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This paper presents an analytical study of the non-linear elastic in-plane buckling and postbuckling
behaviour of pin-ended shallow circular arches having unequal elastic rotational end restraints under
a central concentrated radial load. The principle of stationary potential energy is used to derive the dif-
ferential equations of equilibrium, based on which the analytical solution for the non-linear equilibrium
path is derived. It is found that the non-linear behaviour of an arch having unequal rotational end
restraints is much more complicated than that of an arch with equal rotational end restraints. The arch
may have a non-linear equilibrium path that consists of one or two unstable equilibrium paths and two or
four limit points, and it may even have a non-linear looped equilibrium path in some cases. The number
of limit points on the non-linear equilibrium path of an arch depends on its slenderness ratio and
included angle, and on the stiffnesses of the unequal rotational end restraints. The switches in terms
of an arch geometry parameter, which is introduced in the paper, are derived for distinguishing between
arches with two limit points and those with four limit points, as well as for distinguishing between arches
and beams curved in-elevation. The principle of conservation of energy at neutral equilibrium is used to
derive the differential equations of buckling equilibrium, which are then used to investigate the buckling
behaviour. It is found that an arch with unequal rotational end restraints cannot buckle in a bifurcation
mode. Comparisons with finite element results show that the analytical solutions can accurately predict
the non-linear buckling and postbuckling behaviour.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

It is known that an arch that is fully braced laterally and that is
subjected to in-plane loading (Fig. 1) may buckle in its plane of
loading. Analytical studies of the in-plane buckling of arches have
been carried out by a number of researchers including Timoshenko
and Gere (1961), Simitses (1976), Gjelsvik and Bodner (1962),
Schreyer and Masur (1966), Dickie and Broughton (1971), Hodges
(1999), Pi et al. (2002), Bradford et al. (2002) and Simitses and
Hodges (2006). It has been found that the structural behaviour of
a shallow arch becomes quite non-linear before in-plane buckling,
and so the effects of this non-linearity on its in-plane buckling and
postbuckling need to be considered. The non-linearity and instabil-
ity of long panels with shallow arch cross-sections were investi-
gated by Kyriakides and Arseculeratne (1993) and Power and
Kyriakides (1994). Kyriakides and Arseculeratne (1993) addressed
propagating buckling of long panels with shallow arch cross-sec-
tions, while Power and Kyriakides (1994) studied the response of
long shallow elastic panels to uniform pressure loading. These pa-
ll rights reserved.

: +61 2 9385 9747.
nel studies considered a state of plane strain, and it was demon-
strated that their response has the non-linearity and instabilities
that are characteristic of shallow arches. Pi et al. (2002) studied
the in-plane non-linear buckling of circular arches having an arbi-
trary uniform cross-section that are subjected to a radial load dis-
tributed uniformly around the arch axis, while Bradford et al.
(2002) investigated the in-plane non-linear buckling of shallow
circular arches of arbitrary cross-section that are subjected to a
central concentrated radial load. Pi et al. (2007) investigated the
in-plane non-linear elastic behaviour and stability of elastically
supported shallow circular arches that are subjected to a radial
load uniformly distributed around the arch axis. Pi et al. (2008)
investigated the non-linear in-plane analysis and buckling of ar-
ches with elastic rotational end restraints under a central concen-
trated load, while Pi and Bradford (2009) derived analytical
solutions for the non-linear postbuckling of these arches under
uniform radial loading. These investigations were focused on ar-
ches having symmetrical boundary conditions.

In many cases, however, the ends of an arch are not restrained
symmetrically. The unsymmetrical restraints and supports partici-
pate in the responses of an arch to external loading and they may
influence significantly its in-plane buckling and postbuckling

http://dx.doi.org/10.1016/j.ijsolstr.2012.08.012
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http://dx.doi.org/10.1016/j.ijsolstr.2012.08.012
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Fig. 1. Pin-ended arch with unequal rotational end restraints.
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Fig. 2. FE results for arches with unequal rotational end restraints.
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behaviour as shown by the finite element (FE) results of the beam
element B21 of ABAQUS (2008) in Figs. 2(a)–(d) for the non-linear
behaviour of an arch with unequal rotational end restraints under a
central concentrated load, as variations of the dimensionless cen-
tral radial displacement vc=f with the dimensionless central con-
centrated load Q=ðNE2HÞ, where Q is the central concentrated
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load, NE2 is the second mode flexural buckling load of a column
with the same length and boundary conditions as the arch, vc is
the central radial displacement, and f is the rise of the correspond-
ing arch. It can be seen that the non-linear behaviour is very com-
plicated and interesting.

This paper presents an investigation of the non-linear elastic in-
plane behaviour and buckling of shallow circular pin-ended arches
with unequal rotational end restraints under a central concen-
trated radial load. It provides a quantitative description of the
highly complex and interesting behaviour.

2. Non-linear in-plane equilibrium

2.1. Differential equations of equilibrium

The polar coordinate system oyh defined in Fig. 1 is used to de-
scribe the deformations of the arch. It has been shown (Pi et al.,
2002; Bradford et al., 2002; Pi et al., 2008) that for shallow arches,
the effects of axial deformations on the radial deformations and on
the change of curvature are so small that neglecting these effects
does not affect the non-linear analysis of shallow arches. Hence,
the non-linear longitudinal normal stress and strain at an arbitrary
point P (Fig. 1) can be written as

r ¼ E� and � ¼ �m þ �b with �m ¼ ~w0 � ~v þ 1
2
ð~v 0Þ2 and

�b ¼ �
q~v 00

R
; ð1Þ

where E is Young’s modulus, �m and �b are the membrane and bend-
ing strains respectively; ðÞ0 � dðÞ=dh; h is the angular coordinate;
~v ¼ v=R; ~w ¼ w=R; v and w are the radial and axial displacements
respectively, R is the radius of initial curvature of the arch,
q ¼ r � R, and r is the distance of the point P to the pole o of the axes
oyh (Fig. 1).

The total potential energy can expressed as

W ¼ 1
2

Z H

�H

Z
A

Rr�dAdh�
Z H

�H
DiracðhÞQR~vdhþ 1

2

X
i¼�H

ki ~v 0
2

i ; ð2Þ

where kiði ¼ �HÞ is the stiffness of the rotational end restraints, and
DiracðhÞ is the familiar Dirac-delta function defined by

DiracðhÞ ¼
þ1; h ¼ 0
0; h – 0

�
and

Z 1

�1
DiracðhÞdh ¼ 1 ð3Þ

and it has the propertyZ 1

�1
DiracðhÞf ðhÞdh ¼ f ð0Þ: ð4Þ

The differential equations of equilibrium can be derived from Eq. (2)
by substituting Eq. (1) into it and applying the principle of station-
ary potential energy as

ðNRÞ0 ¼ 0 and
~v iv

l2 þ ~v 00 ¼ QR2DiracðhÞ
l2EIx

� 1 with

l2 ¼ NR2

EIx
ð5Þ

for the axial and radial deformations respectively, where l is a
dimensionless axial force parameter, Ix is the in-plane second mo-
ment of area and N is the axial compressive force given by

N ¼ �AE�m ¼ �AE ~w0 � ~v þ 1
2

~v 02
� �

ð6Þ

with A being the cross-sectional area.
The static boundary conditions can also obtained in the same

way as
2Hai ~v 00i � ~v 0i ¼ 0 with i ¼ �H; ð7Þ

where ai ¼ EI=kiS is the ratio of the bending stiffness per unit length
of the arch ðEI=SÞ to ki, which can be considered as the relative flex-
ibility of the elastic rotational end restraints.

In addition, the essential kinematic boundary conditions are

~v ¼ 0 and ~w ¼ 0 at h ¼ �H: ð8Þ
The dimensionless radial displacement ~v , which satisfies the
boundary conditions given by Eqs. (7) and (8), can be obtained by
solving the differential equation of equilibrium given by Eq. (5) as

~v ¼ 1
l2 K1bðcos lh� cos bÞ þ K2ðb sin lh� lh sin bÞ þ 1

2
½b2 � ðlhÞ2�

� �

þ P
l2b

K3ðb sin lh� lh sin bÞ þ K4 cos lhþ K5 � bþ HðhÞðlh� sin lhÞf g;

ð9Þ
where b is a new dimensionless axial force parameter and P is the
dimensionless central load defined as

b ¼ lH and P ¼ QR2H
2EIxl

; ð10Þ

respectively, the parameters K1; K2; K3, and K4 are given by

K1 ¼
W1

U
; K2 ¼

W2

U
; K3 ¼

W3

U
; K4 ¼

W4 þW5

U
; K5

¼ W4 � b sin2 b
U

; ð11Þ

with

U ¼ sin2 bþ bðcos b sin b� b cos 2bÞðaH þ a�HÞ
þ ð4b2aHa�H � 1Þb sin b cos b; ð12Þ

W1 ¼ ½b cos b� ð1þ b2Þ sin b�ðaH þ a�HÞ � ð4b2aHa�H þ 1Þ
� sin bþ b cos b; ð13Þ

W2 ¼ bðb cos b� sin bÞðaH � a�HÞ; W3

¼ bð1� cos bÞðaH � a�HÞ; ð14Þ

W4 ¼ b2 sin bð1� cos bÞðaH þ a�HÞ þ ðbþ sin bÞð1� cos bÞ; ð15Þ

W5 ¼ b sin2 bð4b2aHa�H � 1Þ þ b sin bðaH þ a�HÞðsin b

� b cos bÞ ð16Þ
and the step function HðhÞ is modified from the familiar Heaviside
function as

HðhÞ ¼ ½2�HeavisideðhÞ � 1� with HeavisideðhÞ ¼
0 h < 0
undefined h ¼ 0
1 h > 0

8><
>: :

ð17Þ

It is noted that although the function HeavisideðhÞ given in Eq. (17)
is undefined at h ¼ 0, the term HeavisideðhÞ½lh� sinðlhÞ� in the ra-
dial displacement expression given by Eq. (9) vanishes at h ¼ 0 and
so the displacement ~v given by Eq. (9) is also defined at h ¼ 0.

2.2. Non-linear equilibrium equation

From Eq. (9), it can be seen that the radial displacement is a
function of the central concentrated load Q and the internal axial
compressive force N. To evaluate the radial displacement, a non-
linear relationship between the axial compressive force and the
external load needs to be derived. From the first of Eq. (5), the axial
compressive force N in the arch is a constant. The non-linear rela-
tionship between the central concentrated load Q and the axial
compressive force N can be established by considering that the
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constant axial force is equal to the axial force averaged mathemat-
ically over the arch length domain calculated from Eq. (6) as

N ¼ � 1
2H

Z H

�H
AE ~w0 � ~v þ

~v 02

2

 !
dh: ð18Þ

Considering the boundary condition given by Eq. (8), and substitut-
ing Eq. (9) into Eq. (18) and then integrating Eq. (18) leads to the
non-linear equilibrium equation between the central concentrated
load Q (through P) and the internal axial force N (through b) as
the transcendental equation

A1P2 þ B1P þ C1 ¼ 0; ð19Þ
where the coefficients A1, B1 and C1 are given by

A1 ¼ N1K2
4 � N2K4 þ N3K2

3 þ N4; ð20Þ

B1 ¼ 2b2N1K1K4 � b2N2K1 þ 2bN3K2K3 �
cos bK4

b3

þ sin b� K5

b3 ; ð21Þ

C1 ¼
b
k

� �2

þ b4N1K2
1 þ b2N3K2

2 �
1
6

with k ¼ RH2

rx
¼ SH

2rx
ð22Þ
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Fig. 3. Non-linear equilib
in which k is the geometric parameter for the arch, rx is the major
axis radius of gyration and the parameters N1; N2; N3, and N4 are
given by

N1 ¼
b� cos b sin b

4b5 ; N2 ¼
ðcos b� 1Þ2

2b5 ; ð23Þ
N3 ¼
b cos b sin bþ b2 � 2 sin2 b

4b4 ;

N4 ¼
cos b sin bþ 3b� 4 sin b

4b5 : ð24Þ

When the geometry of an arch and the stiffness of the rotational end
restraints are given, its geometric parameter k and the relative flex-
ibility ai (i ¼ �H) of the rotational end restraints are defined. Eq.
(19) can then be used to derive the variations of the dimensionless
force parameter b with the dimensionless central load P. Subse-
quently, substituting the obtained values of b and P into Eq. (9)
leads to the variations of the radial displacement ~v with the dimen-
sionless central load P.

The typical non-linear behaviour of pin-ended arches with un-
equal rotational end restraints is shown in Fig. 3 as variations of
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the dimensionless central displacement vc=f with the dimension-
less central concentrated load Q=ðNE2HÞ for two groups of arches:
one with aH ¼ 1 and a�H ¼ 0:001 (solid curve) and the other with
aH ¼ 1 and a�H ¼ 2 (dashed curve), where for the convenience of
comparison, NE2 is the second mode flexural buckling load of a col-
umn with the same length and boundary conditions as those of the
arches with aH ¼ 1 and a�H ¼ 0:001. It can be seen that for the
arch with k ¼ 7 (Fig. 3(a)), when a�H ¼ 0:001 (solid curve), there
are two stable equilibrium branches ab and de, and the equilibrium
path bcd with a nearly zero slope with an inflection point c. At the
branch bcd, the dimensionless displacement vc=f increases signifi-
cantly with little increase of the dimensionless load Q=ðNE2HÞ.
When a�H ¼ 2 (dashed curve), there are two stable equilibrium
branches ab1 and c1d1, an unstable equilibrium branch b1c1 and
an upper limit point b1 and a lower limit point c1. In the unstable
equilibrium branch b1c1, the increase of the dimensionless dis-
placement vc=f is associated with a decrease of the dimensionless
load Q=ðNE2HÞ until lower limit point c1 is reached. For the arch
with k ¼ 10 (Fig. 3(b)), when a�H ¼ 0:001 (solid curve), its equilib-
rium behaviour is similar to that of the arch with k ¼ 7 and a�H ¼ 2
(dashed curve in Fig. 3(a)). When a�H ¼ 2, the unstable equilib-
rium path b1c1 is longer than that when a�H ¼ 0:001. In addition,
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Fig. 4. Non-linear equilibrium between ax
the lower limit point load is negative when a�H ¼ 2, while it is po-
sitive when a�H ¼ 0:001.

The non-linear behaviour of the arches with k ¼ 15:24 and
k ¼ 17 in Fig. 3(c) and (d) is much more complicated. For the arch
with k ¼ 15:24 (Fig. 3(c)), when a�H ¼ 0:001 (solid curve), its equi-
librium path includes an upper limit point b, an inflection point c,
and a lower limit point d, three stable equilibrium branches ab; jk,
and ef with a positive slope, and two unstable branches bj and ke.
At the points j and k, there is a vertical tangent (implying
dvc=dQ ¼ 0). The inflection point c is located at the reverse seg-
ment jk. The upper limit point buckling load, lower limit point load
and the load at the inflection point are all positive. When a�H ¼ 2
(dashed curve), the non-linear equilibrium path of the arch is com-
pletely different and it consists of two upper limit points b1 and d1,
two lower limit points c1 and e1, four stable equilibrium branches
ab1; j1c1; d1k1; e1f1 with a positive slope, and three unstable equi-
librium branches b1j1; c1d1; k1e1 with a negative slope. In addition,
the two lower limit point buckling loads are negative while the two
upper limit point buckling loads are positive. Furthermore, the arch
has a very complicated non-linear looped equilibrium path. The
second upper limit point when a�H ¼ 2 almost coincides with
the upper limit point when a�H ¼ 0:001.
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For the arch with k ¼ 17 (Fig. 3(d)), when a�H ¼ 0:001 (solid
curve) and a�H ¼ 2 (dashed curve), the non-linear equilibrium path
has two upper limit points b (b1) and d (d1), two lower limit points c
(c1) and e (e1), four stable equilibrium branches ab (ab1), jc (j1c1), dk
(d1k1), and ef (e1f1Þ, and three unstable equilibrium branches bj
(b1j1), cd (c1d1), ke (k1e1) with a negative slope, where the subscript
1 is for the case of a�H ¼ 2. In addition, the arch with a�H ¼ 2 has a
very complicated non-linear looped equilibrium path. For
a�H ¼ 0:001, the two upper limit point and two lower limit point
buckling loads are all positive, while for a�H ¼ 2, the two lower limit
point buckling loads are negative and the two upper limit point
buckling loads are positive. The second upper limit point for
a�H ¼ 2 almost coincides with the first limit point for a�H ¼ 0:001.

The non-linear behaviour of these two arches is also illustrated
in Fig. 4 as variations of the dimensionless axial force N=NE2 with
the dimensionless central concentrated load Q=ðNE2HÞ. It can also
be seen that the relative flexibility of the end rotational restraints
has a significant effect on the non-linear behaviour. The arch with
more flexible end rotational restraints (a�H ¼ 2) (dashed curve)
has more complicated non-linear behaviour than that of the arch
with more stiff end rotational restraints (a�H ¼ 0:001) (solid
curve). It can also be seen that the dimensionless axial force-load
curve is self intersecting at the point n (n1) for the arch geometric
parameter k ¼ 7 and k ¼ 10 or n and m (n1 and m1) for k ¼ 15:24
and k ¼ 17. For the case of a�H ¼ 0:001, the point n for the arch
with k ¼ 7 corresponds to the maximum axial compressive force
(Fig. 4(a)), while the point m for the arch with k ¼ 15:24 corre-
sponds to the maximum axial compressive force (Fig. 4(c)).

In summary, the relative flexibilities of unequal rotational end
restraints aH and a�H and the arch geometric parameter k have sig-
nificant effects on the non-linear buckling and postbuckling behav-
iour of an arch. They affect not only the limit point buckling load
and the number of the limit points, but also the shape of the
non-linear equilibrium path and the number of different equilib-
rium branches of the arch.

2.3. Limit points

Since the upper and lower limit points represent relative maxima
and minima, they can be derived using routine calculus in conjunc-
tion with the definitions of l in Eq. (5) and with Eqs. (10) and (19).
For this, the central load Q can be expressed as an implicit function
of the dimensionless axial force parameter b as FðQ ; bÞ ¼ 0, and
the loads corresponding to the upper and lower limit points can be
obtained by setting dQ=db ¼ �½@FðQ ; bÞ=@b�=½@FðQ ; bÞ=@Q � ¼ 0,
which leads to the non-linear equation of equilibrium between the
dimensionless load P and the axial force parameter b at the limit
points as the transcendental equation

A2P2 þ B2P þ C2 ¼ 0; ð25Þ
where the coefficients A2; B2 and C2 are given by

A2 ¼
5
2

N1 �
sin2 b

4b4

 !
K2

4 �
5
2

N2 � N5

� �
K4 þ ð2N3 � N6ÞK2

3

� bN1K4
dK4

db
þ bN2

2
dK4

db
� bN3K3

dK3

db
þ 5

2
N4 � N7; ð26Þ

B2 ¼ 3b2N1 �
sin2 b

2b2

 !
K1K4 � b2 3

2
N2 � N5

� �
K1

þ ð3bN3 � 2bN6ÞK2K3 �
sin b

2b2 þ
3 cos b

2b3

� �
K4 �

3K5

2b3

þ 3 sin b

2b3 �
cos b

2b2 � b3N1
dK1K4

db
þ b3N2

2
dK1

db
� b2N3

dK2K3

db

þ cos b
2b

dK4

db
þ dK5

2b2db
; ð27Þ
C2 ¼
b4

2
N1 �

sin2 b
4

 !
K2

1 þ ðb
2N3 � b2N6ÞK2

2 � b5N1K1
dK1

db

� b3N3K2
dK2

db
� b

k

� �2

; ð28Þ

with

N5 ¼
1� cos b sin b

2b4 ; N6

¼ 2bþ b cos 2b� 3 cos b sin b

8b3 ; and N7

¼ cos 2bþ 3� 4 cos b

8b4 : ð29Þ

The analytical solutions for the limit buckling load P and the corre-
sponding axial force parameters b at the limit buckling points can
be obtained by solving Eqs. (19) and (25) simultaneously. The cor-
responding radial displacement ~v can then be obtained from Eq. (9).

The solutions for the limit buckling load, the corresponding ax-
ial forces and central radial displacement were obtained and are
shown by circles for the arches in Figs. 3 and 4.

3. Non-linear bifurcation buckling analysis

In addition to the limit point buckling, arches with symmetric
boundary conditions may also buckle in a bifurcation mode (Pi
et al., 2002; Pi and Bradford, 2009, 2010). An investigation is
undertaken in this section to ascertain whether an arch with
unequal rotational end restraints can buckle in a bifurcation mode
as well.

The bifurcation point of a structural system is a stationary point,
at which the equilibrium state of the system is neutral (Simitses
and Hodges, 2006). Conservation of energy at neutral equilibrium
requires that second variation of the total potential energy van-
ishes at the stationary points (Baz̆ant and Cedolin, 2003) as
d2W ¼ 0. Substituting the total potential energy given by Eq. (2)
into the second variation of the total potential energy and integrat-
ing it by parts leads to the differential equations of buckling equi-
librium as (Pi and Bradford, 2012)

AER�0mb ¼ 0 and
EI
R

~v ðivÞb þ NR~v 00b � AER�mbð1þ ~v 00Þ ¼ 0 ð30Þ

in the axial and radial directions; and to the static boundary condi-
tions as

2HaH ~v 00b þ ~v 0b ¼ 0 at h ¼ H and � 2Ha�H ~v 00b þ ~v 0b
¼ 0 at h ¼ �H: ð31Þ

In addition, the essential kinematic boundary conditions in the axial
and radial directions are

~wb ¼ 0 and ~vb ¼ 0 at h ¼ �H: ð32Þ

It is known that during bifurcation buckling, both the load and
internal stress resultants remain unchanged, so that
Nb ¼ dN ¼ AE�mb ¼ 0, from which the membrane strain produced
by the buckling deformation vanishes as

�mb ¼ ~w0b � ~vb þ ~v 0~v 0b ¼ 0: ð33Þ

Substituting Eq. (33) into Eq. (30) leads to the differential equations
for bifurcation buckling as

~v iv
b

l2 þ ~v 00b ¼ 0: ð34Þ

The equation given by Eq. (34) is a four order homogeneous differ-
ential equation and its solution has four undetermined coefficients,
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Fig. 5. Distributions of the radial displacement along the arch length.
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which in conjunction with the boundary conditions given by Eqs.
(31) and (32) forms an eigenvalue equation with the four undeter-
mined coefficients. For the existence of nontrivial solutions of the
coefficients, the characteristic equation

½2aHa�Hb2 þ ðaH þ a�H � 1Þ=2�b sin 2b� ðaH þ a�HÞb2 cos 2b

þ sin2 b ¼ 0 ð35Þ

needs to be satisfied, which can be used to investigate whether
bifurcation buckling of pin-ended arches with unequal elastic rota-
tional end restraints is possible.

When the values of the relative flexibility of the rotational end
restraints aH and a�H are given, the second lowest value of the
parameter b (¼ lH) corresponding to possible bifurcation buckling
can be evaluated from Eq. (35) as

b ¼ lH ¼ g2p) N ¼ ðg2pÞ
2EI

ðS=2Þ2
¼ NE2: ð36Þ

However, although the values b ¼ g2p of the dimensionless axial
force parameter b can be obtained from Eq. (35) mathematically,
the arch does not necessarily buckle in a bifurcation mode. To illus-
trate this, the zero membrane strain �mb during bifurcation buckling
given by Eq. (33) can be expressed as

�mb ¼
1

2H

Z H

�H
ð ~w0b � ~vb þ ~v 0~v 0bÞdh

¼ 1
2H

Z H

�H

~w0bdh�
Z H

�H

~vbdhþ
Z H

�H

~v 0~v 0bdh

� �
¼ 0: ð37Þ

If an arch is to buckle in a bifurcation buckling mode, the buckling
radial displacements ~vb should be orthogonal to the corresponding
primary displacements ~v , from which the last term of Eq. (37) van-
ishes as

RH
�H

~v 0~v 0bdh ¼ 0. In addition, the buckling axial displace-
ments ~wb at both ends are equal to zero as given by Eq. (32) and
so the first term of Eq. (37) also vanishes as

RH
�H

~w0bdh ¼ 0. Hence,
Eq. (37) would reduce to

�mb ¼ �
1

2H

Z H

�H

~vbdh ¼ 0; ð38Þ

which holds only when the buckling radial displacements ~vb are
antisymmetric along the arch length. Hence, primary radial dis-
placements ~v that are orthogonal to the antisymmetric buckling ra-
dial displacements ~vb have to be symmetric. However, the radial
displacement ~v of an arch with unequal rotational end restraints gi-
ven by Eq. (9) is unsymmetrical along the arch length. Typical radial
displacement distributions along the arch length obtained from Eq.
(9) are shown in Fig. 5(a) for an arch with a geometric parameter
k ¼ 20 and with aH ¼ 1 and a�H ¼ 0:001, and in Fig. 5(b) for the
same arch but with aH ¼ 0:2 and a�H ¼ 20. It can be seen that the
distributions of the displacements ~v are unsymmetrical along the
arch length. Hence, the possible orthogonal bifurcation buckling
displacements ~vb cannot be antisymmetric along the arch length
and its integral over the arch length, i.e. Eq. (38), does not vanish.
Subsequently, the buckling strain �mb given by Eq. (37) and the var-
iation of the axial force Nb do not vanish, and so bifurcation buck-
ling of the arch cannot occur.

4. Switches between different non-linear behaviour

Although bifurcation buckling cannot occur, the solution
b ¼ g2p given by Eq. (36) defines an arch with a specific geometric
parameter k2, which can serve as a switch to distinguish arches
with two limit points and those with four limit points.

The dimensionless load P corresponding to the solution b ¼ g2p
can be solved from Eq. (19) as
P ¼ lim
b!g2p

� B1

2A1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

1

4A2
1

� C1

A1

s" #
with

B2
1

4A2
1

� C1

A1
P 0: ð39Þ

Substituting the expression of C1 given by Eq. (22) into the second
equation of Eq. (39) leads to

k2 ¼ lim
b!g2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2A1

B2
1 � 4A1D1

s
; ð40Þ

where limit evaluation is used because A1; B1 and D1 approach
infinity when b approaches g2p.

When the geometric parameter k is equal to k2 given by Eq. (40),
the expression in the radical of Eq. (39) vanishes and so the dimen-
sionless load P corresponding to k2 given by Eq. (39) becomes

P ¼ lim
b!g2p

B1=2A1ð Þ: ð41Þ

Hence, the arch with the specific geometric parameter k2 corresponds
a unique solution for the dimensionless load P and dimensionless ax-
ial force parameter b ¼ g2p. Once the relative flexibilities aH and a�H

are given, the solution of b ¼ g2p can be evaluated from Eq. (35) and
then the specific geometric slenderness k2 can be obtained from
Eq. (40). To demonstrate this, four groups of arches with different
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rotational end restraints were investigated using the non-linear
equation given by Eq. (19). The results are shown in Figs. 6 and 7 as
variations of the dimensionless load Q=ðNE2HÞ with the dimension-
less axial force N=NE2. The rotational end restraints of the group in
Figs. 6(a) and (b) and 7(a) and (b) have relative flexibilities aH ¼ 2
and a�H ¼ 0:01; aH ¼ 1 and a�H ¼ 0; aH ¼ 1 and a�H ¼ 2, and
aH ¼ 1 and a�H ¼ 1, respectively. The specific geometric parameters
obtained from Eq. (40) are k2 ¼ 15:0644, 15.239, 13.505, and 13.45
for the group of arches in Figs. 6(a) and (b) and 7(a) and (b), respec-
tively. It can be seen from Fig. 6(a) and (b) that arches with a geomet-
ric parameter k ¼ 10, 12, and 14 that are smaller than k2 have an
upper limit point and a lower limit point while arches with k ¼ 20,
25, 30 and 40 that are larger than k2 have two upper limit points
and two lower limit points. In the same way, the arches in Fig. 7(a)
and (b) with a geometric parameter k ¼ 6, 8, and 10 that are smaller
than k2 have an upper limit point and a lower limit point while arches
with k ¼ 15, 16, 20 and 40 that are larger than k2 have two upper limit
points and two lower limit points.

When an arch is very flat, it is subjected mainly to bending ac-
tion and has no typical buckling behaviour, and so can be treated a
beam curved in elevation. To determine this, the arch that has a
lowest buckling load needs to be identified. The axial force param-
eter b corresponding to the arch with the lowest buckling load can
be derived from the lowest solution of Eq. (35) as
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Fig. 6. Non-linear relationship of axial force with central load for arches with
aH ¼ 2 and a�H ¼ 0:01 or aH ¼ 1 and a�H ¼ 0.
b ¼ g1p: ð42Þ

The dimensionless load P corresponding to the solution b ¼ g1p can
be solved from Eq. (19) as given by Eq. (39) by replacing limb!g2p

with limb!g1p, and the corresponding value of the arch geometric
parameter k1 can also be obtained from Eq. (40) by replacing
limb!g2p with limb!g1p.

When the geometric parameter k is equal to k1, the expression
in the radical of Eq. (39) vanishes and so the dimensionless load
P corresponding to k1 can be obtained from Eq. (41) by replacing
limb!g2p with limb!g1p. When the relative flexibilities of elastic
rotational end restraints are given, the lowest solution of b ¼ g1p
can be evaluated from the characteristic equation given by Eq.
(35). The corresponding dimensionless radial displacement ~v , spe-
cific geometric parameter k1, and dimensionless central load P can
be calculated from (9), (40), and (41) by replacing limb!g2p with
limb!g1p. For example, typical non-linear behaviour of the arch
with aH ¼ 1, a�H ¼ 0:001, and the geometric parameter k1 ¼ 7
was shown in Fig. 3(a) as variations of the dimensionless central
radial displacement vc=f with the dimensionless load Q=ðNE2HÞ,
and in Fig. 4(a) as variation of the dimensionless axial force
N=NE2 with the dimensionless load Q=ðNE2HÞ. It can be evaluated
that b ¼ g1p ¼ 2:394; k1 ¼ 7, and P ¼ 3:3638. The central radial
displacement corresponding to the inflection point c in Fig. 3(a)
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Fig. 7. Non-linear relationship of axial force with central load for arches with
aH ¼ 1 and a�H ¼ 2 or aH ¼ 1 and a�H ¼ 1.
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can be calculated by substituting b ¼ 2:394 () NE1=NE2 ¼ 0:3754)
and P ¼ 3:3638 () Q=ðNE2HÞ ¼ 0:4407) into Eq. (9) as
vc=f ¼ 0:899. The position of the inflection point c in Fig. 4(a) is de-
fined by NE1=NE2 ¼ 0:3754 and Q=ðNE2HÞ ¼ 0:4407.

The specific geometric parameter k1 can serve as a switch be-
tween arches that have non-linear buckling behaviour and beams
curved in elevation that have no typical buckling behaviour. To fur-
ther illustrate this, variations of the dimensionless axial force N=NE2

with the dimensionless load Q=ðNE2HÞ for two groups of arches are
shown in Fig. 8(a) for the group with aH ¼ 4 and a�H ¼ 1, and in
Fig. 8(b) for the group with aH ¼ 0:4 and a�H ¼ 0:01. The specific
geometric parameter is evaluated as k1 ¼ 4:3694 for the group with
aH ¼ 4 and a�H ¼ 1, and k1 ¼ 7:4195 for the group with aH ¼ 0:4
and a�H ¼ 0:01. It can be seen from Fig. 8(a) that arches with a geo-
metric parameter (k ¼ 6, 8 and 10) greater than k1 ¼ 4:3694 have an
upper limit point and a lower limit point, while arches with a geo-
metric parameter (k ¼ 3:5 and 4) smaller than k1 ¼ 4:3694 have no
typical buckling behaviour and so they should be considered as
beams curved in elevation. It can also be seen from Fig. 8(b) that ar-
ches with a geometric parameter (k ¼ 9, 10 and 12) greater than
k1 ¼ 7:4195 have an upper limit point and a lower limit point while
arches with a geometric parameter (k ¼ 5 and 6) smaller than
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Fig. 8. Non-linear relationship of axial force with central load for arches with
aH ¼ 4 and a�H ¼ 1 or aH ¼ 0:4 and a�H ¼ 0:01.
k1 ¼ 7:4195 have no typical buckling behaviour and so they should
be considered as beams curved in elevation.

The relative flexibility of the rotational end restraints aH and
a�H may also influence the lowest buckling load and the non-linear
behaviour. The influences are shown as variations of the dimen-
sionless central radial displacement vc=f with the dimensionless
load Q=ðNpin

E2 HÞ in Fig. 9(a), and as variations of the dimensionless
axial force N=Npin

E2 with the dimensionless load Q=ðNpin
E2 HÞ in

Fig. 9(b). For the convenience of comparison, the second mode flex-
ural buckling load Npin

E2 of the pin-ended column with the same
length but without rotational end restraints under uniform axial
compression is used in Fig. 9(a) and (b) to form the dimensionless
load Q=ðNpin

E2 HÞ and axial force N=Npin
E2 . It can be seen that for the

relative flexibility aH ¼ 1 of the rotational restraint at the end
h ¼ H, as the relative flexibility a�H of the other rotational restraint
at the end h ¼ �H increases, the dimensionless lowest buckling
load and the corresponding dimensionless axial force decrease
while the dimensionless central radial displacement at the lowest
buckling load increases.

5. Comparisons with finite element results

The analytical solutions for the non-linear behaviour of pin-
ended arches with unequal rotational end restraints given by
Eqs. (9) and (19) are compared with finite element (FE) predictions
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Fig. 9. Effects of flexibility on lowest buckling and postbuckling behaviour.
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using the non-linear analysis of ABAQUS (2008) and Pi et al. (2005)
in Figs. 10 and 11, as variations of the dimensionless radial load
Q=ðNE2HÞ with the dimensionless central radial displacement
vc=f . The arches in Fig. 10 were assumed to have geometric param-
eters k ¼ 6, 10, 15, 20, respectively, and the rotational end re-
straints of these arches were assumed to have relative
flexibilities of aH ¼ 1 and a�H ¼ 0. The arches in Fig. 11 were as-
sumed to have the same geometric parameters k ¼ 15, with differ-
ent flexibilities of the rotational end restraints aH ¼ 1 and
a�H ¼ 0:001; aH ¼ 0:1 and a�H ¼ 1; aH ¼ 1 and a�H ¼ 0:9, and
aH ¼ 1 and a�H ¼ 1, respectively. In the FE analysis, an I-section
was used whose dimensions are: overall depth D = 0.2613 m,
flange width B = 0.151 m, flange thickness tf = 0.0123 m, and web
thickness tw = 0.0077 m. The Young’s modulus was assumed to be
E = 200,000 MPa. In the ABAQUS FE non-linear analysis, the two
dimensional beam element B21 was chosen, 20 elements were
used to model the arch, the elastic spring rotational element was
used for the rotational end restraints, and the pin-ended conditions
were assigned in polar axes. In addition, the non-linear analysis
with the global control modified Riks algorithm that is imple-
mented in ABAQUS was used in conjunction with proper load
increments and convergence accuracy to obtain the non-linear
solutions. When the FE program of Pi et al. (2005) was used, eight
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Fig. 10. Comparison of analytical solutions with FE results for
curved beam elements were used to model the arches and proper
rotational end restraints were assigned. The results of Pi et al.
(2005) are identical to those of ABAQUS (2008). It can be seen from
Figs. 10 and 11 that the analytical predictions of the non-linear
equilibrium paths and buckling loads for arches with different geo-
metric parameters and different rotational end restraints agree
very well with their FE counterparts.
6. Conclusions

This paper has studied the non-linear elastic in-plane buckling
and postbuckling behaviour of pin-ended shallow circular arches
with unequal elastic rotational end restraints under a central con-
centrated radial load. Analytical solutions for the non-linear in-
plane buckling and postbuckling behaviour and for the buckling
loads were derived. It was found that the pin-ended arch with elas-
tic rotational end restraints of unequal stiffnesses may buckle in a
limit point instability mode, but cannot buckle in a bifurcation
mode. It was also shown that the effects of the unequal stiffnesses
of the rotational end restraints on the buckling loads and the post-
buckling behaviour are significant. The buckling loads increase
with a decrease of the relative flexibility (i.e. an increase of the
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non-linear behaviour of arches having aH ¼ 1 and a�H ¼ 0.
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Fig. 11. Comparison of analytical solutions with FE results for non-linear behaviour of arches having k ¼ 15 .
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stiffness) of the elastic rotational end restraints. A specific value of
the geometric parameter that defines a switch between arches
with an upper limit point and a lower limit point and arches with
two upper limit points and two lower limit points was derived. An-
other specific value of the geometric parameter that defines a
switch between arches and beams curved in elevation was derived.
Comparisons with the FE predictions have shown that the analyt-
ical solutions derived in this paper can accurately predict the
non-linear behaviour and buckling loads of shallow arches with
unequal end rotational restraints.
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