Fredholm
equation of a second kind, the shift operator SðnpÞ defined by

SðnpÞbQ ðn� npÞ ¼ bQ ðnÞ ð61Þ

is introduced. An explicit form of the shift operator is possible in
terms of the Fourier transform, so that

SðnpÞ ¼F expðix � npÞF�1 ð62Þ

Application of the shift operator to both sides of Eq. (60) leads to

SðnpÞĉiðnÞ ¼ bQ iðnÞ þ ðF expðix � npÞMijF
�1 bQ jÞðnÞ ð63Þ

which clearly has the form of a Fredholm equation of the second kind.
To clarify the treatments of @�1

2 in sjk, consider the following
equation:

@2uðxÞ ¼ f ðxÞ; f 2 SðR3Þ ð64Þ

Formally, it is possible to write the solution of the equation as

uðxÞ ¼ @�1
2 f ðxÞ ¼

Z 1

�1
Hðx2 � x02Þf ðx1; x02; x3Þdx02 ð65Þ

where H is the unit step function. It is clear that H 2S0ðRÞ, where
S0 is the set of tempered distributions (Reed and Simon, 1975).
Therefore, the Fourier transform of H is defined byZ 1

�1

bHðn2Þuðn2Þdn2 ¼
Z 1

�1
Hðx2Þûðx2Þdx2 ¼

Z 1

0
ûðx2Þdx2

¼ lim
R!1

Z R

0
ûðx2Þdx2 ð66Þ

where u 2S. The last term of Eq. (66) yields,

ffiffiffiffiffiffi
2p
p Z R

0
ûðx2Þdx2 ¼

Z R

0

Z 1

�1
uðn2Þexpð�ix2n2Þdn2 dx2

¼ i
Z 1

�1
e�iRn2

uðn2Þ�uð0Þ
n2

dn2þ iuð0Þ

�
Z 1

�1

e�iRn2 �1
n2

dn2� i
Z 1

�1

uðn2Þ�uð0Þ
n2

dn2 ð67Þ

As a result, the Fourier transform of H can be expressed as

bHðn2Þ ¼ �
iffiffiffiffiffiffi
2p
p p:v:

1
n2
þ ipdðn2Þ

� �
ð68Þ

because of the following results:Z 1

�1
e�iRn uðn2Þ �uð0Þ

n2
dn! 0; ðR!1Þ ð69Þ

iuð0Þ
Z T

�T

e�iRn2 � 1
n2

dn2 ! puð0Þ; ðT !1Þ ð70Þ

� i
Z 1

�1

uðn2Þ �uð0Þ
n2

dn2 ¼ �i p:v:
Z 1

�1

uðn2Þ
n2

dn2 ð71Þ

where p.v. denotes Cauchy’s principal value. Eq. (68) can also be ex-
pressed as (Friedlander and Joshi, 1998),

bHðn2Þ ¼
1ffiffiffiffiffiffi
2p
p 1

in2 þ �
ð72Þ

and therefore, the Fourier transform for uðxÞ in Eq. (65) becomes

ûðnÞ ¼ 1
in2 þ �

f̂ ðnÞ ð73Þ

The treatment for @�1
2 is resolved by means of Eq. (73), which is

represented by
@�1
2 f ¼F�1 1

in2 þ �
Ff ð74Þ

Likewise, we obtain

ð@3þ ikLÞ�1f ¼
Z 1

�1
Hðx3�x03ÞexpðikLðx3�x03ÞÞf ðx1;x2;x03Þdx03 ð75Þ

which yields

ð@3 þ ikLÞ�1f ¼F�1 1
in3 þ ikL þ �

Ff ð76Þ

As can be seen from Eqs. (74) and (76), @�1
2 and ð@3 þ ikLÞ�1 in

the operator sij can be dealt with and resolved in terms of the Fou-
rier transform. As a result of the above procedure, the treatments
of the differential operator Mij defined by Eq. (48) can also be han-
dled by the Fourier transform. After all, as in the formulation for
the forward scattering problem, Eq. (63) can be discretized into
the following form:

SDðnpÞĉðDÞiðnÞ ¼ bQ ðDÞiðnÞ þBðDÞij bQ ðDÞj; n 2 Dn ð77Þ

where BðDÞij is the operator expressed by

BðDÞij ¼FD expðix � npÞMðDÞijF
�1
D ð78Þ

The Krylov subspace iteration technique is also applied to Eq.
(77) in the analysis. As a result of the above procedure, a fast meth-
od for the analysis of the inverse scattering is expected to be
established.

3. Numerical examples

3.1. Verification of the method for the volume integral equation

As the first numerical example in this paper, we examine the
accuracy of the current method by calculating the solution to a
simple forward scattering problem. The region of fluctuation for
the current model is assumed to have spherical symmetry, which
enables us to compare the current solution using a spherical har-
monics expansion. The fluctuations of Lamé constants having
spherical symmetry for the numerical model are set as

~kðxÞ ¼ Ak exp �fkjxj2
� �

~lðxÞ ¼ Al exp �fljxj2
� �

; ðx 2 R3Þ
ð79Þ

where Ak;Al; fk and fl are the parameters for describing the ampli-
tudes and spatial spreads of the fluctuations.

To construct a solution for the wave problem by means of
spherical harmonics, the following Stokes–Helmholtz decomposi-
tion, making use of the spherical coordinate system ðr; h;uÞ, is
employed:

uðxÞ ¼ rUþr�r� ðrW; 0;0Þ þ r� ðrX; 0;0Þ ð80Þ

where u is the displacement vector, r is the gradient operator and
U;W and X are the potentials for the P, SV and SH waves, respec-
tively. The spherical harmonic expansions for these potentials are
as follows:

Uðr; h;uÞ ¼
X1
n¼0

Pnðcos hÞ½a"nðrÞh
ð1Þ
n ðjLrÞ þ a#nðrÞh

ð2Þ
n ðjLrÞ�

Wðr; h;uÞ ¼
X1
n¼0

Pnðcos hÞ½b"nðrÞh
ð1Þ
n ðjT rÞ þ b#nðrÞh

ð2Þ
n ðjT rÞ�

Xðr; h;uÞ ¼
X1
n¼0

Pnðcos hÞ½c"nðrÞh
ð1Þ
n ðjT rÞ þ c#nðrÞh

ð2Þ
n ðjT rÞ�

ð81Þ

where Pn denote Legendre polynomials, hðsÞn ; ðs ¼ 1;2Þ is the spher-
ical Hankel function of nth order, an;bn and cn are the functions for
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Fig. 4. Convergence of the solution by the Bi-CGSTAB method.
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r, whose superscript " and # indicate the out-going and in-coming
waves, respectively, and jT and jL are the S and P wavenumbers,
respectively for the scattered wave field. The functions an;bn and
cn are determined by the governing equation, the radiation condi-
tion, the boundedness of the wave field at the origin of the wave
field, and the potential of the incident P wave propagating along
the x3 axis, which can be expanded as

expðikLx3Þ ¼
X1
n¼0

ð2nþ 1ÞinjnðkLrÞPnðcos hÞ ð82Þ

where kL is the wavenumber of the P wave for the background
structure of the wave field, and jn is a spherical Bessel function of
the first kind of nth order.

For the numerical analysis, the parameters for describing the
fluctuations are set as Ak ¼ Al ¼ 0:1 GPa and fk ¼ fl ¼ 0:1 km�2.
The background structure of the wave field for the Lamé constants
is set such that k0 ¼ 4 GPa; l0 ¼ 2 GPa and the mass density is set
at q ¼ 2 g=cm3. The background velocity of the P and S waves are 2
and 1 km/s, respectively. The analyzed frequency f ¼ 1 Hz, the
amplitude of the potential for the incident P wave is A ¼ 1:0�
105 cm2, intervals of the grids in the space domain for the discrete
Fourier transform are set by Dxj ¼ 0:25 ðkmÞ; ðj ¼ 1;2;3Þ and the
numbers for the grids are set as Nj ¼ 256 ðj ¼ 1;2;3Þ. As a result,
the intervals of the grid in the wavenumber space become Dnj ¼
2p=ðNj � DxjÞ � 0:098 km�1. In addition, � for Green’s function in
the wavenumber domain shown in Eq. (19) is set to 0.2.

Fig. 1(b)–(d) show the spatial spread of the fluctuation in the
x1 � x2; x1 � x3 and x2 � x3 planes for the numerical model, in
which the gradual variation of Lamé constants can be seen inside
a circle of radius 6 km. This radius of the region of fluctuations is
three times larger than the P wave length of 2 km.

Fig. 3 shows a comparison of the current solution with the
spherical harmonics expansion for the scattered displacements
fields at the x3 ¼ 4 km plane and along the x3 axis, respectively.
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It can be seen from Fig. 3(b) that the amplitudes of the backward
scattering are very small. The scattering waves are amplified inside
the region of fluctuation and tend to propagate to the forward re-
gion. According to the figure, these two solutions are in good
agreement. These numerical results validate the accuracy of the
current formulation. As mentioned before, the Bi-CGSTAB method
is selected here from the Krylov subspace iteration methods. The
relation between the relative error and the number of iterations
during the iterative process is shown in Fig. 4. The relative error
�r during the iteration is defined as

�r ¼
kv̂ ðDÞiðnÞ þAðDÞijv̂ ðDÞjðnÞ � f̂ ðDÞiðnÞk

kf̂ ðDÞjðnÞk
ð83Þ

which is equivalent to krðnþ1Þk=kbk shown in Fig. 2, where n is the
number of iteration. The rapid decrease of the relative error can
be seen in Fig. 4, which indicates that only two iterations resulted
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in a relative error less than 1:0� 10�5. The CPU time needed for the
two iterations was only 2 min, for which an AMD Opteron 2.4 GHz
processor and the ACML library for FFT (http://developer.amd.com/
cpu/Libraries/acml) was used.
Fig. 5. Analyzed model of

Fig. 6. Results of the forward scattering
3.2. Analysis of multiple scattering due to smooth fluctuations

Next, we investigate a multiple scattering problem arising from
smooth fluctuations of the wave field. The smoothness of the
smooth fluctuations.

analysis due to smooth fluctuations.

http://www.developer.amd.com/cpu/Libraries/acml
http://www.developer.amd.com/cpu/Libraries/acml
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smooth fluctuations by the Bi-CGSTAB method.
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fluctuations implies that they have continuous spatial derivatives.
The fluctuations in the x1 � x2 and x1 � x3 planes are shown in
Fig. 5, where the maximum amplitudes of ~k and ~l are 0.18 GPa.
The background structure of the wave field, the analyzed fre-
quency, and the interval of the grids for the discrete Fourier trans-
form are the same as those for the previous numerical example.
Fig. 8. Results of the inverse scattering a
Fig. 6(a) and (b) shows the amplitudes of the scattered waves in
the x1 � x2 and x1 � x3 planes, respectively. According to Fig. 6 (a),
the scattered waves are prominent in the regions where fluctua-
tions of the medium are present. The regions for high amplitudes
of the scattered waves are found to be separated due to the loca-
tions for the fluctuations of the medium. Therefore, the effects of
multiple scattering are not very significant here. The reflection of
nalysis due to smooth fluctuations.
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the waves due to the incident wave is found to be small because of
the smooth fluctuations. According to Fig. 6(b), forward scattering
is noticeable with the narrow directionality in the x3 direction.
Interference of the scattered waves can be found in the far field
range of regions of the fluctuation.
Fig. 10. Analyzed model of di

Fig. 11. Results of the forward scattering ana
The spectral structure of the scattered waves in the n1 � n2 and
n1 � n3 planes are shown in Fig. 6(c) and (d), respectively. Accord-
ing to Fig. 6(c), the scattered waves propagating in the x1 � x2 plane
are produced by the P wave, and waves whose wavelength is long-
er than that of the P wave. In addition, the component of the P
scontinuous fluctuations.

lysis due to discontinuous fluctuations.
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Fig. 12. Convergence of the solution for the forward scattering analysis due to
discontinuous fluctuations by the Bi-CGSTAB method.
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wave whose wavenumber is 3:14 km�1 is noticeable in Fig. 6(c).
The reason is due to the fact that the incident wave is the P wave
and the fluctuations of the medium are stiffer compared to the
background structure. According to Fig. 6(d), the spectrum of the
scattered waves in n1 � n3 plane is found to be localized in a very
narrow region with a very high amplitude. The spectrum in this
Fig. 13. Results of the inverse scattering ana
localized region describes a P wave propagating along the x3 direc-
tion. This spectral structure helps to explain the properties of
Fig. 6(b).

The convergence of solutions for the analysis based on the Bi-
CGSTAB method is shown in Fig. 7. A rapid decrease in the relative
error can be found in Fig. 7. The speed of the decrease in the rela-
tive error here is almost the same as the result shown in Fig. 4.
Namely, only two iterations were required to make the relative er-
ror less than 1:0� 10�5.

The results of the inverse scattering analysis in the x1 � x2 and
x1 � x3 planes are shown in Fig. 8. For the analysis, � for expressing
@�1

2 and ð@3 þ ikLÞ�1 in the operator Mjk was set to 0.01. It is seen
from Fig. 8 that the amplitudes and the locations for the fluctua-
tions were successfully reconstructed from the scattered wave
field. Namely, Eq. (77) is effective and available for the inverse
scattering analysis in the case where the whole of the scattered
wave field is provided. Fig. 9 shows the convergence of the relative
error during the inverse scattering analysis. For a comparison, the
GCR method is also employed for the analysis. It is found from
Fig. 9 that the Bi-CGSTAB method does not show very good conver-
gence properties after several iterations, when compared to the
GCR method. Therefore, it would be convenient for us to have sev-
eral alternative iterative methods for the analysis by means of the
present method.
lysis due to discontinuous fluctuations.
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Fig. 14. Convergence of the solution for the inverse scattering analysis due to
discontinuous fluctuations.
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3.3. Analysis of multiple scattering due to discontinuous fluctuations

Finally, a multiple scattering problem due to discontinuous fluc-
tuations is investigated. The analyzed model is shown in Fig. 10, in
which the fluctuations of the medium are determined by several
cubes, and the incident P wave propagates along the x3 axis. The
expression for the fluctuations is given by

~kðxÞ ¼
XNf

i¼1

Aki
vQi
ðxÞ

~lðxÞ ¼
XNf

i¼1

Ali
vQi
ðxÞ; ðx 2 R3Þ

ð84Þ

where Nf is the number of cubes, Aki
and Ali

are the amplitudes of
the fluctuations for the Lamé constants ~k and ~l, respectively, and
vQ i

is the characteristic function defined by

vQi
ðxÞ ¼

1 when x 2 Qi

0 when x R Q i

	
ð85Þ

Note that Q i in Eq. (85) denotes a cubical region in R3.
For the analysis, the background Lamé constants, the intervals,

the number of grid points in the space and the wavenumber
domain, the analyzed frequency, the amplitude of the incident P
wave, and � for Green’s function are the same as those in the pre-
vious numerical example. The amplitude of the fluctuation in the
cubes is 0.1 GPa. As can be seen in Eq. (9), the derivative of the
Lamé constants are required for the volume integral equation.
The spatial derivatives of the Lamé constants are approximated
by the discrete Fourier transform as shown in Eq. (40).

The results of the forward scattering analysis are shown in
Fig. 11(a) and (b). The amplitudes of the scattered waves in the
x1 � x2 and x1 � x3 planes are presented here. According to
Fig. 11(a), the scattered waves can be seen mostly in the regions
where the fluctuations are present. The high amplitudes regions
for the scattered wave field are almost separated due to the loca-
tions for the fluctuations of the medium. This shows that the
reflections of the waves at the surface boundaries of the cubes
are not very strong. In particular, the effects of multiple scattering
are not very significant here. It is found from Fig. 11(b) that the
amplitudes for the forward scattering are noticeable in the
x1 � x3 plane. The directionality of forward scattering is wider
compared to the results due to the smooth fluctuations shown
in Fig. 6(b). The reason for this is that the scattered waves are
caused not only by the surfaces on the forward side, but also at
the corners of the cubes. Note that the size of the cubes for the
current analysis is small compared to the wavelength of the wave
field. Therefore, the amplitude itself for the scattered waves is
smaller compared to the previous results shown in Fig. 6(a) and
(b). Due to the same reason, the effects of multiple scattering as
well as those of backward scattering are small.

The spectral structure of the scattered waves in the n1 � n2 and
n1 � n3 planes are shown in Fig. 11(c) and (d), respectively. According
to Fig. 11(c), the wavenumber for the S wave, (i.e., 6:28 km�1), is
found to be prominent. Namely, the scattered waves propagating
in the x1 � x2 plane are almost the S wave itself. Those waves are
caused by the incident P wave on the lateral surfaces of the cubes.
On the other hand, the wavenumber for the P wave is prominent in
the n1 � n3 plane. Therefore, the scattered waves on the forward side
in the x1 � x3 plane are found to be P waves. The spread of the spec-
trum for the P wave in Fig. 11(d) explains the wide directionality of
the propagation of the scattered waves The relation between the rel-
ative error and the iteration number during the iterative process for
solving the forward problem is shown in Fig. 12, in which a rapid de-
crease in the relative error can also be seen.
The results of the inverse scattering analysis are shown in
Fig. 13 for the x1 � x2 and x1 � x3 planes. It is found in Fig. 13 that
the locations and amplitudes for the fluctuations of the medium
are successfully reconstructed. Therefore, the current method is
effective even for the identification of discontinuous fluctuations
of the wave field if the whole of the scattered wave field is pro-
vided. The convergence of the solution during the iterative process
is shown in Fig. 14. The convergence properties are compared by
the Bi-CGSTAB and GCR methods. The convergence properties for
both Bi-CGSTAB and GCR are very good. Note that the convergence
properties of the Bi-CGSTAB method in Fig. 14 are found to be bet-
ter than those in Fig. 9. One of the reasons for this is that the
amplitudes and spreads of the scattered wave field due to the
smooth fluctuations were larger than those of the current wave
field.

For inverse scattering analysis in a practical situations, the
whole of the scattered wave field is approximated from the limited
observed data. Further investigations and discussions would be
required in the future for inverse scattering analysis. For example,
estimations of the wave field by means of the far field patterns and
asymptotic expansion would be necessary for the volume integral
equation in these situations.

For both the forward and inverse scattering analysis, the
required CPU time depends on the number of grid points in R3,
the number of iterations, and the employed solver. Throughout
the numerical calculations in this paper, the CPU time was only
2 min if the Bi-CGSTAB method and two iterations were adopted.
4. Conclusion

A fast method for the volume integral equation applicable to
both forward and inverse scattering analysis has been developed
in this paper. The starting point of the formulation was the volume
integral equation in the wavenumber domain. The discrete Fourier
transform resolved the problem of the differential operations re-
quired in the volume integral equation and as a result a non-Her-
mitian linear operator on a finite dimensional vector space was
defined and utilized. The Bi-CGSTAB method and FFT were applied
to solve the integral equation in the wavenumber domain. The cal-
culation of a coefficient matrix, which consumes vast amounts of
memory, was not necessary. The mathematical advantage of the
volume integral equation in the wavenumber domain was that it
directly showed the relation between the fluctuation of the med-
ium and the scattered wave field. The formulation for inverse scat-
tering analysis made use of this. The shift operator was introduced
into the integral equation for inverse scattering analysis to modify
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the equation into a Fredholm equation of the second kind. Accord-
ing to the numerical examples, a fast and accurate method for the
volume integral equation was established. For example, the CPU
time to have accurate solutions was only 2 min. The reconstruction
of inhomogeneities of the wave field was also successful even for
multiple scattering of several cubes.
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