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Abstract

A study of the mechanical and dispersion properties of cubic lattice structures have been conducted to assess
the viability of designing a multifunctional and lightweight lattice structure with excellent static properties
and elastic band gaps for vibration attenuation. In this study, the parameters that characterises the me-
chanical properties for stiffness and strength to be used as sandwich structure core materials were identified.
A parametric study on the geometry of the lattice structures on the static properties was performed in order
to determine the optimal geometry for these applications. The trends relating the geometric parameters to
the mechanical properties of the lattice topologies were found and discussed. Local resonators were then
added to the optimal geometries to create the band gaps that will attenuate vibrations at given frequency
ranges. The tuned frequency was set to be 500 Hz in this study. The effects of the geometric parameters
on the band gap widths produced by the introduction of the resonators were studied and the trends were
found to be similar for all topologies. The results of this study indicate that the addition of local resonators
to introduce band gaps is only viable when the stiffness and strength of the lattice without the resonators
are sufficiently large, so that the increase in density will not be too significant. Lastly, band gaps around
the tuned frequencies were observed for one of the topologies without the resonators. Since these band gaps
do not result in an increase in mass, tuning the geometry to move the band gaps to the desired frequency
ranges is a preferred strategy over the addition of local resonators.

Keywords: Multifunctional structures, band gap, Bloch wave theory, band structure, elastic
metamaterials, periodic structures, lattice materials, cubic topologies, lightweight structures

1. Introduction

Lattice materials are cellular structures composed of periodically repeating unit cells. These materials
can be engineered to have several unique properties, such as having high strength to density ratio [1, 2],
high stiffness to density ratio [1, 2], low thermal coefficient with high stiffness [3–5], and elastic band gaps,
which are regions of frequencies that prevent elastic waves from propagating [6–8]. Since lattice materials
can be designed to have several desirable properties, they have huge potential to be used in multifunctional
applications, including ultralight structures, impact absorbers, heat dissipation, vibration control, and many
others.

The multi-functionality of lattice materials enables it overcome several issues that cannot be resolved with
conventional bulk materials. Among these issues is the conflicting requirements of stiffness and vibration
control of structural components. In order to sustain huge loads without large static displacements or
compromising structural integrity, structural components generally require high stiffness [9, 10]. However,
structures with high stiffness are also sensitive to vibrations, which may threaten the structural integrity
of the system. A possible solution to minimise the trade-off between vibration attenuation and stiffness is
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to exploit the high stiffness and strength to density ratios present in selected lattice structures [11, 12] and
embedding local resonators, as seen in several studies [9, 13–15], to produce band gaps that will attenuate
vibrations. With current three-dimensional printing technology, lattice structures with the embedded local
resonators can be manufactured, allowing the potential of the multi-functionality of lattice structures to be
realised.

Currently, there are a large number of studies that have been conducted on the analysis of the static
mechanical (stiffness and strength) [1, 16–22] and dispersion properties of lattice materials [6–8, 15, 23, 24].
However, only a few studies [9, 13, 14, 25] have investigated these two types of properties in tandem or
the design of a stiff structural material with desirable dynamic characteristics. Therefore, this paper aims
to contribute to the design of elastic metamaterials with desirable dynamic properties, while having other
qualities, like high stiffness, so that it can be implemented in practical situations. This is an important
feature of elastic metamaterials as highlighted in [26]. The parametric study of the effects of the geometry
on the static mechanical and dispersion properties will serve as a guide for future designs of multifunctional
components and encourage future research in this type of materials.

In this study, the mechanical and dispersion properties of four cubic lattice topologies with internal
resonators, similar to the designs seen in [15], were studied. Firstly, a parametric study on the lattice
geometry, which are the lengths and radii of the lattice struts, was performed to determine the combination
of geometric parameters that give the optimal mechanical properties. Local resonators consisting of struts
with a point mass at one of its ends will then be attached to the lattices with the best mechanical properties
to produce the local resonant band gaps. The width and location of the band gaps resulting from the
addition of local resonators of different sizes and masses will be investigated. Lastly, the increase in density
was also calculated to determine the penalty of adding the resonators and to assess if this strategy is viable.

2. Selected Topologies And Analysis Procedures

2.1. Selected topologies and resonators

Four cubic lattice topologies, which are the simple cubic, body centred cubic (BCC), face centre cubic
(FCC), and octet truss structures, to be used as core materials in sandwich structures were studied. The
unit cells of these topologies including the local resonators are shown in Fig. 1. Several of the beams in the
unit cells were omitted to avoid overestimating the strength and stiffness through duplication. The lattice
structures will consist of the base lattice structures and the added local resonators, which are beams with a
point mass, for example a ball bearing, at the end. This facilitates the manufacturing of the local resonators
as materials other than the strut materials can be used for the mass, which can be attahced easily via other
strategies like adhesives.

There are several reasons for the selection of these topologies. Firstly, the addition of the resonators
to these lattices are straightforward and since the resonators do not contribute to the strength or stiffness
of the material, the mechanical properties and dispersion properties can be investigated independently.
Additionally, cubic lattice structures can be easily manufactured using currently available three-dimensional
printing technologies. The natural frequencies of the local resonators, and the location of the band gap, can
also be easily tuned without making any changes to the base structure.

Although other methods to create LR band gaps, such as adding masses at the nodes [24] or manipulating
the connectivity of the struts as discussed in [27] can be used to introduced band gaps, the key reason that
the topologies in Fig. 1 were selected over the other architectures is because the natural frequencies of
the resonators can be found easily. This facilitates the selection of the geometric parameters and mass of
the resonators to achieve the required tuned frequencies. The calculations for the target frequencies by
adding masses at the nodes are less straightforward than the cantilever resonators in the selected designs.
Furthermore, the lattice structure studied here is intended to be used as a lightweight structural component,
with high stiffness and low mass, suggesting that the struts are likely to be stiff. Since the natural frequency
increases with increasing stiffness and reducing mass, the strategy of adding masses at the nodes may lead
to large masses being required for a given target frequency. Conversely, the resonators that do not take
any load can be designed to have low stiffness and a lower mass can be used to achieve the same natural
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frequency. This provides more design flexibility. Similarly, the manipulation of the strut connectivity will
result in significant changes in the static mechanical properties, which complicates the analysis significantly.
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Figure 1: Selected topologies and the added resonators (a) Simple Cubic (b) BCC (c) FCC (d) Octet truss.

The ratios characterising the structural performance of core materials in lightweight sandwich panels and
beams according to [12] are summarised in Table 1. The ratios in the table were obtained using the analysis
from [28], which will be described briefly. For a beam or panel being loaded as shown in Fig. 2 to be used
in lightweight applications, the mass of the beam or panel, m, defined in Eq. (1) must be minimised. For a
beam the width, W , and height, H, are equal while a panel is assumed to have a fixed width, W ,

m = ρ(WHL) (1)

where ρ is the density of the material and W,H, and L are the dimensions shown in Fig. 2.
However, as a structural bearing component, the beam or panel must be able to either have a sufficient

amount of stiffness (stiffness constrained) to minimise deflection or sufficient strength (strength constrained)
to prevent failure. Therefore, the minimum stiffness, SE and strength, Sσ are defined in Eq. (2) and Eq. (3)
respectively. These equations are easily derived based on the Euler-Bernoulli beam theory and although
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Figure 2: Beam and panel being loaded.

Fig. 2 shows a point load condition, the equations for other loading conditions can be found by varying the
variable C. Interested readers can refer to [28] for the derivations of the equations and values of C.

SE ≤
(
F

δ

)
=

(
CWH3

12L3

)
E (2)

Sσ ≤
(

F

WH

)
=

(
CWH2

6L

)
σf (3)

where SE and Sσ are the stiffness and strength constraints, F is the force, δ is the deflection, E is the
Young’s modulus, and σf is the failure stress.

According to Eq. (1), the values of H and W for the beam, and H for the panel can be varied freely.
The restrictions of the stiffness and strength constraints are imposed by substituting Equations (2) and (3)
into Eq. (1) to eliminate H = W for the beam, or H for the panel.
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m =

(
6SσL
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) 1
2
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
 ρ

σ
1
2

f


 (7)

Therefore, the mass that needs to be minimised for the beam (stiffness constrained), beam (strength
constrained), panel (stiffness constrained), and panel (strength constrained) can be expressed as Eq. (4),
(5), (6), and (7) respectively. The important ratios to be minimised relating to material selection can be
determined from these equations, and their inverses that are to be maximised are listed in Table 1. These
ratios will be referred to as the strength and stiffness parameters.
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Configuration Strength Constrained Stiffness Constrained

Beam
σ

2
3
f

ρ
E

1
2

ρ

Plate
σ

1
2
f

ρ
E

1
3

ρ

where σf is the failure stress, E is the Young’s modulus, and ρ is the density.

Table 1: Ratios to maximise for beam and plate configurations [12].

In this paper, a parametric study was performed by setting the length of the unit cell, L1, to 50 mm and
studying the stiffness parameter, strength parameter, and band gap width with varying geometries. The
range of the normalised geometry parameters studied are summarised in Table 2. Additionally, the material
selected to construct the lattice structures was acrylonitrile butadiene styrene (ABS) and its mechanical
properties are listed in Table 3. The selected dimension ranges and material can be typically produced using
common three dimensional printing technologies, so that the results of this study can serve as a reference
for future studies with 3D printed parts. An important point to note is that 3D printing has been known
to introduce anisotropy and reduce the stiffness and strength of the materials [29, 30]. Anisotropy in 3D
printed materials is a result of the material being deposited directionally and this is likely to affect the
predicted lattice behaviour, where the material was assumed to be isotropic in this study. Since this study
mainly focuses on the trends and properties of the lattice structures, the effects of the anisotropy will not be
studied. Additionally, other improvements have been made in 3D printing technology to reduce the effects
of anisotropy, for example in [29], while other lattice production techniques, such as weaving [31] may result
in better material behaviour. Hence, the results in this study can serve as a reference for an initial design
and further work should be done to account for the anisotropy of 3D printed parts.

Ratios Minimum value Maximum value
r1
L1

0.01 0.20
r2
r1

0.50 1.50
LRes

L1
0.05 0.25

rRes

r1
0.30 1.50

Table 2: Dimensions that were investigated in this study.

Property Value Units
Young’s modulus, E 3.29 GPa
Shear modulus, G 1.18 GPa
Density, ρ 1200 kg m3

Yield strength, σy 53 MPa

Table 3: Mechanical properties of ABS [32].

In addition to the static mechanical properties of the lattice, resonators that are tuned to the target
frequency will be introduced into the main lattice, as seen in Fig. 1. The resonators are similar to dynamic
absorbers and are used to introduce local resonant band gaps seen in [33, 34]. In this study, the resonance
frequency was set to be 500 Hz for a cantilever configuration, that is within the same order of magnitude
for the forcing frequency of typical machinery. The local resonators used in this study have a number of
combinations of radius, length, and mass that can be tuned to a given target frequency. Therefore, in order
to study the effects of these different combinations on the band gaps, the band structure of a range of
normalised radius and length were studied, while the mass was varied based on the radius and length to give
the target natural frequency. In this study, the local resonators were modelled using finite elements with
a total of 20 beam elements and a point mass at the end, while the end without the mass was set to have
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a displacement of zero. An eigenvalue analysis was performed on the stiffness and mass matrix for every
value of radius, length, and mass of the resonator to determine the natural frequency of the first mode. The
required mass to give a natural frequency of 500 Hz was then found by varying the value of the mass in an
iterative process.

2.2. Analysis of mechanical properties

As described previously, the addition of the resonators does not affect the structural performance of
the lattices and hence they were omitted in the analysis of the static properties. When a large number of
unit cells are present in the system, homogenisation techniques can be used to find the effective properties
of the lattice structures. There are several homogenisation methods for lattice and cellular materials that
have been published, for example [1, 18, 21, 35]. In this paper, the method introduced in [18] was selected
mainly because this method can be used with the finite element method, which is convenient as the band
gap analysis also makes use of the finite element method. Additionally, the method in [18] is capable of
calculating all components of the homogenised stiffness matrix, K, as described by Eq. (8), the yield surface
and buckling surface under different loading conditions. The method in [18] uses a multiscale approach to
determine the macroscopic mechanical properties. Firstly, the macroscale displacements and deformation
were applied to the lattice, in which the boundary nodes are assumed to have periodic displacements.
The microscale stresses are then obtained from the displacements and the microscale deformation is then
calculated by using a finite element model of the unit cell. The macroscale stresses were then calculated
by treating it as the gradient of the strain energy density with respect to the macroscopic strains, which
allows the stiffness matrix to be determined. Lastly, the macroscopic forces can be found by applying the
virtual work principle. For the sake of brevity, the homogenisation method will not be described here and
interested readers should refer to [18]. The homogenised stiffness matrix, K, in Eq. (8) is the Voigt notation
of the stiffness tensor, where α, β, and γ correspond to C1111, C1122, and C2323 respectively, in which C is
the full stiffness tensor. The stiffness matrix in Eq. (8) suggests that the material has several symmetries.

K =




α β β 0 0 0
β α β 0 0 0
β β α 0 0 0
0 0 0 γ 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ




(8)

The stiffness component, α, in Eq. (8) was used to find the stiffness parameters listed in Table 1 by
treating it as equivalent to the Young’s modulus, E. This is mainly because the Euler-Bernoulli beam
theory was used to derived the required parameters that characterise lattice structure in Table 1, and α
corresponds to the stiffness in the axial direction, which was assumed to be the loading conditions at the
top and bottom of the beam under plane strain. The failure stresses were determined by assuming that
an axial stress is acting on the material. The failure stress for yielding is taken to be the stress at the
macroscopic scale when the stress at any point in the struts of the member is equal to the yield stress of the
bulk material. For buckling, the corresponding stress stiffness matrix to the uniaxial loading condition, with
a unit value of stress was first determined, and an eigenvalue problem based on the homogenisation method
[18] was solved to find the smallest eigenvalue. Since the material will buckle when any of the eigenvalues
reaches unity, the smallest value of the inverse of all the eigenvalues was taken as the failure stress. The
detailed procedure for determining the buckling stresses are explained in [18].

2.3. Dispersion analysis

Once the optimal geometries for the parameters listed in Table 1 were found, local resonators were
then introduced to these lattices to produce the desired elastic band gaps. A dispersion analysis was then
performed in order to determine the location and width of the band gaps. The dispersion curves in the
periodic lattices were determined by applying Bloch wave boundary conditions on the appropriate boundary
nodes and calculating the eigenvalues. This technique is commonly used in many studies, such as [7, 36–38].
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Since the finite element method was used, the equations of motion can be written as Eq. (9). The required
stiffness matrix, K, and mass matrix, M, in Eq. (9) were found using the finite element method, in which
the lattice struts were modelled using Timoshenko beams [39] and the mass being modelled as a point mass.

(
K − ω2M

)
u = F (9)

where u and F are the displacements and external forces of the nodes.
The Bloch wave boundary conditions, described by Eqs. (10) and (11), at the required nodes were then

applied to the displacements and forces at the boundary nodes. Since the reference node in the unit cells,
shown in Fig. 1, is at the origin, x in Eqs. (10) and (11) was set to [0, 0, 0]T .

ux+L =
(
eik·L

)
ux (10)

Fx+L =
(
eik·L

)
Fx (11)

where x is the coordinate of the nodes, L is the lattice constant which is equal to the lengths of the lattice
structure L1 at the directions corresponding to the boundary nodes, and k is the wave vector.

A matrix T was then used to express the displacements and forces in terms of the independent nodes as
seen in Eqs. (12) and (13).

u = T ũ (12)

F = T F̃ (13)

where ũ and F̃ are the displacement and force vectors for the independent nodes.
This allows the Eq. (9) to be simplified to Eq. (14) that will result in the eigenvalue problem described

by Eq. (15).

(
THKT − ω2THMT

)
ũ = THTF̃ (14)

where the superscript H denotes the Hermitian transpose.

(
K̃ − ω2M̃

)
ũ = 0 (15)

The band structure was then found by solving the eigenvalue problem in Eq. (15) for different values
of wave vectors, k. Due to symmetry, only the wave vectors, k, within the First Brillouin Zone need to
be considered [40] in order to determine the location of the band gaps. The First Brillouin Zones for the
lattice structures considered in this study are shown in Fig. 3. The results and discussions of the dispersion
analysis will be presented in Section 4.
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Figure 3: First Brillouin Zone of (a) Simple Cubic Lattice (b) BCC Lattice (c) FCC and Octet Lattice
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3. Stiffness and strength properties of lattice materials

The stiffness and strength properties that characterises the performance of the lattice structures as core
materials for sandwich panels or beams for the four topologies will be presented in this section. This is in
order to determine the optimal geometry for the lattice prior to the introduction of the local resonators that
generates the band gaps.

3.1. Simple cubic lattice

The stiffness and strength parameters for the lattice structures that have been calculated were normalised
with respect to that for the bulk material. Therefore, a normalised parameter with a value greater than one
indicates that the lattice structure is superior to the bulk material. These parameters for the simple cubic
lattice in the panel and beam configurations are shown in Fig. 4 and Fig. 5 respectively. The normalised
parameters were found to be independent of the length of the unit cells, L1. Therefore, the only geometric
parameter that can affect the static properties for the simple cubic structure is the radius to length ratio,
r1
L1

.
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Figure 4: Static properties of the simple cubic structure with different radii for panel configurations (a) Normalised stiffness
parameter (b) Normalised strength parameter.

As seen in Fig. 4 (a) and Fig. 5 (a), the normalised stiffness parameter reduces exponentially with
increasing values of r1

L1
. This result suggests that smaller radii are preferred for the simple cubic lattice in

beam and panel configurations. Therefore, the lowest value of r1
L1

should be selected for the simple cubic
lattice and minimum radii will be limited by either the strength of the lattice or manufacturing capabilities.

On the other hand, the normalised strength parameter for the two failure mechanisms, which are plastic
yielding and buckling, for the panel and beam configurations are shown in Fig. 4 (b) and Fig. 5 (b) re-
spectively. As seen in these figures, the normalised strength parameter for yielding, reduces exponentially
with increasing r1

L1
, like the normalised stiffness parameters. Conversely, the normalised strength parame-

ter for buckling increases initially with increasing r1
L1

for both the panel and beam configuration. For the
panel configuration, the normalised strength parameter for buckling will increase to a maximum value be-
fore decreasing again while for the beam configuration, the normalised strength parameter for buckling will
continue to increase asymptotically. This trend is expected as the propensity for buckling decreases with
decreasing slenderness.

Since the strength constrained simple cubic lattice panel and beam will fail once the stress reaches either
the value for either yielding or buckling, the optimal value of r1

L1
is when the normalised strength parameter
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Figure 5: Static properties of the simple cubic structure with different radii for beam configurations (a) Normalised stiffness
parameter (b) Normalised strength parameter.

for both failure modes are equal. The optimal value is shown in Fig. 4 (b) and Fig. 5 (b), and the normalised
values of r1

L1
for both configurations are 0.026. The relatively low value of r1

L1
= 0.026 will also produce

relatively stiff simple cubic lattice panels and beams as the normalised stiffness parameter, seen in Fig. 4
(a) and Fig. 5 (a), are relatively high at this value.

3.2. Body-centred cubic (BCC) lattice

The normalised stiffness and strength parameters for the BCC lattice in the panel and beam configura-
tions are shown in Fig. 6 and Fig. 7 respectively. Similar to the simple cubic lattice, the static properties
for the BCC lattice were also found to be independent of the length of the unit cells, L1. However, as seen
in Fig. 1 (b), there are two sets of beams with different radii that were considered for the BCC structure.
Thus, the two geometric parameters that will be analysed are r1

L1
and r2

r1
.

As seen in Fig. 6 (a) and Fig. 7 (a), the normalised stiffness parameter reduces exponentially with
increasing values of r1

L1
, while increasing the values of r2r1 will only increase this parameter slightly. Therefore,

the optimal configuration of the BCC structure is to minimise r1
L1

and maximise r2
r1

, but increasing r1
L1

will
have a larger overall effect.

The normalised strength parameters for both the beam and panel configuration are shown in Fig. 6 (b)
and Fig. 7 (b) respectively. The normalised strength parameters for yielding in both cases were found to
decrease exponentially with increasing r1

L1
, but they increase slightly with increasing r2

r1
. Additionally, the

normalised strength parameter for buckling, increases with both r1
L1

and r2
r1

. This result is also expected as
the propensity for the lattice to buckle decreases when the slenderness of the struts decreases.

The optimal configuration for the strength constrained panels and beams for the BCC lattice material is
the region where the buckling and yielding parameters intersect, as highlighted by the red line in Fig. 6 (b)
and Fig. 7 (b). As seen in Fig. 6 (b) and Fig. 7 (b), the optimal strength parameters appear to be insensitive
to the values of r1

L1
, in which the red line is always in between 0.0260 and 0.0398 for both the panel and

beam configurations. However, as seen in both Fig. 6 (b) and Fig. 7 (b), the normalised strength parameter
appears to increase with r2

r1
until a value and becomes constant after that. In order to investigate this

further, the normalised strength parameter versus r2
r1

curves at the optimal r1
L1

values (the red line in Fig. 6
(b) and Fig. 7 (b)) are plotted in Fig. 8. As seen in Fig. 8, the normalised strength parameter will increase
with r2

r1
until a local optimal value of 0.744 and 0.740 for the panel and beam configuration respectively.

This result suggests that the inner beams seen in Fig. 1 for the BCC are the main cause of buckling failure
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Figure 6: Static properties of the BCC lattice structure with different radii for panel configurations (a) Normalised stiffness
parameter (b) Normalised strength parameter.
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Figure 7: Static properties of the BCC lattice structure with different radii for beam configurations (a) Normalised stiffness
parameter (b) Normalised strength parameter.
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at r2
r1

values that are lower than the peaks shown in Fig. 8. Hence, the value of r2
r1

should be maximised
for the BCC lattice. However, since the increase in strength after the peak values are relatively small and
increasing the values of r2

r1
may require more material, the optimal configuration for the BCC lattice in this

study is set to be at the peak in Fig. 8, which are r1
L1

= 0.027, r2r1 = 0.740, (giving the normalised strength
parameter of 4.374) for the panel and r1

L1
= 0.027, r2r1 = 0.744, (giving the normalised strength parameter of

1.618) for the beam configuration.
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Figure 8: Normalised strength parameter versus r2
r1

for the BCC lattice.

3.3. Face-centred cubic (FCC)

Fig. 9 and Fig. 10 show the normalised stiffness and strength parameters for the FCC lattice for the
panel and beam configurations respectively. The overall trends for the FCC observed in Fig. 9 and Fig. 10
appear to be identical to the trends for the BCC lattice structure observed in Fig. 6 and Fig. 7. The only
exception is that the normalised strength parameter for buckling of the FCC lattice being less sensitive to
the values of r2

r1
, especially for low values of r2

r1
compared to the BCC lattice.

Therefore, the intersection between the surfaces for yielding and buckling is also less sensitive to both r2
r1

and r1
L1

, where the range of r1
L1

at the intersection, highlighted by the red line in Fig. 9 (b) and Fig. 10 (b),
is in between 0.02788 and 0.03000. There were no peaks observed in the normalised strength parameter for
both the panel and beam configurations of the FCC structure in Fig. 11, unlike the case for the BCC lattice.
The normalised strength parameter in Fig. 11 was found to increase with r2

r1
throughout the entire range

that was studied. Therefore, r2
r1

should be maximised in order to obtain the optimal strength constrained
panel and beams with the FCC structure.

3.4. Regular Octet

The normalised stiffness and strength parameters for the octet lattice are shown in Fig. 12 and Fig. 13 for
the panel and beam configurations respectively. As seen in Fig. 12 (a) and Fig. 13 (a), the stiffness parameters
for the panel and beam configurations showed identical trends to the BCC and FCC lattice structures
described earlier. Conversely, the regular octet lattices’ normalised strength parameter for buckling is
significantly larger than that for yielding over the entire range of geometric parameters studied. Therefore,
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Figure 9: Static properties of the FCC structure with different radii for panel configurations (a) Normalised stiffness parameter
(b) Normalised strength parameter.
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Figure 10: Static properties of the FCC with different radii for beam configurations (a) Normalised stiffness parameter (b)
Normalised strength parameter.
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Figure 11: Normalised strength parameter versus r2
r1

for FCC lattice.

the normalised strength parameter for buckling was not plotted in Fig. 12 (b) and Fig. 13 (b). This result
suggests that the octet truss will only fail by yielding and not through buckling. Based on these observations,
the optimal regular octet truss geometries in both panel and beam configurations with strength constrains
is to minimise r1

L1
and maximise r2

r1
, with decreasing r1

L1
having a larger effect.

3.5. General discussion of the static properties of the lattice structures

The mechanical properties of the cubic topologies have been presented in this section. The normalised
stiffness and strength parameters for each cases were then compared in order to determine the best topology
that gives the optimal static parameters for each case. Table 4 and Table 5 summarise the values and
optimal geometric parameters for each geometry. The normalised parameters in Table 4 and Table 5 are
ratio of the parameters for the lattices divided to that of the bulk material and are dimensionless.

The optimal geometries of all four cubic topologies for the panel and beam configurations are listed in
Table 4 and Table 5 respectively, in which the best topology for a given configuration are bold in the tables.
Additionally, for cases in which the parameters for r1

L1
is to be minimised, this value have been set to 0.01,

which will give r1 = 1 mm when L1 = 50 mm. This value is a typical limit based on the resolutions of 3D
printers. On the other hand, for values of r2

r1
that needs to be maximised, these values have been set to 1.5,

which is the maximum value studied in this paper.
According to the findings in Table 4 and Table 5, the optimal topology for the panel with stiffness and

strength constrains are the simple cubic and octet truss respectively, while the FCC structure is the optimal
topology for the beam configuration with both stiffness and strength constrains. An important point to note
here is that the analysis done for these topologies are for the uniaxial loading conditions only as the stresses
in a beam and panel bending conditions were assumed to be purely axial similar to an Euler-Bernoulli beam
or a plate. The analysis with other loading conditions will be too large and is a subject of future work.

4. Band gaps in optimal lattice structure

Resonators were then introduced to the optimal lattice topologies for each configuration from the previous
section to produce elastic band gaps. In this study, the target frequency was set to 500 Hz and resonators
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Figure 12: Static properties of the regular octet structure with different radii for panel configurations (a) Normalised stiffness
parameter (b) Normalised strength parameter.
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Figure 13: Static properties of the regular octet structure with different radii for beam configurations (a) Normalised stiffness
parameter (b) Normalised strength parameter.

Topology
Stiffness Constrained Strength Constrained

r1
L1

r2
r1

Normalised Parameter r1
L1

r2
r1

Normalised Parameter

Simple 0.010 N.A. 72.13 0.026 N.A. 7.23
BCC 0.010 1.50 63.95 0.0269 0.744 4.345
FCC 0.010 1.50 68.10 0.02992 1.50 6.774
Octet 0.010 1.50 33.93 0.010 1.50 8.172

Table 4: Optimal normalised parameters for cubic topologies studied (Panel Configuration).
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Topology
Stiffness Constrained Strength Constrained

r1
L1

r2
r1

Normalised Parameter r1
L1

r2
r1

Normalised Parameter

Simple 0.010 N.A. 18.81 0.026 N.A. 2.591
BCC 0.010 1.50 19.72 0.0269 0.740 1.566
FCC 0.010 1.50 22.54 0.02992 1.50 3.11
Octet 0.010 1.50 11.41 0.010 1.50 2.459

Table 5: Optimal normalised parameters for cubic topologies studied (Beam Configuration).

of different configurations were studied. The width of the band gap will be used as the primary criterion
for evaluating the vibration isolation performance. The band gaps of the lattices are evaluated using band
diagrams, which are the frequency versus wave vector plots as seen in Fig. 14. A band gap is a region
of frequency where there are no bands within the First Brillouin Zone, meaning that no elastic waves can
propagate within that band. Therefore, the band gaps are denoted by regions where there are no curves as
seen in the highlighted region Fig. 14.

Due to the large number of resonator configurations that were evaluated, a low number of 10 elements per
unit strut was used in the band gap calculations to conserve computing resources. Despite the low number
of elements, there are no significant differences between the band structure of the case with 22 elements
and 10 elements per strut at the range of frequencies of interest, as shown in Fig. 14. Therefore, the errors
associated with reducing the mesh fineness will not significantly affect the analysis. The band gaps for the
different configurations of every optimal lattice structure will be examined in turn.
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Figure 14: Band structure comparing different mesh density at (a) 0 to 3000 Hz (b) 480 to 530 Hz for the simple cubic lattice
with a resonator.

4.1. Optimal lattice for stiffness constrained panel structure (simple cubic lattice)

The optimal lattice topology for the stiffness constrained plate structure is a simple cubic structure.
The band structures with and without the resonators are shown in Fig. 15. As seen in Fig. 15 (a), the
introduction of the resonators tuned at 500 Hz generated band gaps at 495.2 to 560.9 Hz and 591.0 to
754.8 Hz, which were not present in the case without the resonators. Additionally, a pass band within the
band gap region at the tuned frequency of 500 Hz was also observed in Fig. 15 (b). The pass band at the
tuned frequency of the local resonators are typical for band gaps produced via the local resonance (LR)
phenomenon.
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Figure 15: Band structures of simple cubic lattice studied with and without local resonators (a) 0 to 1000 Hz (b) 400 to 800
Hz.

The boundaries of the first band gap for this topology are plotted in Fig. 16 (a) for different values
of lengths and radii of the resonators. Only the first band gap will be investigated because it is the only
band gap that is directly associated with the tuned frequencies of the resonators. As seen in the figure, the
pass band at the tuned frequency of 500 Hz will always be present across all values of lengths and radii.
Further observations can be made from Fig. 16 (a). Firstly, the upper bound of the frequency increases
with increasing rOsc

r1
and decreasing LOsc

L1
. On the other hand, the lower bound of the frequency decreases

steeply with increasing rOsc

r1
and decreasing LOsc

L1
. Hence, as illustrated by Fig. 16 (b) that shows the width

of the band gaps, the width increases with rOsc

r1
and decreases LOsc

L1
. Based on these observation, the optimal

oscillators should have maximum rOsc

r1
and minimum LOsc

L1
, so that the width of the band gap is maximised.

However, in order to achieve the same tuned frequency, which is the natural frequency of the resonators,
increasing the values of rOsc

r1
and decreasing LOsc

L1
will lead to an increase in the mass required for the

resonators. This is because the increase in rOsc

r1
and decrease in LOsc

L1
will result in a stiffer beam for the

resonator and an increase in mass is needed to maintain the same natural frequency. This can be seen in
Fig. 17, that shows the density increment, defined as the ratio of the increase in density to the original density
of the lattice, for different geometries of the resonator beams. The required mass increases exponentially
with increasing rOsc

r1
and decreasing LOsc

L1
. This suggests that the increase in band gap width will also result

in an increase in density of the lattice, which is undesirable for light-weight applications.
As seen in Table 1, the parameters to be maximised are directly proportional to the inverse of density.

Therefore, the increase in mass can still be justified if these parameters multiplied by (1+ Density increment),
described by Eq. (16), is still significantly larger than unity. This is because the static properties for light-
weight structural applications after the addition of the resonators are still better than the bulk material.

PWith resonators =
PWithout resonators

(1 + Density Increment)
(16)

where P is the parameter shown in Table 1.
Since the optimal parameter for the simple cubic case is 72.13, as shown in Table 4, it is likely that this is

possible. For example, an overlap of the contour plot of the density increment (the red lines) and the width
of the band gaps (the other lines) in Fig. 18 (a), shows that band gaps of more than 20 Hz is achievable,
where the static parameter after adding the resonators is still larger than 10, although a mass of 5 times the
original lattice is added to the system.
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Figure 16: (a) Upper and lower bounds of the first band gaps (b) width of first band gap for different resonator configurations
for simple cubic structure.

Figure 17: Density increment with the addition of resonators for simple cubic lattice.
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Furthermore, the band gap width per unit density increment contour plot, as shown in Fig. 18 (b), was
studied to determine the beam configuration that will give the maximum band gap width while minimising
the penalty of increasing density. As seen in Fig. 18 (b), there is a peak at approximately LOsc

L1
= 0.2 and

rOsc

r1
= 0.4 with a value of 50. This result suggests that there is a maximum band gap width per unit density

increment for a tuned resonator and optimisation methods can be implemented to find this value.
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Figure 18: (a) Overlap of density increment and band gap width contour plot, red contour denote density increment while the
other contour denotes band gap width (b) Band gap width per unit density increment contour plot for simple cubic structures.

4.2. Optimal lattice for strength constrained panel structure (octet lattice)

The upper and lower bounds of the optimal lattice for the strength constrained plate structure found in
Section 3.5 are plotted in Fig. 19 (a). The band structure for this lattice configuration share similar trends
with the simple cubic structure discussed in the previous section. It has a pass band for all lengths and radii
of the resonators at the tuned frequency of 500 Hz. The trends of the upper and lower bounds of the band
gap, and subsequently the band gap width with respect to rOsc

r1
and LOsc

L1
follow the same trends as the ones

for the simple cubic structure.
The trends of the density increment resulting from the addition of the resonators for this lattice con-

figuration are similar to the simple cubic structure. The similar trends of this lattice and the simple cubic
structure is expected because the same mechanism was used to produce the band gaps. Since the trends in
density increment are similar for all lattices for the same reasons, the density increments will not be plotted
herein but are available in the supplementary material for this paper.

The density increment for the regular octet structure is lower due to the larger original density of the
unit cell. Although the density increment from the addition of the resonators is lower for the octet structure,
the band gap width per unit density increment for the octet lattice, shown in Fig. 20 (b), is significantly
lower than that for the simple cubic structure in Fig. 18 (b). The cause of this is the significantly smaller
band gap width produced by the resonators as shown in Fig. 20 (a). This result suggests that there is a
positive correlation between the mass of the oscillators and the width of the band gap. Furthermore, no
distinct peak was observed in Fig. 20 (b), although it appears to have a region with relatively high values
and the maximum appears to be outside the range that was investigated.

4.3. Optimal lattice for stiffness constrained beam structure (FCC lattice)

The optimal lattice structure for a stiffness constrained beam structure, which has an FCC topology, has
a band gap from 411.3 to 485.6 Hz, as seen in Fig. 21, even though no local resonators were present. The
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Figure 19: (a) Upper and lower bounds of the first band gaps (b) width of first band gap for different resonator configurations
for the regular octet lattice.

(a) (b)

Figure 20: (a) Overlap of density increment and band gap width contour plot, red contour denote density increment while the
other contour denotes band gap width (b) Band gap width per unit density increment contour plot for the regular octet lattice.
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band gap without the local resonators will be referred to as the original gap herein, while the band gap with
the resonators will be referred to as the resonator gap.
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Figure 21: Band structures of FCC studied with and without local resonators (a) 0 to 2000 Hz (b) 400 to 600 Hz.

The upper and lower bounds of the resonator gap and the original gap are shown in Fig. 22 (a), while the
band gap widths are shown in Fig. 22 (b). As expected, the general trend for the upper and lower bounds,
the band gap widths, and density increment of the resonator gap are similar to the previous structures.

However, the addition of the resonators affects the original gap. Firstly, the introduction of the resonators
results in a reduction in the width of the original gap. Furthermore, the original gap appears to have the
opposite trend of the resonator gap, as seen in Fig. 22 (a) and (b), where the original gap’s width decreases
with increasing rOsc

r1
and decreasing LOsc

L1
until it eventually closes. Increasing the width of the resonator

gap will lead to a decrease in the original gap.
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Resonator Gap

Original Gap

Figure 22: (a) Upper and lower bounds of the first band gaps (b) width of first band gap for different resonator configurations
for the FCC structure.
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Additionally, some differences in the band structure were observed for the case when the original gap
is present, as seen in Fig. 21. When the influence of the resonator gap is low, the band structure of the
lattice is similar to the case without the resonators. The resonators generate a pass band at a frequency
slightly lower than the tuned frequency, while creating an additional band gap above 500 Hz. On the other
hand, when the effects of the resonators become significant, the band structure with the resonators differs
significantly from the original case, this can be seen by comparing the green and blue curve shown in Fig. 21.

The overlap of the band gap width contour plot and the density increment from the addition of the
resonators are shown in Fig. 23 (a) and (b) for the original gap and the resonator gap respectively. As
seen in Fig. 23 (a), the band gap width of the original gap appears to be reducing with density increment,
contrary to the observation made in Fig. 23 (b) for the resonator gap. There are no contours for the band
gap width for the original gap at higher rOsc

r1
as the original gap closes. This observation is analogous to the

original gap being “cannibalised” by the larger resonator gap when resonators with larger masses are used.
Unfortunately, for this configuration, the band gap width resulting from the addition of the resonators is
relatively low. For example, based on Fig. 23 (b), the added resonators will result in an increase of 5 times
the density of the lattice to achieve a 10 Hz band gap. This significantly reduces the original parameter from
22.54 to 3.75. The significant reduction in the stiffness parameter means the strategy of adding resonators
may not be suitable for this configuration.
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Figure 23: Overlap of density increment and band gap width contour plot, red contour denote density increment while the
other contour denotes band gap width (a) Original gap (b) Resonator gap for the FCC lattice.

The band gap width per unit density increment for the original and resonator gaps are shown in Fig. 24
(a) and (b) respectively. As expected, the trend observed for the resonator gap in Fig. 24 (b) is similar to
that for the octet truss discussed previously. However, compared to the other lattice configurations, the
band gap width per unit density increment for this FCC configuration, seen in Fig. 24 (b), is significantly
lower than the other lattice configurations, especially the simple cubic configuration. This result suggests
that the addition of resonator does not provide large band gap widths for the increase in mass. However,
by comparing Fig. 24 (a) and (b), the band gap width per unit density increment for the orginal gap is
approximately three orders of magnitude higher than that for the resonator gap. This result indicates that
the original gap strategy should be pursued in favour of the addition of resonators if these gaps are present
around the desired frequencies as this does not increase the lattice density.

4.4. Optimal lattice for strength constrained beam structure (FCC lattice)
The final configuration is the FCC lattice that has the optimal geometrical parameters for a strength

constrained beam structure. The upper and lower bounds of the first band gap for this lattice topology and
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Figure 24: Band gap width per unit density increment contour plot (a) Original gap (b) Resonator gap for the FCC lattice.

the width of the first band gap are shown in Fig. 25 (a) and (b) respectively. As seen in Fig. 25 (a), there
is an additional band gap at low values of LOsc

L1
= 0.05. This band gap will not be investigated as the band

gap of interest is the one related to the tuned frequency of 500 Hz. Additionally, unlike the previous FCC
case, there are no band gaps present for this case when no resonators are added. Similar to the other lattice
structures being investigated, the band gap follows the trends observed in the other lattices.

(a)

Lower band

Upper band

Band resulting
from resonator

Upper band
(Lower gap)
Lower band
(Lower gap)

(b)

Figure 25: (a) Upper and lower bounds of the first band gaps (b) width of first band gap for different resonator configurations
for the FCC lattice.

The overlap of the band gap width contour plot and the density increment from the addition of the
resonators are shown in Fig. 26 (a) and (b) respectively. Again, the observed trends are similar to other
configurations. However, the optimal band gap width per unit density increment for this structure appears
to be outside the range of values being studied. Lastly, the band gap width per unit density increment,
shown in Fig. 26 (b), also suggests that the resonators that were added are not efficient in generating the
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band gaps. This is undesirable, especially when the normalised strength parameter is already low at 3.11.
A further investigation of Fig. 26 (a) shows that in order to produce a band gap with a width of 5 Hz,
the added mass will result in a density increment of 10 times the original density. This will lead to the
parameter with the oscillators being reduced to 0.2828 which is significantly lower than that for the bulk
material. Hence, the strategy of adding resonators is not a viable option for this case.
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Figure 26: (a) Overlap of density increment and band gap width contour plot, red contour denote density increment while the
other contour denotes band gap width (b) Band gap width per unit density increment contour plot for the FCC lattice.

4.5. General discussion on band gap behaviour of lattice with oscillators

Local resonators were added to the lattice structures with the optimal static properties from Section 3.5
in order to produce locally resonant (LR) band gaps. This method is similar to the method employed in
[15]. The location of the band gaps were tuned to be 500 Hz and resonators of different lengths, radii, and
mass were studied. Although the band gaps were tuned to be 500 Hz in this study, the general trends of the
band gaps should be similar for resonators with other frequencies, with the differences being the location of
the optimal band gap width per unit density being at different values of length and radius. The procedure
introduced in this study can be used to determined the trends for resonators with other tuned frequencies.

The LR gaps produced by the addition of the resonators all showed similar trends, in which the band gap
width increases with increasing rOsc

r1
and decreasing LOsc

L1
. However, the increase in the LR band gap width

comes at a cost of an increase in the density, suggesting a positive correlation between the band gap width
and the resonator mass. For cases where the static parameters are significantly better than the bulk material,
such as the simple cubic and FCC lattices for the plate configurations, the normalised stiffness and strength
parameters after adding the resonators may still be significantly higher than the bulk material despite the
increase in density. Conversely, for other cases especially where the static parameters are only marginally
better than the bulk material, for example the FCC and octet structures for the beam configurations, the
parameter may reduce below that for the bulk material and the strategy of adding local resonators is not
viable. Hence, the increase in density is a key consideration when employing the strategy outlined in this
paper to produce multifunctional lightweight structural materials with elastic band gap properties.

Additionally, some lattice structures, such as one of the FCC lattice investigated here, have band gaps
prior to the introduction of the resonators. These band gaps have far larger widths compared to that
introduced by the resonators and do not come with a penalty on the density. Therefore, tuning the original
band gap to the desired frequency is a more favourable solution to the addition of the local resonators
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when these band gaps are present. This result suggests that other techniques, such as manipulating the
connectivity of the struts in [27] are worthy for further study for multi-purpose applications.

There are several improvements that can be made to increase the band gap widths that can be studied
further. One possible improvement is to design hybrid 3D cores, where two or more topologies are combined
in a spatially periodic pattern that may increase the band gap width. Another possible strategy is to
arrange the unit cells with different resonators in series with overlapping band gaps. This may result in a
very wide band gap to effectively attenuate vibrations, for example as seen in [13]. Lastly, as in beam or
panel configurations, the axial length is generally larger than the width or height of the system. Therefore,
there is a potential to improve the band gap and static performance of the lattice structure by varying the
width and height independently. These possible improvements are topics of future study in this field.

5. Summary and Conclusions

Lattice structures have huge potential for multifunctional applications. In this paper, a parametric
study was conducted in order to investigate the viability of cubic structures to be used as both a lightweight
structural component with vibration isolation properties. The stiffness and strength properties of four
different cubic lattice topologies, made from ABS, to be used as core materials for sandwich beams and
panels were investigated in order to determine the best topology and geometric parameters. In general, the
normalised stiffness parameter was found to increase with the radii of the member struts for all topologies.
The strength of the lattice topologies were determined by two failure mechanism, which are yielding and
buckling of the struts. The yielding parameter increases with increasing r2

r1
and decreases with increasing

r1
L1

, for all the topologies except the simple cubic lattice that has no diagonal struts. On the other hand, the
normalised strength parameter for buckling increases with increasing r2

r1
and increasing r1

L1
for all topologies

with the exception of the octet truss, which does not experience buckling. The failure strength of the
topologies was set to be the lower of the yielding and buckling failure modes. Therefore, the optimal
topology for the strength was found to be the point in which the yield and buckling criteria are equal. The
lattice topologies were found to be able to have superior static mechanical properties compared to that of
the parent bulk material. Based on these findings, the optimal topology for each configuration was found.

After that, tuned resonators made from cantilever beams with masses at the end were added to the
topologies to introduce band gaps via the local resonance mechanism. The resonators were tuned to have a
natural frequency of 500 Hz. Since there are different parameters, such as the lengths, radii, and added mass,
which can produce resonators of a given natural frequency, the effects of these geometrical parameters on
the band gap widths were also studied. For all topologies, the band gap width produced by the introduction
of the resonators follow the same trend. The band gap width was found to be larger for increasing values
of rOsc

r1
and decreasing values of L2

L1
but this is accompanied by an increase in density. This is because the

required changes to increase the band gap width will result in a stiffer beam and a larger mass is required
to give the same natural frequency. With the increase of density resulting from the introduction of the
oscillators, the strength and stiffness parameters for the lattice structures reduces. Based on the findings
of this investigation, the addition of the resonators is justifiable if the stiffness or strength parameter is
still significantly larger than that for the bulk material, as seen in some of the topologies investigated here.
However, for other cases, such as the FCC for the strength constrained beam structure, the value falls below
that for the bulk material and this strategy is not viable. Therefore, the increase in density and the decrease
in the normalised stiffness and strength parameter are important factors to consider when adding resonators
to such structural components to introduce elastic band gaps.

Lastly, some topologies such as one of the FCC topology studied here have a band gap prior to the
addition of the resonators. Since the addition of the resonators will only degrade the original gap, the best
strategy is to make changes to the structure to achieve the desired band gap frequency because the original
gap does not result in the addition of mass.
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