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a b s t r a c t 

For periodically inhomogeneous media, a generalized theory of elastodynamic homogenization is pro- 

posed so that even the long-wavelength and low-frequency asymptotic expansions of the resulting ef- 

fective (or macroscopic) motion equation can, approximately but simultaneously, capture all the acoustic 

and some of the optical branches of the microscopic dispersion curve. The key to constructing the gen- 

eralized theory resides in incorporating new kinematical degrees of freedom in conjunction with rapidly 

oscillating body forces as microscopic and macroscopic loadings while satisfying an energetical consis- 

tency constraint reminiscent of Hill –Mandel lemma. By this constraint, an effective displacement field is 

naturally defined as the projection of a microscopic one onto the dual to the space of body forces. To 

illustrate these results, a two-phase string is studied in detail. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The elastodynamic homogenization approaches reported up to

ow in the literature are observed to run into difficulties when be-

ng used to model dynamical effects over a wide frequency range. 

1. The classical lowest-order Long-Wavelength (LW) Low- 

Frequency (LF) homogenization approaches ( Bensoussan et al.,

1978; Sanchez-Palencia, 1980 ) yield a homogeneous substitu-

tion Cauchy medium which misses all dispersive effects and all

internal resonances, i.e., all optical oscillation modes. 

2. The higher-order LW-LF asymptotic homogenization approaches

( Andrianov et al., 2008; Boutin and Auriault, 1993 ) lead to ef-

fective strain-gradient media which can model well dispersive

behaviors and size effects but are valid only near the acoustic

branches independently of the order of the asymptotic approx-

imations used. 

3. The high-frequency asymptotic approaches ( Antonakakis et al.,

2014; Boutin et al., 2014; Colquitt et al., 2014; Craster et al.,

2010; Daya et al., 2002; Nolde et al., 2011 ) are successful in

capturing high-frequency optical modes but still valid only in

the vicinity of some finite frequency. 

4. The high-contrast asymptotic approaches ( Auriault and Bon-

net, 1985; Auriault and Boutin, 2012; Smyshlyaev, 2009 ) have a

wide frequency validity domain englobing an infinite number of
∗ Corresponding author. Tel.: +33 160967794. 
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optical branches. However, the corresponding effective behavior

is complex and nonlocal in time. 

5. The non-asymptotic theory of Willis (1997 , 2011) yields exactly

the whole dispersion curve. Nonetheless, the described effective

fields are only relevant for low frequencies ( Nassar et al., 2015b;

Srivastava and Nemat-Nasser, 2014 ). 

The main purpose of the present paper is to construct a gener-

lized theory of elastodynamic homogenization for periodic media

hich improves the quality of the Willis effective behavior as an

pproximation to the microscopic behavior in a way that LW-LF

symptotic expansions become able to capture, approximately but

imultaneously, all the acoustic and some of the optical branches

f the microscopic dispersion curve. To achieve this purpose, new

inematical Degrees Of Freedom (DOFs) are taken into account so

s to describe some short-wavelength components of the micro-

copic displacement field which become dominant at high frequen-

ies. The new DOFs are excited by incorporating various rapidly

scillating body forces on the microscale and on the macroscale

nder an energetical consistency constraint hereafter called En-

rgy Equivalency Principle (EEP). The EEP is a balance between the

icroscopic and macroscopic virtual works and is later proven to

ield a generalized version of the well-known Hill –Mandel lemma.

ith respect to Willis theory, we underline two major differences.

irst, the incorporated loadings are much richer than those em-

loyed by Willis (1997 , 2011) . This has the consequence of reduc-

ng the error committed during the upscaling process and provid-

ng an extended frequency validity domain. Second, the EEP con-

erns virtual works and not their expectancies. From the physical

http://dx.doi.org/10.1016/j.ijsolstr.2016.01.022
http://www.ScienceDirect.com
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standpoint, this leads to a clear distinction between the macroscale

and the microscale in terms of wavelengths. Nevertheless, it should

be pointed out that the generalized theory presented here is by

construction limited to periodically inhomogeneous media while

Willis theory is formally valid both for periodically and randomly

inhomogeneous media. 

The paper is organized as follows. In Section 2 , we recall some

geometrical elements useful for describing periodic media, summa-

rize the equations governing the kinematics and dynamics of them,

and simplify these equations by using Bloch-wave expansions. The

main body of the generalized theory is presented in Section 3 . The

EEP is first postulated; the space of admissible body forces is then

defined as the set of macroscopically applied loadings; the effec-

tive displacement field associated to a microscopic displacement is

obtained by the EEP and proven to be an improvement over the

one defined by Willis; the effective motion equation is finally de-

rived in a formal way and a Hil –Mandel relation is demonstrated.

In Section 4 , an analytical LW-LF asymptotic approximation to the

effective motion equation is given for a particular 1D two-phase

string. Exact and approximate dispersion curves are plotted and

compared. It appears then how the resulting asymptotic model,

though based on LF expansions, can simultaneously capture acous-

tic and optical branches while conserving a low-order local motion

equation. 

2. Preliminaries 

In this section, some geometrical elements useful for the study

of periodic media are recalled. The governing equations of linear

elasticity are recapitulated. Bloch-wave expansions of fields and

work are also introduced. 

2.1. Geometry and periodicity 

Let � be a d -dimensional infinite body. Define E as the vector

space of translations acting on the points of �. Given d indepen-

dent translations (b j ) j=1 ... d , denote by R the subset of E obtained

by integer combinations of these vectors. The subset R is called

a lattice. Then, a scalar, vector or tensor field h defined over � is

said to be R-periodic if and only if it satisfies h (x + r) = h (x ) for

all points x ∈ � and all translations r ∈ R. Accordingly, h needs

being defined only over a unit cell 

T = 

{ 

x o + r 

∣∣∣∣r = 

d ∑ 

j=1 

r j b j , −1 / 2 ≤ r j < 1 / 2 

} 

⊂ �, 

where x o , its center, is an arbitrary point of �. Note that while

R-periodicity is well defined, the choice of b j and T is not unique. 

Symbolize by E ∗ the dual space of E . A wavenumber k ∈ E ∗ act-

ing on a translation r ∈ E produces a phase shift k · r where ( ·) is
the usual dot product. Now, points of � and vectors of E can be

identified after choosing some origin x o . In what follows, we drop

x o so as to write k · x instead of k · (x − x o ) for simplicity. The re-

ciprocal lattice R 

∗ of the direct lattice R is defined as the subset

of E ∗ consisting of wavenumbers ξ such that e i ξ · x is R-periodic,

with i 2 = −1 . Also of interest is the first Brillouin zone T ∗ defined

as the set of wavenumbers closer to the null wavenumber than to

any other wavenumber of R 

∗, i.e., 

T ∗ = 

{
k ∈ E ∗|‖ k‖ < ‖ k − ξ‖ , ∀ ξ ∈ R 

∗ − { 0 } }. 

This zone is uniquely defined and independent of T . 

A function h defined over � can be expanded into plane waves

over E ∗ such that 

h (x ) = 

∫ 
∗

˜ h k e 
i k·x d 

d k. 

E 
n particular, when h is R-periodic, it can be written as the Fourier

eries 

 (x ) = 

∑ 

ξ∈ R 

∗

˜ h ξe i ξ·x . 

aving this in mind, with respect to R, T ∗ can be seen as the sup-

ort of slowly varying fields. In particular, among R-periodic func-

ions, only constants have their wavenumber contained in T ∗, i.e.,

 

∗ ∩ R 

∗ = { 0 } . 
Finally, call a Bloch wave, of wavenumber k and amplitude

˜ 
 k (x ) , a function h k ( x ) of the form 

 k (x ) = 

˜ h k (x ) e i k·x , 

here ˜ h k (x ) is R-periodic. 

.2. Constitutive and motion equations 

Letting u ( x , t ) be the displacement vector for a point x ∈ � at

nstant t , the strain field ε and velocity field v are derived accord-

ng to 

 = ∇⊗s u , v = 

˙ u , 

here ∇ is the space gradient operator, ⊗ denotes the tensor

roduct, the superscripted “s ” indicates symmetrization and a su-

erscripted dot symbolizes differentiation with respect to time.

he stress tensor σ and momentum density p are then given by

he local constitutive equations of �: 

= C : ε , p = ρv , 

ith C and ρ being the elastic stiffness tensor and the scalar mass

ensity, respectively, and the colon (:) standing for double contrac-

ion. 

The motion equation of � reads 

 · σ + f = 

˙ p 

here ( ∇·) is the divergence operator and f is a field of externally

pplied body forces. We shall mostly work with harmonic fields

f frequency ω. Therefore, all time derivatives can be substituted

y i ω-multiplications and time dependency can be dropped hence-

orth. The motion equation of � becomes the Helmholtz equation

 ·
[
C(x ) : 

(∇⊗s u (x ) 
)]

+ f (x ) = −ω 

2 ρ(x ) u (x ) (2.1)

here we have displayed x -dependencies and omitted ω-

ependencies. 

In this work, the homogenization of � amounts to finding the

otion equation, hereafter called “effective motion equation”, of a

omogeneous medium substituting the initial inhomogeneous one,

nder an energy equivalency constraint to be specified. 

.3. Bloch-wave expansions 

The superposition principle makes it possible to work with ele-

entary, such as plane-wave, body forces instead of arbitrary ones

 ( x ). It is however more convenient, for reasons that will become

lear, to work with Bloch-wave body forces. Then, let f k ( x ) be an

lement of the Bloch-wave expansion of f ( x ) such that 

f (x ) = 

∫ 
T ∗

f k (x ) d 

d k ≡
∫ 

T ∗
˜ f k (x ) e i k·x d 

d k, (2.2)

here ˜ f k (x ) is R-periodic and the symbol ≡ stands for equality by

efinition. 

For a given k ∈ T ∗, the motion equation for a Bloch-wave body

orce takes the form 

 ·
[
C(x ) : 

(∇⊗s u k (x ) 
)]

+ 

˜ f k (x ) e i k·x = −ω 

2 ρ(x ) u k (x ) . 
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Fig. 1. The effective displacement field D associated to a given microscopic one u is 

geometrically interpreted as the projection of the latter onto the space of admissible 

displacements. Spaces F and F 

∗ are isomorphic and, here, are taken to be equal 

up to a change in units. 
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e now assume that C and ρ are R-periodic so that the solution

 k ( x ) can be written as 

 k (x ) = 

˜ u k (x ) e i k·x 

ith an R-periodic amplitude ˜ u k (x ) ( Gazalet et al., 2013 ). In other

ords, to the expansion (2.2) , there corresponds a similar Bloch-

ave expansion of the solution to (2.1) : 

 (x ) = 

∫ 
T ∗

u k (x ) d 

d k = 

∫ 
T ∗

˜ u k (x ) e i k·x d 

d k, (2.3)

ith u k ( x ) being the displacement field over � subjected to f k ( x ).

n contrast, except for a homogeneous body, there are no similar

esults for plane waves. 

Given the Bloch-wave form of u k , and simplifying the phase

actor e i k · x , the motion equation becomes, in terms of ˜ u k (x ) and
˜ f k (x ) , 

(∇ + i k) · { C(x ) : [ (∇ + i k)⊗s ˜ u k (x ) ] } + 

˜ f k (x ) = −ω 

2 ρ(x ) ̃  u k (x ) . 

(2.4) 

ast, the x -dependencies of Bloch amplitudes for displacements

nd body forces were explicitly annotated. In what follows, all

elds are understood to be x -dependent unless otherwise stated. 

.4. External work 

Define the virtual work of external body forces f associated

ith a virtual displacement field u by 
 

�
f · u 

∗

here a superscripted ∗ denotes complex conjugation. Also, intro-

uce the averaging operator 〈〉 by 

 

h 〉 = 

1 

| T | 
∫ 

T 

h (x ) d 

d x 

or all R-periodic functions h . Note that 〈〉 is independent of

he choice of T and is ill-defined for non- R-periodic functions.

lancherel’s identity for Fourier transform and Parseval’s identity

or Fourier series deliver then a similar identity for Bloch-wave ex-

ansions: 
 

�
f · u 

∗ = (2 π) d 
∫ 

T ∗

〈
˜ f k · ˜ u 

∗
k 

〉
d 

d k 

= 

(2 π) d 

| T | 
∫ 

T ∗

∫ 
T 

˜ f k (x ) · ˜ u 

∗
k (x ) d 

d x d 

d k. (2.5) 

onsequently, in defining the energetically equivalent effective be-

avior, we can work with fields of a single Bloch wavenumber k ∈
 

∗ and then apply the superposition principle even though work is

uadratic and not linear. 

. A general theory 

In this section, the energy equivalency principle (EEP), the cor-

er stone of the present approach, is first postulated, given a sim-

le form and exploited to define the effective displacement field.

 formal derivation of the effective motion equation is then pre-

ented. The effective constitutive behavior is nonlocal in both space

nd time which raises questions about its uniqueness ( Fietz and

hvets, 2010; Willis, 2011 ). In order to avoid this difficulty, we

ill be interested only in the effective motion equation which is

nique. Nonetheless, we will derive expressions for the general-

zed stress, momentum, velocity and strain measures which are, in

articular, needed for determining an effective constitutive law. 
.1. Energy equivalency 

In classical static or quasi-static homogenization, an energy

quivalency relation, known as Hill –Mandel lemma, is proven for a

amily of boundary conditions prescribed on a representative vol-

me element as macroscopic loadings. Once the boundary con-

itions have been specified, Hill –Mandel lemma can be used to

efine, by duality, the macroscopic stress in a strain-based ap-

roach or the macroscopic strain in a stress-based approach. In the

resent formulation, admissible body forces applied globally to �

nstead of boundary conditions are taken to be macroscopic load-

ng. Then, an EEP is postulated so as to dualize body forces and

isplacements. This duality will allow us to define the macroscopic

isplacement field, called D , in terms of the microscopic one u ,

nce admissible body forces have been imposed. 

Let F be the space of Bloch amplitudes ˜ f k , involved in (2.2) ,

f admissible body forces. The elements of F are seen as external

oadings likely to be applied to �. Note that they will remain the

ame after the scale transition. The space F acts as a parameter of

he approach to be elaborated and needs to be chosen adequately.

ext, let F 

∗, the space dual to F , be the space of Bloch ampli-

udes ˜ D k of admissible effective displacement fields. For a given

icroscopic displacement field u , the corresponding effective (or

acroscopic) displacement field is defined as the unique admissi-

le displacement such that 
 

�
f · D 

∗ = 

∫ 
�

f · u 

∗ (3.1)

or all admissible virtual body forces f (i.e., ˜ f k ∈ F , for all k ∈ T ∗).

hysically, the EEP (3.1) can be interpreted as requiring that the ef-

ective displacement field D associated to a given microscopic field

 be such that the work done by every admissible virtual body

orce f in the course of D is equal to the one done by f in the

ourse of u . Geometrically, the EEP (3.1) simply means that D is the

rojection of u onto the space of admissible displacements ( Fig. 1 ).

n the basis of the EEP (3.1) , a generalized Hill –Mandel lemma will

e proven in Section 3.4 . 

Using the Bloch decomposition (2.5) , the EEP (3.1) can be equiv-

lently written in terms of Bloch amplitudes as 

 k ∈ T ∗, ∀ ̃

 f k ∈ F , 
〈

˜ f k · ˜ D 

∗
k 

〉
= 

〈
˜ f k · ˜ u 

∗
k 

〉
. (3.2)

.2. Effective displacement field 

Bearing in mind the EEP (3.1) , choosing the space F of admis-

ible body forces becomes a key step toward elaborating a general-

zed theory. The choice of F depends ultimately on the degree of

ccuracy with which D is required to approximate u . The bigger F 

s, the closer D is to u . When all body forces are considered as ad-

issible, the relation (3.1) implies D = u and the effective medium

s trivially the original one. In what follows, we study the rather

eneral case of practical importance where F is finite-dimensional

nd show how D derives from (3.1) correspondingly. 
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3.2.1. Admissible body forces 

Given N linearly independent, k - and ω-independent, R-

periodic vector fields φi with i = 1 . . . N, a Bloch-wave body force

field f k is admissible if and only if it has an R-periodic Bloch am-

plitude ˜ f k of the form 

˜ f k (x ) = 

N ∑ 

i =1 

˜ f i k φi (x ) , (3.3)

where the ˜ f i 
k 

are constants. The space F is therefore of dimension

N . 

With no loss of generality, let the subset (φi ) i =1 ... d , where d is

the dimension of �, be formed of constant vectors and constitute

a basis for E . We call ˜ F k the constant component of ˜ f k and write

˜ f k (x ) = 

d ∑ 

i =1 

˜ f i k φi + 

N ∑ 

i = d+1 

˜ f i k φi (x ) ≡ ˜ F k + 

˜ f αk φα(x ) . (3.4)

Above and from now on, the repeated Greek indices are under-

stood to be summed over from d + 1 to N whereas the Latin ones

run from 1 to N unless otherwise specified. Integrating with re-

spect to k over T ∗, we obtain the generic form of admissible body

forces: 

f (x ) = F (x ) + f α(x ) φα(x ) . 

Of most importance is the fact that fields F and f α have their

supports contained in T ∗. As such, they have wavelengths at least

twice as large as the characteristic length of a unit cell. Conse-

quently, the DOFs F and f α of admissible body forces are said to be

“macroscopic”. These DOFs are carried by R-periodic shape func-

tions, the φα , describing the ways in which f can vary on the mi-

croscale. For example, taking N = d, we have f (x ) = F (x ) imply-

ing that body forces are not allowed to vary on the microscale. As

another example, setting N = d + 1 and φd+1 (x ) = ρ(x ) e , where e

is a vertically oriented vector, we have f (x ) = F (x ) + f d+1 (x ) ρ(x ) e

so that the admissible variations of body forces on the microscale

are gravitational. 

3.2.2. Effective displacement field by the EEP 

From now on, we assume that the φα form an orthonormal ba-

sis of F so that 

∀ i, j ∈ { 1 , . . . N} , 〈
φi · φ∗

j 

〉
= δi j , 

where δij is the Kronecker delta. For β ∈ { 1 , . . . d} , φβ being con-

stant entails 

∀ α ∈ { d + 1 , . . . N} , 〈 φα〉 = 0 , 

meaning that being orthogonal to a constant is equivalent to hav-

ing a zero average. 

Injecting (3.4) in the expression of the virtual work, we obtain 〈
˜ f k · ˜ u 

∗
k 

〉
= 

〈
˜ F k · ˜ u 

∗
k 

〉
+ 

〈
˜ f αk φα · ˜ u 

∗
k 

〉
(by orthogonality) 

= 

˜ F k · 〈 ̃  u k 〉 ∗ + 

˜ f αk 〈 φ∗
α · ˜ u k 〉 ∗ (by constancy) 

= 

˜ F k · ˜ U 

∗
k + 

˜ f αk ˜ u 

α∗
k (by definition (3.5)) 

= 

〈
˜ F k · ˜ U 

∗
k 

〉
+ 

〈 
˜ f αk φα ·

(
˜ u 

β
k 
φβ

)∗〉 
(by orthogonality) 

= 

〈 
˜ f k ·

(
˜ U k + 

˜ u 

β
k 
φβ

)∗〉 
, (by orthogonality) 

with 

˜ 
 k ≡ 〈 ̃  u k 〉 , ˜ u 

β
k 

≡
〈
φ∗

β · ˜ u k 

〉
. (3.5)

Then, it follows from (3.2) that 

˜ D k (x ) = 

˜ U k + 

˜ u 

β
k 
φβ (x ) . 
inally, summing over T ∗, it comes that 

 (x ) = U (x ) + u 

β (x ) φβ (x ) . 

he above expression of the effective displacement field results

rom the EEP combined with a particular choice of admissible body

orces. It contains the classical translational displacement vector

 and additional generalized “displacements” u β carried by the

hape functions φβ . Once more, the shape functions define the

ay in which D varies on the microscale whereas the slowly vary-

ng DOFs U and u β describe how D varies on the macroscale. 

Willis (2011) proposed a homogenization theory in which shape

unctions are taken to be φi (x ) = w (x ) e i , for i ∈ { 1 , . . . d} , where

 (x ) is a fixed R-periodic function and the e i form a basis for E .

aking w ≡ 1 yields the unweighted theory of 1997 ( Willis, 1997 )

nd amounts to taking f = F and D = U . Here, we combine both

he weighted and unweighted Willis theories and use even more

eneral shape functions. As a consequence, D is a better approxi-

ation of u than U as will be seen in more detail. 

.2.3. Effective displacement field through error minimization 

First of all, rewriting (3.2) in the equivalent form 

∀ ̃

 f k ∈ F , 
〈

˜ f k · ( ̃  u k − ˜ D k ) 
∗〉 = 0 , 

t is clear that ˜ u k − ˜ D k is orthogonal to F and 

˜ D k acts as the or-

hogonal projection of ˜ u k onto F 

∗ ( Fig. 1 ). Using the Pythagorean

heorem, it is easy to see that for any R-periodic field h ∈ F 

∗, 

 

( ̃  u k − h ) · ( ̃  u k − h ) ∗〉 = 

〈
( ̃  u k − ˜ D k ) · ( ̃  u k − ˜ D k ) 

∗〉
+ 

〈
( ̃  D k − h ) · ( ̃  D k − h ) ∗

〉
≥

〈
( ̃  u k − ˜ D k ) · ( ̃  u k − ˜ D k ) 

∗〉. 
hus, 

˜ 
 k = argmin 

h ∈ F 

∗
〈 ( ̃  u k − h ) · ( ̃  u k − h ) ∗〉 . (3.6)

his shows that the effective displacement Bloch amplitude is

he best admissible approximation to the microscopic one. Con-

equently, the effective displacement field D , associated to a mi-

roscopic displacement field u , can be seen as the best admissible

pproximation to u . Note that this global optimal argument defi-

ition (where the support is �) is different from the local one in-

roduced elswhere ( Forest, 2006; Forest and Sab, 1998 ) (where the

upport is a representative volume element) despite an apparent

esemblance. 

The preceding definition of the effective displacement field con-

retizes the intuition that the richer the DOFs of the generalized

ubstitution medium are, the closer D is to u : 

if F 1 ⊂ F 2 

then min 

h ∈ F 

∗
2 

〈 ( ̃  u k − h ) · ( ̃  u k − h ) ∗〉 ≤ min 

h ∈ F 

∗
1 

〈 ( ̃  u k − h ) · ( ̃  u k − h ) ∗〉 . 

n this sense, the generalized substitution medium to be obtained

y our theory is more realistic than the Willis substitution medium

n the above minimal error sense, at the cost of an additional kine-

atical complexity (see Fig. 2 ). 

A remark is now in order. We have used a scalar product on

he space of body forces twice up till now: once to identify F 

nd F 

∗ and once to orthonormalize the set of shape functions.

his scalar product is not unique and can be modified by adding

 weighting function such as mass density for instance. Note that

uch choice has influence neither on the definition of the DOFs u α ,

or on the effective motion equation to be found. It simply changes

he above quadratic error function and determines the mapping

(u 

i ) �→ D . 
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Fig. 2. Plots of the real parts of the microscopic ( ̃ u ), Willis ( ̃ U ), and generalized ( ̃ D ) Bloch displacement amplitudes over one period for 3 eigenmodes: (k = 0 , ω = ω 1 (0)) 

(top), (k = π/ 2 a, ω = ω 2 (π/ 2 a )) (middle), (k = 0 , ω = ω 2 (0)) (bottom). Two shape functions have been used: a constant and a sine wave. Details are given in Section 4 . 
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.2.4. Effective displacement field under infinite scale separation 

It is of interest to examine what D becomes under the hypoth-

sis of infinite scale separation, namely, when k → 0 and ω → 0.

t is known that in this case, to the lowest order, the displacement

eld depends only on the “slow variable” (refer to Boutin and Au-

iault, 1993 , for instance). In terms of Bloch amplitudes, this means

hat ˜ u k is constant. Consequently, 

˜ 
 k = 〈 ̃  u k 〉 = 

˜ u k , 

˜ 
 

α
k = 〈 φ∗

α · ˜ u k 〉 = 〈 φ∗
α〉 · ˜ u k = 0 . 

herefore, the translational DOF U is the only non-null component

f D , to the lowest order. The use of a generalized kinematics is

ence justified only under weak scale separation or for high fre-

uencies when microscopic deformation modes become significant.

therwise, it is enough to keep track of U exclusively as in the un-

eighted Willis theory. As a matter of fact, it has been observed

hat a periodic medium was “homogenizable” in the Willis sense

ver the acoustic and the first optical branches only ( Nassar et al.,

015b; Srivastava and Nemat-Nasser, 2014 ). For higher frequencies,

ne needs to use non-uniform shape functions. 

.3. Effective motion equation 

Having specified body forces, the motion Eq. (2.4) becomes 

(∇ + i k) · { C(x ) : [ (∇ + i k)⊗s ˜ u k (x ) ] } + 

˜ F k + f αk (x ) φα(x ) 

= −ω 

2 ρ(x ) ̃  u k (x ) , 

hich needs to be solved over �. Since ˜ u k is R-periodic, it is

nough to solve the above equation over a unit cell T under pe-

iodic boundary conditions. Let g be the corresponding periodic
k 
econd order Green operator. Then, 

˜ 
 k (y) = 

1 

T 

∫ 
T 

g k (y, x ) · ˜ f k (x ) d 

d x 

= 

(
1 

T 

∫ 
T 

g k (y, x ) d 

d x 

)
· ˜ F k + 

(
1 

T 

∫ 
T 

g k (y, x ) · φα d 

d x 

)
˜ f αk 

(3.7) 

hich, combined with (3.5) , delivers the following expressions for

he components of the macroscopic displacement field: 

˜ 
 k = 〈 〈 g k (y, x ) 〉 〉 · ˜ F k + 〈 〈 g k (y, x ) · φα(x ) 〉 〉 ̃  f α

k 
, 

˜ 
 

β
k 

= 

〈〈
φ∗

β
(y) · g k (y, x ) 

〉〉
· ˜ F k + 

〈〈
φ∗

β
(y) · g k (y, x ) · φα(x ) 

〉〉
˜ f α
k 

, 
(3.8) 

here 〈〈〉〉 means averaging with respect to both x and y . 

The Green operator of the effective medium G k is given by the

ast two equalities which can be written concisely as 

˜ 
 

j 

k 
= G 

ji 

k 
˜ f i k , 

here no distinction is made between the classical and generalized

OFs (recall that ˜ U k = 

∑ d 
j=1 ˜ u 

j 
k 
φ j ). Inverting the preceding equa-

ion delivers the effective motion equation in Fourier domain: 

 

i j 

k 
˜ u 

j 

k 
= 

˜ f i k , (3.9) 

here Z k , the inverse of G k , is called the effective im pedance. It

epends implicitly on the frequency ω. By summing over k ∈ T ∗

nd over ω, we obtain the effective motion equation in x and t

s 

 

i j (x , t) ∗ u 

j (x , t) = f i (x , t) , 

here Z ( x , t ) is an integro-differential operator and ∗ denotes con-

olution product with respect to space and time. The effective mo-

ion equation is hence nonlocal in both space and time and in-
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Fig. 3. Unit cell. 

 

m〈
S  

a∫
 

T  

a  

f  

w  

l

a

 

d  

m  

a  

i  

d  

g

4

l

 

e  

a  

i  

m  

m  

t  

i

 

p  

p  

a  

p  

p  

W  

L  

a

4

 

i

φ

w

a  

t

D

w

U

volves long wavelengths ( k ∈ T ∗) only. This generalizes equation

(3.28) derived by Willis (1997) for periodic media. 

3.4. Internal work 

As mentioned earlier, it is not essential for achieving the main

purpose of the present work to derive an explicit expression for

the underlying effective constitutive law which is not unique as

in the theory of Willis. However, it is of interest to specify the

macroscopic stress, momentum, strain and velocity measures that

an effective constitutive law involves. In addition, these generalized

macroscopic measures will be shown to be related to their micro-

scopic counterparts through an extended Hill –Mandel relation. 

3.4.1. Generalized stress and momentum measures 

Said measures are taken to be the ones involved in the effective

motion equation written as a conservation law equivalent to (3.9) .

Starting with the microscopic motion equation 

(∇ + i k) · ˜ σk + 

˜ F k + 

˜ f αk φα = iω ̃

 p k , (3.10)

where ˜ σk and 

˜ p k are the Bloch amplitudes of stress and momen-

tum, we take its volume average over a unit cell to obtain, with

the help of the divergence theorem, 

i k · ˜ �k + 

˜ F k = iω ̃

 P k . (3.11)

This is the first effective motion equation involving the classical

macroscopic stress and momentum measures: 

˜ �k ≡ 〈 ̃  σk 〉 , ˜ P k ≡ 〈 ̃  p k 〉 . 
Further, projecting Eq. (3.10) onto the space spanned by the other

shape functions φβ gives rise to 

i k ·
〈
φβ∗ · ˜ σk 

〉
−

〈(∇⊗s φβ∗) : ˜ σk 

〉
+ 

˜ f 
β
k 

= iω 

〈
φβ∗ · ˜ p k 

〉
, 

where, for simplicity, we have assumed the continuity of φβ so

that the boundary term vanishes. The generalized stress and mo-

mentum measures can be identified as 

˜ σβ
k 

≡
〈
φβ∗ · ˜ σk 

〉
, ˜ s 

β
k 

≡ −
〈(∇⊗s φβ∗) : ˜ σk 

〉
, ˜ p 

β
k 

≡
〈
φβ∗ · ˜ p k 

〉
. 

The additional motion equation becomes then simply 

˜ s 
β
k 

+ i k · ˜ σβ
k 

+ 

˜ f 
β
k 

= iω ̃

 p 
β
k 
. (3.12)

Note that Eqs. (3.11) and (3.12) on one hand, and (3.9) on the other,

are related to one another through a non-unique effective consti-

tutive law whose characterization is beyond the purpose of the

present work (see the discussion by Willis, 2011, 2012 ). 

In summary, the motion equations in the space domain are

given by 

∇ · � + F = iωP , 

s β + ∇ · σβ + f β = iωp β . 
(3.13)

These equations are a micromechanical version of the “equations

of equilibrium” phenomenologically derived by Germain (1973) . 

3.4.2. Generalized strain and velocity measures 

Said measures are obtained by duality. The virtual work theo-

rem combined with the EEP yields 〈
˜ σk : ˜ ε 

∗
k − ˜ p k · ˜ v ∗k 

〉
= 

〈
˜ f k · ˜ u 

∗
k 

〉
= 

˜ F k · ˜ U 

∗
k + 

˜ f αk ˜ u 

α∗
k , 

where ˜ ε k and 

˜ v k are the Bloch amplitudes of the strain and veloc-

ity fields, respectively, given by 

˜ ε k = (∇ + i k)⊗s ˜ u k , ˜ v k = iω ̃

 u k . 
Substituting body forces by the corresponding stress and mo-

entum measures according to (3.12) delivers 

˜ σk : ˜ ε 

∗
k − ˜ p k · ˜ v ∗k 

〉
= 

˜ �k : (i k⊗s ˜ U k ) 
∗ − ˜ P k · (iω ̃

 U k ) 
∗

+ ̃

 σα
k · (i k ̃

 u 

α
k ) 

∗ − ˜ p αk (iω ̃

 u 

α
k ) 

∗ − ˜ s αk ̃  u 

α∗
k . 

umming over k , and using Placherel’s identity, we obtain a gener-

lized version of the Hill –Mandel lemma: 
 

�
{ σ : ε 

∗ − p · v ∗} = 

∫ 
�

{ � : (∇⊗s U ) ∗ − P · (iωU ) ∗

+ σα · (∇u 

α) ∗ − p α(iωu 

α) ∗ − s αu 

α∗} . (3.14)

his result is valid for all virtual couples ( σ , p ) equilibrated by

n admissible body force field and for all couples ( ε , v ) derived

rom an arbitrary displacement field u . From the above relation,

e identify the classical macroscopic measures of strain and ve-

ocity as ∇⊗s U and i ωU while the generalized ones are ∇u α , u α

nd i ωu α . 

Finally, the constructed macroscopic fields meet the most fun-

amental requirements for them to be interpreted as stresses, mo-

enta, strains and velocities since they rigorously satisfy local bal-

nce and compatibility equations. Nonetheless, how to physically

nterpret and measure these quantities in a precise way ultimately

epends on the chosen set of shape functions. More details are

iven in Section 4.4 regarding this aspect. 

. An application: high-frequency behavior through 

ow-frequency asymptotics 

At this point, we have generalized Willis theory by using

nriched kinematics to improve the quality of approximation of

 microscopic displacement u by a macroscopic one D . The cost

s however the increasing complexity of the resulting effective

otion equation. A numerical procedure dedicated to the imple-

entation of Willis’ theory or our previous one is quite heavy,

he effective behavior being nonlocal in both space and time with

nfinite radii of influence in general. 

Taylor asymptotic expansions provide an efficient way to ap-

roximate the nonlocal behavior with a local one under appro-

riate assumptions on k and ω. LW-LF expansions have the main

dvantage of only requiring the solution of static problems but

resent the disadvantage of being limited to the LF behavior. The

urpose of this section is to show explicitly how generalizing

illis theory makes it possible to extend the validity domain of

W-LF expansions to high-frequency behavior over a simple 1D ex-

mple. 

.1. Setting 

Consider the periodically inhomogeneous string whose unit cell

s depicted in Fig. 3 , and define the shape function 

(x ) = 

√ 

2 sin ( πx/a ) 

hich describes the rapidly oscillating body force 

f = F + qφ

nd will carry the new DOF χ . The macroscopic displacement D

hen reads 

 = U + χφ

ith 

 = 〈 u 〉 , χ = 〈 φu 〉 . 



H. Nassar et al. / International Journal of Solids and Structures 84 (2016) 139–146 145 

4

I  

ω  

→  

a  

b  

a  

(  

C  

s  

l  

c

Z

w

Z

Z

I

w  

∂

4

 

d

c

T  

e

Z

T  

c  

v

c

T  

v  
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.2. LW-LF effective motion equation 

The microscopic motion equation reads 

(∇ + ik ) { C[(∇ + ik ) ̃  u k ] } + 

˜ F k + 

˜ q k φ = −ω 

2 ρ ˜ u k . 

nstead of calculating the effective impedance Z for arbitrary k and
, we are interested here in a LW-LF Taylor expansion of Z , as k
 0 and ω → 0, which is straightforward to obtain by solving

 hierarchy of static motion equations. The hierarchy is obtained
y injecting an expansion of u k , in powers of k and ω, into the
bove equation. This procedure is well described in the literature
 Andrianov et al., 2008; Boutin and Auriault, 1993; Smyshlyaev and
herednichenko, 20 0 0 ) and is skipped here. Calling c i and ρ i the
tiffness and mass density of phase i for i ∈ {1, 2}, and a the half-
ength of a unit cell, the approximate effective impedance Z , trun-
ated at order 2 in k and ω, is given by 

Z UU = 2 
c 1 c 2 

c 1 + c 2 
k 2 − ρ1 + ρ2 

2 
ω 

2 , 

Z χU = Z Uχ = 

4 
√ 

2 

π

c 1 c 2 (c 1 − c 2 ) 

(c 1 + c 2 ) 2 
k 2 + 

√ 

2 

π
(ρ1 − ρ2 ) ω 

2 , 

 

χχ = 

2 π2 

a 2 
c 1 c 2 

c 1 + c 2 

− 2 

π2 

[(π2 −6) ρ2 + 2 ρ1 ] c 
2 
1 + 4(ρ1 + ρ2 ) c 1 c 2 + [(π2 −6) ρ1 + 2 ρ2 ] c 

2 
2 

(c 1 + c 2 ) 2 
ω 

2 

− 2 

π2 

c 1 c 2 [(3 π2 − 8) c 2 1 + 2(3 π2 + 8) c 1 c 2 + (3 π2 − 8) c 2 2 ] 

(c 1 + c 2 ) 3 
k 2 , 

ith the approximate effective motion equation being 

 

UU 
k 

˜ U k + Z 
Uχ
k 

˜ χk = 

˜ F k , 

 

χU 

k 
˜ U k + Z 

χχ
k 

˜ χk = ˜ q k . 

n the real domain, the above equation takes the form 

−2 
c 1 c 2 

c 1 + c 2 
U 

′′ + 

ρ1 + ρ2 

2 
Ü − 4 

√ 

2 

π

c 1 c 2 (c 1 − c 2 ) 

(c 1 + c 2 ) 2 
χ ′′ −

√ 

2 

π
(ρ1 − ρ2 ) ̈χ = F , 

− 4 
√ 

2 

π

c 1 c 2 (c 1 − c 2 ) 

(c 1 + c 2 ) 2 
U 

′′ −
√ 

2 

π
(ρ1 − ρ2 ) ̈U + 

2 π2 

a 2 
c 1 c 2 

c 1 + c 2 
χ

+ 

2 

π2 

[(π2 − 6) ρ2 + 2 ρ1 ] c 
2 
1 + 4(ρ1 + ρ2 ) c 1 c 2 + [(π2 − 6) ρ1 + 2 ρ2 ] c 

2 
2 

(c 1 + c 2 ) 2 
χ̈

+ 

2 

π2 

c 1 c 2 [(3 π2 − 8) c 2 1 + 2(3 π2 + 8) c 1 c 2 + (3 π2 − 8) c 2 2 ] 

(c 1 + c 2 ) 3 
χ ′′ = q, 

here a superscripted dot denotes ∂ / ∂ t and the prime symbol means

 / ∂ x . 

.3. Exact and approximate dispersion curves 

The expression of the exact dispersion curve is known and was

erived elsewhere ( Andrianov et al., 2008 ). It reads: 

os (2 ka ) = 

( 
√ 

c 1 ρ1 + 

√ 

c 2 ρ2 ) 
2 

4 

√ 

c 1 ρ1 c 2 ρ2 

cos 

[ 
ω( 

√ 

ρ1 /c 1 + 

√ 

ρ2 /c 2 ) a 
] 

− ( 
√ 

c 1 ρ1 − √ 

c 2 ρ2 ) 
2 

4 

√ 

c 1 ρ1 c 2 ρ2 

cos 

[ 
ω( 

√ 

ρ1 /c 1 −
√ 

ρ2 /c 2 ) a 
] 
. 

(4.1) 

he approximate dispersion curve is derived from the approximate

ffective im pedance according to 

 

UU Z χχ − Z χU Z Uχ = 0 . 

he first two branches of the exact and approximate dispersion

urves are drawn in Fig. 4 for the following arbitrary numerical

alues of the string parameters 

 1 = 1 , c 2 = 100 , ρ1 = 1 , ρ2 = 5 , a = 1 . 

he plots are properly normalized so that units become irrele-

ant for our purposes. On Fig. 4 , with respect to the classical qua-
istatic approximation (ω 

(0) 
1 

) , enriching the kinematics allows for

apturing the first optical branch and grants a larger validity do-

ain for LF asymptotic expansions. The approximate dispersion

ranches of order 4 are more precise and almost indistinguishable

rom the exact ones. The corresponding approximate dispersion re-

ation was numerically found and is not given here. However, we

resented the resulting dispersion branches so as to get a glimpse

f the convergence rate of the asymptotic scheme. Note that simul-

aneously capturing additional optical branches requires including

icher body forces. 

Why is it possible that LF Taylor expansions lead to a cor-

ect estimate of some optical modes? Physically speaking, for

igh frequencies, inertial forces become important and shift the

nergy carried by displacements toward shorter wavelengths.

orrespondingly, including rapidly oscillating body forces have two

enefits. First, they simulate the effects of inertial forces. Second,

nd most importantly, they oblige the macroscopic displacement

eld to include some short-wavelength components, necessary

or approximating the high-frequency behavior. Mathematically 

peaking, including additional DOFs delays the appearance of some

ingularities and extends the convergence domain of the LF Taylor

xpansions (see Nassar et al., 2015a ). 

.4. On the choice of shape functions 

The above method and results are by no means universal. De-

ending on the underlying microstructure and on the targeted fre-

uency range, adequate shape functions can be chosen. Regarding

ow to appropriately choose shape functions, the following com-

ents are in order: 

1. In our 1D example, the sinusoidal shape function was chosen

based on considerations similar to the ones arising in Bragg’s

reflection where the first term added to the coherent wave is

another Fourier component of the exact scattered (microscopic

in our terminology) field (see, e.g., Quéré, 1988 ). 

2. In some situations, by inspecting the phases connectedness

and contrasts, an asymptotic analysis allows constructing shape

functions as particular quasistatic first-order solutions (see, e.g.,

Auriault and Bonnet, 1985 ). 

3. It can also be proven that including the n th periodic optical

oscillation mode as a shape function guarantees that the n th

optical dispersion branch is correctly approximated at k = 0 .

In fact, this amounts to combining the classical quasistatic
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homogenization theory with the high-frequency homogeniza-

tion theory suggested by Daya et al. (2002) and Craster et al.

(2010) and co-workers. 

5. Concluding remarks 

Through incorporating new kinematical DOFs, the present work

has proposed an elastodynamic homogenization theory generaliz-

ing the one of Willis in the case of periodic media and reduc-

ing the error committed during the upscaling process, especially

at high frequencies. In order to illustrate the potential of the pre-

sented theory, it has been shown that the LW-LF asymptotic ex-

pansion of the effective motion equation is capable of simultane-

ously capturing the acoustic and the first optical branch of the

microscopic dispersion curve for a simple 1D medium. 

Two problems remain open. The first concerns the effective

elastodynamic constitutive law produced by the generalized theory

proposed. In this paper, to avoid the difficulty related to its non-

uniqueness, the effective motion equation has been directly treated

and exploited. However, in numerous situations, it is useful and

important to explicitly know the effective elastodynamic constitu-

tive law. The second problem regards the optimal choice of shape

functions for which guiding criteria exist but remain incomplete. 

References 

Andrianov, I.V. , Bolshakov, V.I. , Danishevs’kyy, V.V. , Weichert, D. , 2008. Higher order

asymptotic homogenization and wave propagation in periodic composite mate-
rials. Proceedings of the Royal Society A: Mathematical, Physical and Engineer-

ing Sciences 464, 1181–1201 . 
Antonakakis, T. , Craster, R.V. , Guenneau, S. , 2014. Homogenisation for elastic pho-

tonic crystals and dynamic anisotropy. J. Mechanics Phys. Solids 71, 84–96 . 
Auriault, J.-L. , Bonnet, G. , 1985. Dynamics of periodic elastic composites (Dynamique

des composites elastiques periodiques). Archiwum Mechaniki Stosowanej 37 (4),

269–284 . 
Auriault, J.-L. , Boutin, C. , 2012. Long wavelength inner-resonance cut-off frequencies

in elastic composite materials. Int. J. Solids Struct. 49 (23-24), 3269–3281 . 
Bensoussan, A. , Lions, J.L. , Papanicolaou, G. , 1978. Asymptotic analysis for periodic

structures. North-Holland Publishing Company . 
Boutin, C. , Auriault, J.-L. , 1993. Rayleigh scattering in elastic composite materials.

Int. J. Eng. Sci. 31 (12), 1669–1689 . 
outin, C. , Rallu, A. , Hans, S. , 2014. Large scale modulation of high frequency waves
in periodic elastic composites. J. Mech. Phys. Solids 70, 362–381 . 

olquitt, D.J. , Craster, R.V. , Antonakakis, T. , Guenneau, S. , 2014. Rayleigh-Bloch waves
along elastic diffraction gratings. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 471,

20140465 . 
raster, R.V. , Kaplunov, J. , Pichugin, A.V. , 2010. High-frequency homogenization for

periodic media. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 466, 2341–2362 . 
Daya, E. , Braikat, B. , Damil, N. , Potier-Ferry, M. , 2002. Continuum modeling for the

modulated vibration modes of large repetitive structures. Comptes Rendus Mé-

canique 330, 333–338 . 
ietz, C. , Shvets, G. , 2010. Current-driven metamaterial homogenization. Physica B:

Condensed Matt. 405 (14), 2930–2934 . 
orest, S. , 2006. Milieux continus généralisés et matériaux hétérogènes. Collection

Sciences de La Matière. Presses de l’Ecole des Mines . 
orest, S. , Sab, K. , 1998. Cosserat overall modeling of heterogeneous materials. Me-

chanics Res. Commun. 25 (4), 449–454 . 

azalet, J. , Dupont, S. , Kastelik, J.C. , Rolland, Q. , Djafari-Rouhani, B. , 2013. A tuto-
rial survey on waves propagating in periodic media: electronic, photonic and

phononic crystals. Perception of the Bloch theorem in both real and Fourier do-
mains. Wave Motion 50 (3), 619–654 . 

ermain, P. , 1973. The method of virtual power in continuum mechanics. Part 2:
Microstructure. SIAM J. Appl. Math. 25 (3), 556–575 . 

assar, H. , He, Q.-C. , Auffray, N. , 2015a. On asymptotic elastodynamic homogeniza-

tion approaches for periodic media. J. Mech. Phys. Solids (Submitted) . 
assar, H. , He, Q.-C. , Auffray, N. , 2015b. Willis elastodynamic homogenization theory

revisited for periodic media. J. Mech. Phys. Solids 77, 158–178 . 
Nolde, E. , Craster, R.V. , Kaplunov, J. , 2011. High frequency homogenization for struc-

tural mechanics. J. Mech. Phys. Solids 59 (3), 651–671 . 
uéré, Y. , 1988. Physique des matériaux: cours et problèmes. X Ecole Polytechnique.

Edition Marketing . 

anchez-Palencia, E. , 1980. Non-homogeneous media and vibration theory. Springer-
Verlag . 

myshlyaev, V.P. , 2009. Propagation and localization of elastic waves in highly
anisotropic periodic composites via two-scale homogenization. Mech. Mater. 41

(4), 434–447 . 
myshlyaev, V.P. , Cherednichenko, K.D. , 20 0 0. On rigorous derivation of strain gra-

dient effects in the overall behaviour of periodic heterogeneous media. J. Me-

chanics Phys. Solids 48, 1325–1357 . 
rivastava, A. , Nemat-Nasser, S. , 2014. On the limit and applicability of dynamic ho-

mogenization. Wave Motion 51 (7), 1045–1054 . 
illis, J.R. , 1997. Dynamics of composites. In: Suquet, P. (Ed.), Continuum Microme-

chanics. Springer-Verlag New York, Inc., pp. 265–290 . 
illis, J.R. , 2011. Effective constitutive relations for waves in composites and meta-

materials. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 467 (2131), 1865–1879 . 

Willis, J.R. , 2012. The construction of effective relations for waves in a composite.
Comptes Rendus Mécanique 340 (4-5), 181–192 . 

http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0001
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0001
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0001
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0001
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0001
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0002
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0002
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0002
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0002
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0003
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0003
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0003
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0004
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0004
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0004
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0005
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0005
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0005
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0005
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0006
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0006
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0006
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0007
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0007
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0007
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0007
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0008
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0008
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0008
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0008
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0008
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0009
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0009
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0009
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0009
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0010
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0010
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0010
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0010
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0010
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0011
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0011
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0011
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0012
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0012
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0013
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0013
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0013
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0014
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0014
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0014
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0014
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0014
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0014
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0015
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0015
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0016
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0016
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0016
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0016
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0017
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0017
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0017
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0017
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0018
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0018
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0018
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0018
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0019
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0019
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0020
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0020
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0021
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0021
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0022
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0022
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0022
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0023
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0023
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0023
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0024
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0024
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0025
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0025
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0026
http://refhub.elsevier.com/S0020-7683(16)00044-5/sbref0026

	A generalized theory of elastodynamic homogenization for periodic media
	1 Introduction
	2 Preliminaries
	2.1 Geometry and periodicity
	2.2 Constitutive and motion equations
	2.3 Bloch-wave expansions
	2.4 External work

	3 A general theory
	3.1 Energy equivalency
	3.2 Effective displacement field
	3.2.1 Admissible body forces
	3.2.2 Effective displacement field by the EEP
	3.2.3 Effective displacement field through error minimization
	3.2.4 Effective displacement field under infinite scale separation

	3.3 Effective motion equation
	3.4 Internal work
	3.4.1 Generalized stress and momentum measures
	3.4.2 Generalized strain and velocity measures


	4 An application: high-frequency behavior through low-frequency asymptotics
	4.1 Setting
	4.2 LW-LF effective motion equation
	4.3 Exact and approximate dispersion curves
	4.4 On the choice of shape functions

	5 Concluding remarks
	 References


