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a b s t r a c t

By applying Noether’s theorem to the elastic energy density in longitudinal shear problem, it is shown
that its symmetry-transformations of material space can be expressed by the real and imaginary parts
of an analytic function. This kind of the symmetry-transformations leads to the existence of a conserva-
tion law in material space, which does not belong to trivial conservation laws and whose divergence-free
expression gives a path-independent integral. It is found that by adjusting the analytic function, a finite
value can be obtained from this path-independent integral calculated around the material point with any
order singularity. For a sharp V-notch placed on the edge of homogenous materials and/or the interface of
bi-materials, application shows that the finite value obtained from this path-independent integral is
directly related to the notch stress intensity factor (NSIF) and does not depend on the location of integral
endpoints chosen respectively along two traction-free surfaces of which form a notch opening angle.
Usability is presented in an example to estimate the NSIF of a bi-material plate.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Real mechanical elements possess different kinds of elastic
stress concentrations, and sharp V-notches are a source of them,
to which there is a Williams’ exact solution (Williams, 1952,
1957). The intensity of the stress field near the tip of a sharp
V-notch is singular and quantified by means of the NSIF (Gross
and Mendelson, 1972; Seweryn and Molski, 1996). It is well-
known that Rice’s J-integral is path-independent around the entire
area occupied by an elastic plane, and a finite value from calculat-
ing this integral encircling the tip of a crack is an elastic fracture
parameter, namely, the energy release rate (Rice, 1968a,b). How-
ever, when applying J-integral to the tip of a sharp V-notch with
the unloaded notch surfaces, it vanishes with r ? 0 because there
is a r � r�(1�k) singularity with 0 < 1� k < 1

2 in stresses and strains
at the tip of a sharp V-notch (Williams, 1952, 1957). Recently,
some authors studied the J-integral analytically and numerically
for sharp V-notch problems in detail (Livieri, 2003, 2008; Chen
and Lu, 2004; Matvienko and Morozov, 2004; Berto and Lazzarin,
2007), and one of their contributions is to getting a finite value JL

based on J-integral calculated by encircling the sharp V-notch tip
(Lazzarin et al., 2002).

It is well-known that the J-integral given independently by
Eshelby (1951, 1970), Rice (1968a,b) and Cherepanov (1967,
1979) belongs to a conservation law of elastic materials in material
space (Herrmann, 1981), which is a divergence-free expression and
can be obtained by Noether’s theorem (Noether, 1918; Fletcher,
ll rights reserved.
1976; Shi et al., 2006). In this paper, we focus on the sharp V-notch
in longitudinal shear problem, which possesses the significance in
engineering (Noda and Takase, 2003; Zappalorto et al., 2008, 2009).
In Section 2, it is shown that a conservation law in material space
involves two functions which can be expressed by the real and
imaginary parts of an analytic function. In Section 3, by adjusting
this analytic function, a path-independent integral for a sharp
V-notch placed on the edge of homogeneous materials and/or the
interface of bi-materials is presented. Concluding remarks are
given in Section 4.
2. Conservation integrals

2.1. Special symmetry-transformations

For the longitudinal shear problem of elastic materials, the elas-
tic energy density is

W ¼ 1
2
r3ie3i ¼

1
2

Ge3ie3i ¼
1
2

Gu3;iu3;i; ð1Þ

where r3i is the stress, e3i the strain, u3 the displacement, and G the
shear modulus. Here, the summation convention for repeated indi-
ces is implied and the Latin indices run from 1 to 2. Making use of
Hooke’s law

r3i ¼ Ge3i; ð2Þ

when calculating the variation of an integral of the elastic energy
density (1), we obtain the field equation

r3i;i ¼ 0; ð3Þ
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and the related nature, homogenous boundary conditions. This re-
sult satisfies the requirement of Noether’s theorem (Noether, 1918).

It is convenient for us to use Lie’s infinitesimal invariance crite-
rion to compute the symmetry groups of the elastic energy density
(1). By following the work of Olver (1993), for a first order varia-
tional problem, all possible conserved quantities Pi and non-trivial
conservation laws derived from the invariance of the elastic energy
density (1) can be formulated as

Pi ¼ fpTip þ gr3i; ð4Þ

DiPi ¼ 0; ð5Þ

where

Di ¼
@

@xi
þ @

@u3
u3;i þ

@

@u3;p
u3;pi þ � � � ; and

Tip ¼Wdip � r3iu3;p ð6Þ

is the energy–momentum tensor, dip the Kronecker delta. Here, fi

and g represent the symmetry-transformations of space and the
displacement u3, respectively, in an infinitesimal form of one
parameter transformation group

x01 ¼ x1 þ ef1ðx1; x2;u3Þ; x02 ¼ x2 þ ef2ðx1; x2;u3Þ;
u03 ¼ u3 þ egðx1; x2;u3Þ; ð7Þ

where e is an infinitesimal group parameter. In order to find func-
tions fi and g in expression (4), we expand Eq. (5) as follows

G
@g
@xi

u3;i þ
1
2

2
@g
@u3
þ @f2

@x2
� @f1

@x1

� �
u2

3;1 þ
1
2

2
@g
@u3
þ @f1

@x1
� @f2

@x2

� �
u2

3;2

�

� @f1

@x2
þ @f2

@x1

� �
u3;1u3;2 �

1
2
@fi

@u3
u3;iu3;pu3;p

�
¼ 0: ð8Þ

Since Noether’s theorem (Noether, 1918) demands that Eq. (8) van-
ish identically, the coefficients of all the independent linear, qua-
dratic and cubic terms of u3,i must be equal to zero. This
requirement gives the determining equations as follows

u3;i :
@g
@xi
¼ 0; ði ¼ 1;2Þ; ð9Þ

u2
3;1 : 2

@g
@u3
þ @f2

@x2
� @f1

@x1
¼ 0; ð10Þ

u2
3;2 : 2

@g
@u3
þ @f1

@x1
� @f2

@x2
¼ 0; ð11Þ

u3;1u3;2 :
@f1

@x2
þ @f2

@x1
¼ 0; ð12Þ

u3;iu3;pu3;p :
@fi

@u3
¼ 0; ði ¼ 1;2Þ: ð13Þ

Clearly, Eqs. (9) and (13) require that g = g(u3) and fi = fi(x1,x2),
from which we obtain with the help of Eqs. (10)–(12) as follows

g ¼ C; ð14Þ

@f1

@x1
¼ @f2

@x2
;

@f1

@x2
¼ � @f2

@x1
; ð15Þ

where C is an independent arbitrary constant. Moreover, Eq. (15)
indicate that functions fi = fi(x1,x2) must satisfy the Cauchy–Rie-
mann equations, from which they can be expressed by

f1 þ if2 ¼ /ðzÞ; ð16Þ

where /(z) is an analytic function. Clearly, expression (16) can fur-
ther be expressed by a complex power function
f1 þ if2 ¼ /ðzÞ ¼ zd ¼ rdðcos dhþ i sin dhÞ: ð17Þ

Obviously, substituting (14) and (17) into expressions (4) and Eq.
(5), because of the independence of C, we obtain the field Eq. (3).
For the other conservation laws, by using expanded forms of the en-
ergy–momentum tensor (6)

T11 ¼ �T22 ¼ �
1
2

G u2
3;1 � u2

3;2

� �
; T12 ¼ T21 ¼ �Gu3;1u3;2; ð18Þ

the conserved quantities (4) become

Pi ¼ f1Ti1 þ f2Ti2 ¼ rdðTi1 cos dhþ Ti2 sin dhÞ: ð19Þ

Hence, a path-independent integral is obtained by divergence-free
expression (5)

SW ¼
Z ðx1 ;x2Þ

ðx10 ;x20Þ
Pini dC; ð20Þ

where n1 = cos(n,x1) and n2 = cos(n,x2). It should be mentioned that
whenever the functions fi = fi(x1,x2) are expressed by an analytic
function (16), the path independency of (20) holds. On the other
hand, we have to choose a power form (17) for the functions fi =
fi(x1,x2), so that a finite value can be obtained by adjusting d in cal-
culating SW-integral (20) encircling the tip of a sharp V-notch.

2.2. Non-triviality of conservation law (5) with (19)

From expressions (18) and (19), the conserved quantities Pi can
also be expressed by

P1 ¼ f1T11 þ f2T12 ¼ �
1
2

G f1 u2
3;1 � u2

3;2

� �
þ 2f2u3;1u3;2

h i
;

P2 ¼ f1T21 þ f2T22 ¼
1
2

G f2 u2
3;1 � u2

3;2

� �
� 2f1u3;1u3;2

h i
: ð21Þ

There are two kinds of trivial conservation laws (Olver, 1993). The
first kind is that Pi themselves in (5) vanish, which is not true for
expressions (21). The second kind requires that the conserved quan-
tities Pi be expressed as follows

P1 ¼ D2Q 12; P2 ¼ D1Q21; Q 12 þ Q 21 ¼ 0; Q11 ¼ Q22 ¼ 0:

ð22Þ

Actually, expanding the first and second in (22) gives

P1 ¼
@Q 12

@x2
þ @Q 12

@u3
u3;2 þ

@Q 12

@u3;1
u3;12 þ

@Q 12

@u3;2
u3;22 þ � � � ;

P2 ¼
@Q 21

@x1
þ @Q 21

@u3
u3;1 þ

@Q 21

@u3;1
u3;11 þ

@Q 21

@u3;2
u3;21 þ � � � ð23Þ

Clearly, it is impossible that the conserved quantities in (21) accord
with two expressions in (23). Therefore, the obtained SW-integral
(20) is non-trivial.

2.3. Remarks

According to the viewpoints of Newtonian mechanics, the
translation, rotation and scale change of coordinates are the sym-
metry-transformations of space. The existence and existent forms
of J-integral, L-integral and M-integral depend on whether and
how the elastic energy density accords with the symmetry-trans-
formations of space when Noether’s theorem is applied. As a phys-
ical system, its elastic energy density constructed by a linear and/
or non-linear theory describing an elastic body can not be changed
when we make a translation of coordinates, so that J-integral al-
ways exists (Knowles and Sternberg, 1972; Fletcher, 1976; Olver,
1984a,b; Caviglia and Morro, 1988; Honein and Herrmann, 1997;
Shi, 2005; Shi et al., 2006). Apart from the isotropic and trans-
versely isotropic materials, there is no L-integral for anisotropic



Fig. 1. Configuration of a sharp V-notch. G1 = G2 for homogenous material and
G1 – G2 for bi-materials.
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materials because their elastic energy densities do not accord with
the rotational symmetry of space (Caviglia and Morro, 1988). For a
non-linear theory different from a linear theory, it is usually
impossible that the value of physical quantities remains un-
changed when the scale of both coordinates and field variables is
considered changed. Therefore, there is no M-integral from the
non-linear theory of an elastic body (Knowles and Sternberg,
1972; Shi et al., 2006).

The fact mentioned above is right for the two- and three-
dimensional elastic problems. However, the longitudinal shear
problem is special because there is no projection of the displace-
ment u3 onto the physical (x1,x2)-plane with the translation, rota-
tion and scale change of coordinates. This leads to that the
symmetry-transformation of the elastic energy density (1) in
material space can be expressed by the real and imaginary parts
of an analytic function (16). Actually, the two families of curves
f1(x1,x2) = c1 and f2(x1,x2) = c2 in (16) are mutually perpendicular,
and the analytic function /(z) represents a conformal mapping.
Therefore, the translation, rotation and scale change of coordi-
nates are some particular cases involved in the analytic function
/(z). For example, consider the following transformations

fi ¼ Axi þ ei3kX3xk þ Bi; ðR:1Þ

where A, X3 and Bi are the independent arbitrary constants. Obvi-
ously, expressions (R.1) satisfy the Cauchy–Riemann Eq. (15).
Substituting (14) and (R.1) into expressions (4) and Eq. (5), because
of the independence of C, A, X3 and Bi, respectively, we obtain the
field Eq. (3) and the following conservation integrals:

(i) J-integral from translation (Bk – 0)
Jk ¼
Z

Tikni dC ¼
Z
ðWdik � r3iu3;kÞni dC; ðR:2Þ
(ii) L-integral from rotation (X3 – 0)
L ¼
Z

ek3jxjTikni dC ¼
Z

ek3jxjðWdik � r3iu3;kÞni dC; ðR:3Þ
(iii) M-integral from scaling (A – 0)
M ¼
Z

xkTikni dC ¼
Z

xkðWdik � r3iu3;kÞni dC: ðR:4Þ
Clearly, when we set d = 0 in (19), the path-independent integral
(20) coincides with J1 in (R.2). That is, J-integral is a particular case
of SW-integral in longitudinal shear problem.

3. Application to sharp V-notches

There are several articles concerning the problem of sharp V-
notches (Chen and Nisitani, 1992; Qian and Hasebe, 1997; Dunn
et al., 1997), as shown in Fig. 1, which is most conveniently ana-
lyzed in terms of polar coordinates (r,h) with r = 0 at the tip of
sharp V-notches. The transformation between the strains described
in polar and Cartesian coordinates, and the Hooke’s law are

e3r ¼
@u3

@r
¼ e31 cos hþ e32 sin h;

e3h ¼
1
r
@u3

@h
¼ �e31 sin hþ e32 cos h; ð24Þ

e3r ¼
1
G
r3r; e3h ¼

1
G
r3h: ð25Þ

By introducing a stress function U such that

r3r ¼ �
1
r
@U
@h

; r3h ¼
@U
@r

; ð26Þ
the polar coordinate form of equilibrium Eq. (3) is identically satis-
fied and the compatibility equation can be solved by the standard
technique of separation variables, resulting in

U ¼ rkðA cos khþ B sin khÞ; ð27Þ

where k, A and B are the constants.

3.1. A sharp V-notch placed on the edge of homogeneous material

From the boundary conditions along the unloaded notch sur-
faces, that is,

r3h ¼
@U
@r
¼ 0; h ¼ a; h ¼ �b; ð28Þ

the eigen equations can be obtained from (27), and the vanishing of
the determinant of their coefficient matrix gives

sin kðaþ bÞ ¼ 0; ðp < aþ b 6 2pÞ; ð29Þ

U¼
Xþ1
n¼1

r
np
aþb An cos

nph
aþb

þBn sin
nph
aþb

� �
; kn ¼

np
aþb

; ðn¼ 1;2; . . .Þ;

ð30Þ

Bn ¼ �Anctg
npa
aþ b

¼ Anctg
npb
aþ b

: ð31Þ

Here, the terms with n = �1,�2, . . . have been excluded in order that
the displacement remains finite.

Using (26), (31) and the first in (30), according to the definition
of NSIF (Seweryn and Molski, 1996)

KN
III ¼

ffiffiffiffiffiffiffi
2p
p

lim
r!0

r1� p
aþbr3hðr; h ¼ 0Þ; ð32Þ

we get

r3r ¼ �
KN

IIIffiffiffiffiffiffiffi
2p
p

sin pb
aþb

r
p

aþb�1 cos
pðhþ bÞ
aþ b

þ O r
2p
aþb�1

� �
;

r3h ¼
KN

IIIffiffiffiffiffiffiffi
2p
p

sin pb
aþb

r
p

aþb�1 sin
pðhþ bÞ
aþ b

þ O r
2p
aþb�1

� �
; ð33Þ

where

A1 ¼
aþ b

p
KN

IIIffiffiffiffiffiffiffi
2p
p ;

B1 ¼ �
aþ b

p
KN

IIIffiffiffiffiffiffiffi
2p
p ctg

pa
aþ b

¼ aþ b
p

KN
IIIffiffiffiffiffiffiffi
2p
p ctg

pb
aþ b

: ð34Þ



Fig. 2. Integral paths for sharp V-notch problem.
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By using (18), (24) and (25), the conserved quantities (19) can be
written as

P1 ¼�
KN2

III

4pGsin2 pb
aþb

r
2p
aþb�2þd cos

2ðp�a�bÞhþ2pb
aþb

þ dh

� �
þO r

3p
aþb�2þd

� �
;

P2 ¼
KN2

III

4pGsin2 pb
aþb

r
2p
aþb�2þd sin

2ðp�a�bÞhþ2pb
aþb

þ dh

� �
þO r

3p
aþb�2þd

� �
:

ð35Þ

As mentioned above, the path independency of (20) holds for the
conserved quantities (35) with any value d. Therefore, when we set

d ¼ 1� 2p
aþ b

; ð36Þ

the conserved quantities (35) become

P1 ¼ �
KN2

III

4pG sin2 pb
aþb

r�1 cos
2pb� ðaþ bÞh

aþ b
þ O r

p
aþb�1

� �
;

P2 ¼
KN2

III

4pG sin2 pb
aþb

r�1 sin
2pb� ðaþ bÞh

aþ b
þ O r

p
aþb�1

� �
ð37Þ

and the path-independent integral (20) with the help of expressions
(18) and (19) can be written for the sharp V-notch problem as

SW ¼
Z ðx1 ;x2Þ

ðx10 ;x20Þ
Pini dC

¼
Z x1 ;x2

x10 ;x20

r1� 2p
aþb Ti1 cos 1� 2p

aþb

� �
hþTi2 sin 1� 2p

aþb

� �
h

� �
ni dC:

ð38Þ

This path-independent integral is valid for any path in entire plane.
Choosing a circle path dC = rdh with r ? 0 encircling the tip of a
sharp V-notch as shown in Fig. 1 and making use of (37), we obtain

SW ¼
Z a

�b
ðP1 cos hþ P2 sin hÞr dh

¼ KN2

III

2G
aþ b

p
cos ða�bÞp

aþb

1þ cos ða�bÞp
aþb

; ðp < aþ b 6 2pÞ: ð39Þ

One can check that when a = b,

SW ¼ KN2

III

2G
a
p
;

p
2
< a 6 p

� �
; ð40Þ

and when a = b = p,

SW ¼ K2
III

2G
; ð41Þ

which is the energy release rate of a Mode III crack.
Apart from the path independency of SW-integral from diver-

gence-free expression (5) in elastic field, the vanishing of its inte-
grand in (20)

Pini ¼ rdðTi1 cos dhþ Ti2 sin dhÞni; ð42Þ

respectively along the lower and upper surfaces with the traction-
free condition is also important for usability, as shown in Fig. 2.
Clearly, the unit normal vectors respectively on the lower and upper
surfaces are

nLS
1 ¼ � sin a; nLS

2 ¼ � cos a; ð43Þ

nUS
1 ¼ � sin a; nUS

2 ¼ cos a: ð44Þ

With the help of transformation (24) and traction-free condition
(28), the energy–momentum tensor (18) becomes

TLS
11 ¼ �TLS

22 ¼ �
1
2

Ge2
3r cos 2a; TLS

12 ¼ TLS
21 ¼

1
2

Ge2
3r sin 2a; ð45Þ
TUS
11 ¼ �TUS

22 ¼ �
1
2

Ge2
3r cos 2a; TUS

12 ¼ TUS
21 ¼ �

1
2

Ge2
3r sin 2a: ð46Þ

Substituting (43)–(46) into (42) with h = a and/or �a, we obtain the
same integrand, respectively along the lower and upper surfaces

ðPiniÞLS ¼ ðPiniÞUS ¼ rd 1
2

Ge2
3r sinðd� 1Þa: ð47Þ

Clearly, substitution of (36) into (47) with letting a = b gives

ðPiniÞLS ¼ ðPiniÞUS ¼ 0: ð48Þ

This means that the value of SW-integral in (20) or (40) does not de-
pend on the location of integral endpoints a0 and b, as shown in
Fig. 2, which can be arbitrarily chosen along the traction-free sur-
faces of a sharp V-notch. As mentioned above, when setting d = 0,
SW-integral is reduced to J-integral in longitudinal shear problem.
By doing so, the integrand (47) becomes

ðPiniÞLS ¼ ðPiniÞUS ¼ �1
2

Ge2
3r sina: ð49Þ

This means and is also emphasized by Lazzarin and Zappalorto
(2008) that the starting and finishing points of J-integral must be
a0 and a with jOa0j = jOaj = R, as shown in Fig. 2.

3.2. A Sharp V-notch placed on the interface of bi-materials

A closed-form solution can be obtained for the case a = b shown
in Fig. 1. By using the boundary and continuity conditions

rð1Þ3h ¼ 0; h ¼ a;

rð2Þ3h ¼ 0; h ¼ �a;

rð1Þ3h ¼ rð2Þ3h ; eð1Þ3r ¼ eð2Þ3r ; h ¼ 0;

ð50Þ

the eigen equations are derived from (26) and (27), and their solu-
tions can be expressed as

UðkÞ ¼
Xþ1

n¼1;3;5...:

AðkÞn r
np
2a cos

nph
2a
þ

Xþ1
n¼2;4;6;...

BðkÞn r
np
2a sin

nph
2a

;

kn ¼
np
2a

; ðn ¼ 1;2; . . .Þ; Að2Þn ¼ Að1Þn ; Bð2Þn ¼
G2

G1
Bð1Þn ;

ð51Þ

where k = 1 and 2 denote, as shown in Fig. 1, the upper and lower
materials, respectively. Also, the terms with n = �1,�2, . . . have
been excluded in order that the displacements remain finite. Intro-
ducing the definition of NSIF (Seweryn and Molski, 1996)

KN
III ¼

ffiffiffiffiffiffiffi
2p
p

lim
r!0

r1� p
2arðkÞ3h ðr; h ¼ 0Þ; ðk ¼ 1;2Þ; ð52Þ

with the help of (26) and (27), we obtain
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Að2Þ1 ¼ Að1Þ1 ¼
2a
p

KN
IIIffiffiffiffiffiffiffi
2p
p ;

p
2
< a 6 p

� �
;

rðkÞ3r ¼
KN

IIIffiffiffiffiffiffiffi
2p
p r

p
2a�1 sin

ph
2a
þ O r

p
a�1	 


; ðk ¼ 1;2Þ;

rðkÞ3h ¼
KN

IIIffiffiffiffiffiffiffi
2p
p r

p
2a�1 cos

ph
2a
þ O r

p
a�1

	 

; ðk ¼ 1;2Þ:

ð53Þ

Similarly to the above, after using (18), (24) and (25), the conserved
quantities (19) for the upper and lower materials, as shown in Fig. 1,
can be written as

PðkÞ1 ¼
KN2

III

4pGk
r

p
a�2þd cos

p
a
� 2þ d

� �
hþ O r

3p
2a�2þd

� �
; ðk ¼ 1;2Þ;

PðkÞ2 ¼ �
KN2

III

4pGk
r

p
a�2þd sin

p
a
� 2þ d

� �
hþ O r

3p
2a�2þd

� �
; ðk ¼ 1;2Þ:

ð54Þ

Also, when we set

d ¼ 1� p
a
; ð55Þ

the conserved quantities (54) become

PðkÞ1 ¼
KN2

III

4pGk
r�1 cos hþ O r

p
2a�1	 


; ðk ¼ 1;2Þ;

PðkÞ2 ¼
KN2

III

4pGk
r�1 sin hþ O r

p
2a�1	 


; ðk ¼ 1;2Þ:
ð56Þ

Hence, the path-independent integral (20) with the help of expres-
sions (18) and (19) for bi-materials is

SW ¼
Z ðx1 ;x2Þ

ðx10 ;x20Þ
PðkÞi ni dC

¼
Z ðx1 ;x2Þ

ðx10 ;x20Þ
r1�p

a TðkÞi1 cos 1� p
a

� �
hþ TðkÞi2 sin 1� p

a

� �
h

h i
ni dC;

ð57Þ

where k = 1 for the upper material with x20 > 0 and x2 > 0, and
k = 2 for the lower material with x20 < 0 and x2 < 0, as shown in
Fig. 1. By selecting a circle path dC = rdh with r ? 0 encircling
the tip of a sharp V-notch and using the conserved quantities
(56), the path-independent integral (57) can be calculated as
follows
Fig. 3. A sharp V-notch placed on the
SW ¼
Z 0

�a
Pð2Þ1 cos hþ Pð2Þ2 sin h
� �

r dhþ
Z a

0
Pð1Þ1 cos hþ Pð1Þ2 sin h
� �

r dh

¼ aKN2

III

4p
1

G1
þ 1

G2

� �
;

p
2
< a 6 p

� �
: ð58Þ

Clearly, expressions (40) and (58) will be the same when G1 = G2,
and SW-integral (58) is also related to the NSIF of a sharp V-notch
placed on the interface of bi-materials.

3.3. Example

Usability of the path-independent integrals (38) and (57) is
illustrated below by using a bi-material plate with a built-in edge
at right-hand side, as shown in Fig. 3, where the applied load F up-
ward equals the load F downward at left-hand side. This kind of
method to estimate the SIF had been discussed by Irwin (1960).
The path-independent integral (57) with the result (58) implies

SW ¼ aKN2

III

4p
1

G1
þ 1

G2

� �
¼
Z

C1þC2þC3þC4þC5

PðkÞi ni dC: ð59Þ

Simple beam theory gives

uðkÞ3;1

���
x1¼�l

¼ 6Fl

Ekh3 ctgaþ b
2l

ctg2a ln 1� 2l
b

tga
� �� �

; ðk ¼ 1;2Þ;

ð60Þ

for the tearing of the beam arms of two different materials when
the ends at the bi-material sharp V-notch tip are considered
clamped, where b is the width of two beams at left-hand side, h
the thickness, l the length and Ek the Young’s modulus, as shown
in Fig. 3. Since C3 is along the built-in edge, letting uðkÞ3;2 ¼ 0 in
(18) and (19) with the help of that f1 = rdcosdh � ld when l� b, we
know from (59) that

SW ¼ aKN2

III

4p
1

G1
þ 1

G2

� �
¼ 1

2
bld G1uð1Þ

2

3;1 þ G2uð2Þ
2

3;1

� �
: ð61Þ

Here, it is implied that the load F is uniformly distributed on the
area hb. Substituting (60) into (61), we obtain an estimation value
of NSIF

KN
III ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1ð1þ t1Þ2 þ G2ð1þ t2Þ2

ðG1 þ G2Þð1þ t1Þ2ð1þ t2Þ2

s
3Fl

3
2�

p
2a
ffiffiffi
b
p

h3 f
b
l
;a

� �
; ð62Þ

where Ek = 2(1 + tk)Gk has been used and
interface of a bi-material plate.
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f
b
l
;a

� �
¼

ffiffiffiffiffiffiffi
2p
a

r
ctgaþ b

2l
ctg2a ln 1� 2l

b
tga

� �����
����: ð63Þ

Clearly, when G1 = G2 and t1 = t2, expression (62) becomes a NSIF of
homogeneous material

KN
III ¼

3Fl
3
2�

p
2a
ffiffiffi
b
p

ð1þ tÞh3 f
b
l
;a

� �
: ð64Þ

When a ? p, f(b/l,a) ? l/b, we get a stress intensity factor for crack
problem

KIII ¼
3Fl2

ð1þ tÞh3 ffiffiffi
b
p : ð65Þ
4. Concluding remarks

Based on Noether’s theorem, a conservation law and/or path-
independent integral (20) in material space is obtained, which does
not belong to trivial conservation law. Especially, the conserved
quantities (19) can be expressed in terms of the components of en-
ergy–momentum tensor as well as the real and imaginary parts of
an analytic function in a power form. It is shown that a finite value
can be obtained from this path-independent integral calculated
around the material point with any order singularity by adjusting
the analytic function (38). Actually, J-integral for longitudinal shear
problem is a particular case of SW-integral (20) and (38).

For a sharp V-notch placed on the edge of homogenous materi-
als and/or the interface of bi-materials, application of this path-
independent integral (38) calculated around the sharp V-notch’s
tip shows the validity, and the obtained finite value is irrelevant
to the location of integral endpoints chosen respectively along
two traction-free surfaces of which form an notch opening angle.
Both the arbitrariness of integral endpoints and path independency
of SW-integral (38) resulting in (40) and (58) represent a kind of
physical invariance under the condition of a given fixed notch
opening angle, and expressions (40) and (58) are directly related
to the NSIF.
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