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Bonded random fiber networks are heterogeneous on multiple scales. This leads to a pronounced size
effect on their mechanical behavior. In this study we quantify the size effect and determine the minimum
model size required to eliminate the size effect for given set of system parameters. These include the net-
work density, the fiber length and the fiber bending and axial stiffness. The results may guide the defi-
nition of models and the selection of the size of representative volume elements in sequential
multiscale models of fiber networks. To underline the origins of the size effect, we characterize the net-
work heterogeneity by analyzing the geometry of the network (density distribution), the strain field and
the strain energy distribution. The dependence of the heterogeneity on the scale of observation and sys-
tem parameters is discussed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber networks are a common occurrence in the natural and
engineering worlds and generally play a structural role. These
can be divided in bonded and non-bonded, fibers being bonded
to each other at all or some contact points in bonded networks.
In non-bonded networks fibers cannot cross, and interact only
via topological constraints. The non-bonded networks can be fur-
ther divided in woven and non-woven. The woven networks which
have some degree of regularity/periodicity, are artificial constructs
and are used in the textile and composite industries. Non-wovens
are materials made from long, entangled fibers, with random dis-
tribution of their centers of mass and random spatial orientation,
which stay together due to topological interactions and friction.
Random fiber networks are present at all scales in the human
and animal bodies. Most connective tissue, such as cartilage, ten-
don and ligaments, and the cornea, are made from collagen fiber
networks. On the scale of individual cells, the cytoskeleton is a
large random fiber network made from F-actin and in which fibers
are densely cross-linked. This network has structural role and
mediates signaling and transport of molecules in the cell (Mofrad,
2006; Jeffery et al., 1991; Riesle et al., 1998).

This broad range of applications led to a significant activity tar-
geting primarily bonded networks. The goal of the first models was
to predict the global material behavior based on few microstruc-
tural parameters such as the density and the fiber orientation (Al-
gar, 1965; Astrom et al., 1994; Lee and Carnaby, 1992; Wu and
Dzenis, 2005). These models were based on the assumption that
deformation is affine, i.e. the local strains are identical to the global
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strains. With this assumption, and using the probability distribu-
tion function (PDF) of fiber orientations, it is possible to predict
the elastic moduli of the ensemble of fibers. This approach is
imperfect due to the fact that, in a range of network densities, such
systems actually deform non-affinely (Head et al., 2003; Wilhelm
and Frey, 2003; Hatami-Marbini and Picu, 2008). The degree of
non-affinity depends on the scale of observation, being more pro-
nounced as the system deformation is probed on smaller and smal-
ler scales (Head et al., 2003; Hatami-Marbini and Picu, 2008). The
non-affine deformation leads to a softer response on the system
scale compared to what the affine approximation predicts (Chan-
dran and Barocas, 2006; Heussinger and Frey, 2006). The inability
of the affine models to correctly predict the system scale elasticity
has triggered experimental and modeling activities aimed at
understanding various aspects of the physics of deformation on
sub-scale levels (Head et al., 2003; Wilhelm and Frey, 2003;
Hatami-Marbini and Picu, 2008; DiDonna and Lubensky, 2005;
Heussinger and Frey, 2007). The degree of non-affinity was quanti-
fied using various measures (Head et al., 2003; Leonforte et al.,
2004; Onck et al., 2005; Hatami-Marbini and Picu, 2008) and it
was shown to depend on the system density (fiber number density
or mass density of the network). Sparse networks deform more
non-affinely than dense networks. Despite the insight obtained
from these studies, a mechanistic model predicting the elasticity
of the material based on microstructural parameters and deforma-
tion mechanisms is not available.

In this article the heterogeneity of bonded networks is studied
by computational means. The heterogeneity is described in terms
of the geometry (based on density) and in terms of strain and strain
energy evaluated on network sub-scales. The fluctuations of the
density and strain field have been described in the literature func-
tion of the scale of observation in the context of non-affinity (Head
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et al., 2003; Hatami-Marbini and Picu, 2008; Picu, 2011). The fluc-
tuations of strain energy have not been described so far. The heter-
ogeneity leads to a strong size effect affecting the network moduli.
We study this size effect for several boundary conditions and pre-
scribe rules by which a size effect-free model can be developed.
This discussion also sheds light on the selection of representative
volume elements in multiscale models of fiber networks.

2. The model, internal length scales and system parameters

The systems considered here are two dimensional networks
generated by depositing fibers of length Ly in a square domain of
dimensions L, with random fiber orientation and centroid posi-
tions. Cross-links are introduced at all points where fibers inter-
sect. The resulting structure is stress-free. The coordination, i.e.
the number of neighboring cross links to which a given cross-link
is connected, is at most z = 4 at all nodes, since no three fibers cross
exactly at the same location. If the cross-links are modeled as pin
joints, fibers are loaded by axial forces only. It has been shown that
a 2D network of trusses with average coordination number z < 4
does not have rigidity and hence does not store mechanical energy
(Kellomadki et al., 1996). If the cross-links are modeled as “welded”
or “rotating” joints, the fibers are loaded both axially and in bend-
ing and the structure has non-vanishing stiffness even for z=4. A
rotating joint transfers bending moments along a given fiber but
not between the two fibers joined at the respective cross-link.
The angles between the intersecting fibers are preserved during
deformation when the cross-link is modeled as a welded joint. This
allows for moment transfer between fibers. In this work we con-
sider rotating joints. The selection of rotating joints may be justi-
fied based on modeling arguments in some cases. An example is
provided by the cellular cytoskeleton in which the F-actin fibers
are linked by binding proteins (e.g. scruin) which transfer forces
between fibers, but do not transfer bending moments. We note
that using welded joints in place of the rotating joints leads to
small numerical differences, but leaves the main conclusions un-
changed. This is discussed in other publications (Wilhelm and Frey
2003; Heussinger and Frey 2007; Shahsavari and Picu, 2012).

Loading is imposed by specifying displacements along the
boundary of the domain. Most results presented here, unless stated
otherwise, are obtained for wuniaxial far-field deformation
(011 = 0; 022 # 0; 612 = 0). The dangling ends (the two end seg-
ments of each fiber which are connected to a single cross link)
are excluded from the model because have no contribution to the
energy of the system. Periodic boundary conditions are used in
some simulations as specified in the text. When periodic boundary
conditions are used, the structure has to fulfill the periodicity con-
dition along the respective boundaries of the model. If a fiber
crosses an edge, the portion of the fiber falling outside the domain
is placed back in, on the opposite side. The imposed displacements
and the periodic boundary conditions lead to non-zero forces and
moments along the entire boundary, however the mean normal
and shear stresses on faces perpendicular to the x; direction are
kept zero.

The fiber material is considered linear elastic and fibers are
characterized by the bending, axial and effective shear stiffness,
K =EfI, n = E;A and y = AGsA, respectively. A and I are the area
and moment of inertia of the fiber cross-section, E; is the fiber
Young's modulus, Gy is the shear modulus, and 2 is a constant
which is taken here equal to 0.88 (for beams with circular cross
section). The total energy of the system is the sum of the strain
energies associated with bending, axial and shear deformation, i.e.

v (8] ) (-

u(s >)2 (1)

In this expression z(s) represents the transverse displacement
and d” 5> is the axial strain at posmon s along the fiber. The rotation
of the ﬁber cross-section is 42, while y(s) represents the rotation
of a plane which remains perpendlcular to the neutral axis of the
beam. Hence ‘“’(‘) —y(s) represents the shear deformation of the
beam. Expressmn (1) corresponds to the Timoshenko model of
the beam (Gere and Timoshenko, 1997). Note that the Euler-Ber-
noulli model is more often used for fibers. The two models give
identical predictions for long, slender beams (beam length signifi-
cantly larger than the cross-sectional dimension), while the Timo-
shenko model gives more accurate predictions for short beams. In
random fiber-networks with random orientation of fibers, the dis-
tribution function of segment lengths is Poisson (Kallmes and
Corte, 1960). Hence, a large number of short segments are present
and, for given fiber diameter, one expects many segments to be too
short to be modeled with the Euler-Bernoulli formulation. This
motivates us to use the Timoshenko’s model in this study (Shahs-
avari and Picu, 2012).

The solution of the network is evaluated by minimizing the to-
tal potential energy of the system using a finite element solver.

The system has the following characteristic length scales: the fi-
ber length, Ly, centroid or fiber number density N, contour density
p =NLy , the mean segment length, I, and I, = (x/5)"/%. The first
two characteristic length scales result from the network structure,
while I, is related to the mechanical properties of individual fila-
ments and denotes the relative importance of bending, x, and axial
stiffness, 7. The fact that for this particular type of network the
bending and axial stiffnesses appear in the constitutive law of
the network only through a unique parameter, I,, has been ob-
served in Head et al. (2003) and Wilhelm and Frey (2003). For a
cylindrical filament, I, is equal to half of the cylinder radius. In this
work these parameters were varied as follows: the system size
L/Ly € [5,20] /Ly €[1077,4 x 1072] and the mean segment length
l./Ly €[0.005,0.120]. Note that for a network composed from fibers
of constant length Ly, the mean segment length I is related to the
fiber contour density p through the following relation (Kallmes
and Corte, 1960):

T

=g )

3. Results and discussion

The central objective of this article is to quantify the effect of
the heterogeneity on the global properties of the network, and to
provide quantitative information on the resulting size effect. To
this end, the degree of heterogeneity is quantified first, and then
its influence on the size effect of the elastic moduli is discussed.
A method that can be used to infer the size of the model above
which the small strain mechanical behavior is size-independent
is presented in closure.

3.1. Characterization of network heterogeneity

By network heterogeneity we understand the variation of spe-
cific parameters across the problem domain, under loading condi-
tions in which the respective parameters are expected to be
position-independent if the material were a homogeneous contin-
uum. A grid of characteristic size § (composed from square ele-
ments of area 6%), is overlaid on the problem domain and specific
parameters are evaluated for each element. The parameters of
interest are the density, the strain and the strain energy density.

The normalized density in each element, p, is computed as the
total fiber length per element divided by ¢* and by the nominal
density of the system, p. Fig. 1 shows the probability distribution
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function (PDF) of ps, p(ps), for two systems, with N =200 and
N = 600 fibers per unit area, with Ly = 0.5. The curves are obtained
by probing with é = 10l and 50I.. The mean segment length [ is
0.015 and 0.005 for the two systems. Note that the distribution
of segment lengths, p(l), is Poisson and hence it is fully defined
by its first moment, [ (Kallmes and Corte, 1960). As expected,
the distribution is narrower when § is large and becomes broad
when ¢ approaches the characteristic length I.. The PDFs for the
two densities coincide, which is a consequence of the stochastic
process by which all these networks are generated.

The density is spatially correlated when § < Ly (Hatami-Marbini
and Picu, 2009). The correlations are due to the fact that a fiber
spans a region of diameter L, around its centroid. The correlations
have a range proportional to Ly and a sharp cut-off beyond this dis-
tance. The functional form of this rather trivial correlation function
can be obtained in close form (Dodson, 1971; Picu and Hatami-
Marbini, 2010). Additional correlations may be introduced by the
process of fiber deposition in a domain of finite size. These correla-
tions decrease in range as the density increases, while the range of
correlations introduced by the finite length of fibers is independent
of density. The presence of correlations in the density field implies
correlations in the effective moduli of the elements of the probing
grid. A mapping from the discrete network model to a heteroge-
neous continuum with correlated elastic moduli which vary on
length scales larger than 6 was presented in Hatami-Marbini and
Picu (2009).

Let us consider now the heterogeneity of the strain energy den-
sity distribution. To this end, consider three systems of different
density and with different values of [,. System I is characterized
by p =100, L, =0.5, I, = 1077, System II has fibers much stiffer
in bending but same density, p =100, Ly = 0.5, I, =103, and
System III has large nominal density and large fiber bending stiff-
ness, p =300, Lo =0.5, [, = 1073, All systems are loaded in uniax-
ial tension with 1% strain and the strain energy density is
computed by summing up energies stored in the axial, bending
and shear deformation modes of fibers. Let us denote the total en-
ergy per patch of size 6 by E;. This quantity, normalized by the
mean value of the strain energy for a patch of same dimensions,
is denoted by E;. Fig. 2 shows the PDF of E; for the three systems
and for a probing length scale § = 10l. The PDFs are clearly distinct.
The system with low density and small I, exhibits the broadest dis-
tribution. This indicates that the degree of heterogeneity of the
strain energy density is controlled by both p and I,. Increasing I,
makes a relatively sparse system appear as homogeneous (com-
pare systems I and II). This cannot be predicted exclusively based
on the network geometry (Fig. 1).

A more direct way to visualize the heterogeneity of the energy
distribution in the network is shown in Fig. 3. A realization of the
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Fig. 1. Density PDFs at different probing scales, J, and for networks of different
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Fig. 2. Energy PDFs at probing scale § = 10I. for systems I-III defined in text.

network with N = 200 is considered, with the two values of [, cor-
responding to systems I and II. The energy carried by each fiber
segment in given system is ranked and the most loaded segments
whose total energy amounts to 95% of the system strain energy are
represented in black (dark). The others are represented in yellow'
(light). Fig. 3(a) corresponds to system I and is mostly yellow (light);
specifically, 15% of the fibers carry 95% of the strain energy. Fig. 3(b)
corresponds to system II, and demonstrates a much more uniform
energy distribution; 72% of the fibers carry 95% of the total energy.
Note that if the deformation would be homogeneous, 95% of the fi-
bers would carry 95% of the energy.

The heterogeneity may be also characterized based on the local
strains measured on scale ¢. The strain tensor associated with an
element is computed by fitting linear functions, u;(x;,X;) and
Uy (X1,X2) to the displacements of all cross-links (nodes) in the
respective sub-domain. The mean strain is evaluated from these
functions using the small strain approximation of the Green strain.
Fig. 4 shows the PDF of strain component &,, (which is the non-
zero component of the strain applied on the system scale) for net-
works I-III probed with § = 10l.. The strain heterogeneity is very
large in system I, with the local strain being negative, even though
the equivalent global strain component is positive. This is in agree-
ment with the observation in Hatami-Marbini and Picu (2008)
where it was discussed that even when the global imposed strain
has only one non-zero component (uniaxial), all local strain com-
ponents and the components of the rotation tensor are non-zero.
As with the strain energy, the distribution becomes narrower and
the deformation appears more homogeneous when the density
or/and I, increase.

The physical picture emerging from this discussion is that of a
material which resembles a heterogeneous continuum. If one ac-
counts for variability from sample to sample, the effective equiva-
lent continuum becomes stochastic, with strain energy sampled
from the PDFs of Fig. 2. The degree of heterogeneity, characterized
here by the second moment of these PDFs, is large for system I, but
much smaller for systems II and III. Specifically, increasing the net-
work density decreases the apparent heterogeneity of the fields. A
more interesting effect is that the heterogeneity may be also re-
duced by increasing I, at given network density and structure.

The purpose of this discussion on heterogeneity is to introduce
the phenomena causing the size effect presented in Section 3.2.

3.2. Size effect

As discussed in the preceding section, the network model is
characterized by its three independent parameters i.e. the density
p, fiber length L, and the relative bending to axial stiffness of

! For interpretation of color in Figs. 3 and 6, the reader is referred to the web
version of this article.
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Fig. 3. Distribution of strain energy for two values of I,. Fibers represented in black (dark color) carry 95% of the system strain energy. (a) corresponds to system I, while (b)

corresponds to system II.
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Fig. 4. PDFs of strain component &, at probing scale § = 10l. for systems [-III
defined in the text.

constituent fibers, I,. The size of the system, L, should be consid-
ered an additional length scale of the problem. To investigate the
effect of the system size on the overall elastic modulus, E, networks
with density p =50 and L, = 0.5 and having different sizes are
subjected to uniaxial tension while using periodic boundary condi-
tions. Many realizations are produced and replica averaging is per-
formed. The results of the size effect analysis are shown in Fig. 5.
All curves converge to an asymptote at large L/L,. The value of this
asymptote, E., is used to normalize the vertical axis for each sys-
tem considered. The size effect depends strongly on system param-
eters, specifically, systems with fibers stiffer in bending exhibit a
weaker size effect. This relates to the heterogeneity results dis-
cussed in Section 3.1. As I, increases, the heterogeneity in all
mechanical fields (strain, strain energy) decreases, which leads to
a weaker size effect.
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Fig. 5. Size effect of elastic modulus for different values of I, and density p = 50.

The magnitude of the size effect is also investigated for various
boundary conditions. The system with density p = 50 and L, = 0.5
is subjected to three types of boundary conditions shown in Fig. 6.
These are color coded (also marked with different symbols) with
the corresponding size effect curve. The size effect is evaluated
for these three systems for two I, values. Periodic boundary condi-
tions are used for the systems shown in blue and green (diamonds
and crosses), with the vertical edges of the model shown in blue
(diamonds) being forced to remain straight during the deforma-
tion, and the vertical edges of the system shown in green (crosses)
being free to deform. The normal stress in the horizontal direction
is zero. Zero traction conditions are imposed along the vertical
edges of the system shown in red (triangles) and no periodicity
is enforced. The inferred Young’s modulus of the network depends
strongly on the type of boundary conditions applied. For the non-
periodic system the convergence is from below, while for the
two periodic systems the convergence is from above, which is in
agreement with the behavior of a continuum model (Huet, 1990).
The nature of the boundary conditions does not affect the rate of
convergence and in the limit of large L all boundary conditions lead
to the same effective moduli, as expected. As seen in Fig. 5, increas-
ing I, speeds-up the convergence of E to E...

Because of the inherent stochasticity of the system, the elastic
modulus varies from realization to realization. The variability from
sample to sample decreases as the size of the system increases be-
cause a larger system includes more statistically independent sub-
domains. Another way of eliminating the effect of variability is
performing replica averaging. The data shown in Figs. 5 and 6 cor-
responds to the mean of 25 realizations for each size and each sys-
tem parameters. It is also important to note that for a given system
size the variability depends on density and I,.

3.3. Structure-properties relation: a master curve

We turn now to the effect of the system size on the inferred
elastic constants of the network. To this end we repeat a scaling
collapse analysis which led to a structure-properties-type constitu-
tive relation (Head et al., 2003; Wilhelm and Frey, 2003), while
using models large enough to eliminate any possible size and
boundary conditions effects. Specifically, the system size is kept
at least 10 times larger than the fiber length, and even larger, up
to 20L, for samples with low p and I,. For each set of model param-
eters we consider 25 replicas.

Systems of various density, fiber length and [, values are consid-
ered and their Young’s modulus, E, and Poisson’s ratio, v, are eval-
uated numerically. The Young’s modulus data are then collapsed to
a master curve by proper normalization of the two axes (Head et al.
2003). Fig. 7 shows E function of p, Ly and I,. Data for 96 networks
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Fig. 6. Dependence of the size effect on boundary conditions. Results obtained by imposing three types of boundary conditions on the same network, at two values of I, and

for p = 50 are shown.

(sets of model parameters) with density p ranging from 50 to 300,
fiber length Ly ranging from 0.25 to 1, and I, in the interval of
(1077,1072) are presented. The Young’s modulus is normalized by
pn and a constant o which is a dimensionless quantity equal to
0.38. The variable of the horizontal axis is w = (pLy)*(ly/Lo)’. Note
that according to Eq. (2), p ~ l;], i.e. pLyp ~ Lo/l.. The exponents x
and y that provide data collapse on a master curve are x =7 and
y =2. The curve reaches a plateau at large w. This indicates that
the modulus is proportional to the density and to #. This depen-
dence was inferred in the early network models where it was as-
sumed that the deformation is affine (Wu and Dzenis, 2005; Lee
and Carnaby, 1992) and was observed experimentally for paper
(Rigdahl and Hollmark, 1986). Our results for this regime do not

differ from those reported in the literature primarily because prop-
er scaling can be obtained even with rather small systems.

At small w, the slope of the master curve in Fig. 7 is unity, hence
the modulus is proportional to p8, L3 and to nli =n(x/n) = k. The
deformation in this regime is strongly non-affine and, as discussed
in Section 3.2, the size effect is important. The exponents reported
in the literature for this regime are slightly different. In Wilhelm
and Frey (2003) and Heussinger and Frey (2007), the relation
E ~ p®%7 is inferred for the small w regime. In Head et al. (2003)
the discussion is in terms of a length parameter, /1 = I.(I./l,)%,
where Ly// is identical to parameter w used here. g =1/3 gives
the prefect collapse for the low density data which results in scal-
ing of shear modulus as G ~ EfIp°L$, while at large densities, they
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Fig. 7. Master plot providing the Young’s modulus of the network as a function of system parameters. The data points correspond to 96 combinations of p, Lo and Ip.
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system parameters p, Ly and Ip.

suggest q = 2/5, leading to G ~ E;Ip3L}. We suggest that the size
effect along with the use of different boundary conditions may lead
to these apparently discrepant results. To substantiate this state-
ment, let us consider that one evaluates the moduli for all values
of w using the same model size, same boundary conditions and
same number of replicas. The moduli are evaluated by averaging
over all replicas of given system. In this case, the data points at
large w would be more accurate than those at small w since the
size effect is more pronounced in the non-affine regime. In addi-
tion, since a finite number of replicas is considered for each system,
one has to account for the variability from sample to sample. The
variability is more pronounced when smaller models are used
and increases with decreasing w. Therefore, the data points in
the non-affine regime have larger error bars than those corre-
sponding to large w values. This uncertainty may lead to errors
in the inferred slope and scaling exponent.

We emphasize that the master curve of Fig. 7 should be, in prin-
ciple, free of size effects and sample to sample variability. In the
limit of very large systems, eliminating the size effect also elimi-
nates the variability. For the model sizes used to produce the data
reported in Fig. 7 the variability is not entirely eliminated. The larg-
est error bar is obtained for systems close to stiffness percolation
(lowest w) and it is 6%. This is smaller than the size of the symbols
in Fig. 7.

Finally, let us also mention that the large exponent of the scal-
ing with the density, E ~ p3, is specific to 2D models. Recent work
(Broedersz et al., 2012) shows that networks in 3D are less sensi-
tive to density and Loy, the shear modulus scaling in the non-affine
regime as G ~ kp3L3.

3.4. Prediction of the scale of homogeneity

The present discussion has implications for the selection of the
size of the smallest representative volume element (RVE) in
sequential multiscale models of these structures, i.e. for identifying
the “scale of homogeneity.” Systems larger than this important
length scale are free of size effects and their elastic constants are
independent of the boundary conditions used for probing (pro-
vided these are such that would produce constant fields in a homo-
geneous sample). The value of L at which the modulus of systems
shown in Fig. 6 converges to E. is the minimum allowable RVE
size.

To provide quantitative guidance for the selection of model
sizes, we use data such as those in Fig. 5 and determine the model
size, L,, beyond which the modulus is within a range from the
asymptote. The range is taken here to be 10%. L, values are calcu-
lated using the most confining boundary conditions of Fig. 6.

Therefore in practical situations, the error is expected to be less
than 10%. L, values are shown in Fig. 8 versus parameter w of
the master curve in Fig. 7. Multiplying the vertical axis by the den-
sity, p, which is equivalent to the normalization of L, by I. (Eq. (2)),
results in a reasonable collapse of the data. A clear demarcation is
observed between systems with small w (red diamonds), which are
characterized by large heterogeneity and strongly non-affine
deformation, and those with w larger than approximately
10%2=160 (blue circles) which correspond to mostly affinely
deforming networks. For w < 160 the scale of homogeneity, L, de-
pends only on [ as:

Ly ~ 180,. 3)

This indicates that L, diverges as the percolation limit is ap-
proached from above due to the reduction of the density, and the
system is in the non-affine deformation range of w. This is a known
result. The present analysis provides a relationship defining this
divergence and indicates that L, is independent of L, in this range.

For systems with w> 160, L, decays with increasing w. The
slope of the best fit to the data in this range is —0.15 and hence
one can write

Ly~ 1/(pw*'®) ~ L0, (4)

The minimum model size should also be larger than any corre-
lation length of the geometry or mechanical fields. As discussed in
Section 3.1, fiber networks exhibit spatial correlations of range
approximately equal to the fiber length, L,. Therefore, L is
bounded below by Ly and this condition must be used in conjunc-
tion with Egs. (3) and (4) (Fig. 8) to predict the smallest model and
RVE size.

4. Conclusions

This article addresses several issues related to the heterogeneity
of bonded networks, drawing a parallel between these systems and
heterogeneous continua. The heterogeneity is described in terms of
the network geometry (based on density) and in terms of strain
and strain energy evaluated on sub-scales. The density heterogene-
ity depends primarily on the scale of observation. The energy and
strain heterogeneity depend on p and I, with the heterogeneity
decreasing as these parameters increase. The network shifts form
a non-affinely deforming structure to an (approximately) affinely
deforming one even when the density is kept constant and the
bending stiffness of fibers increases relative to the axial stiffness.

The important result of this article is related to the size effect
associated with network moduli. The pronounced heterogeneity
described here leads to a strong dependence of the measured
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moduli on the size of the probed network domain. We quantify this
size effect and provide a simple relation linking the system param-
eters to the smallest model size which insures that the small strain
mechanical response is model size independent.
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