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This article models the elastodynamic transient contact between two elastically similar half planes under 

antiplane loading and in the presence of friction. Contact is maintained along the positive real line under 

the presence of a certain remote contact pressure. An antiplane shear load is applied, which entails inter- 

facial shear traction that opposes the frictional force entailed by the contact pressure. In order to balance 

the surface tractions, the surface must be allowed to slip. We derive the closed form solution of the inter- 

facial traction due to a general antiplanar displacement distribution using a variant of the Wiener-Hopf 

technique. We also find closed-form expressions for the interfacial shear traction due to this remote an- 

tiplane load. In combination with the frictional force, this leads to an integral equation the solution to 

which is the distribution of relative slip. We quantify both this and the magnitude of the interfacial shear 

tractions under diverse loading, showing that transient loading leads to partial reverse slip of the contact 

surfaces. We show that the reverse slip tends to vanish over time, and that it is ameliorated if the friction 

coefficient is reduced. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

This article discusses the elementary solutions governing the

antiplane, elastodynamic contact between two elastically similar

bodies in the presence of friction and slip. Elastodynamic contact

is of particular relevance at high strain rates ( Meyers, 1994 ), un-

der shock ( Abou-Sayed et al., 1976; Doyle, 1987 ) or ramp loading

( Brown et al., 2013 ), and generally in the description of contact

problems where the representative time and lengthscales are com-

parable to the relevant speeds of sound of the material, such as

those that may for instance be encountered in turbine shaft bear-

ings ( Khonsari and Booser, 2008; Hirani et al., 1999; Schwingshackl

et al., 2012 ), where the loading rates quickly approach the ma-

terial’s speed of sound; in joints in flexible structures, where the

speed of sound at the joint is much slower than that at the struc-

ture itself ( Gaul and Lenz, 1997; Gaul and Nitsche, 2001 ); or in

brakes, where dynamic contact is involved in frictional induced vi-

brations ( Wayne, 20 0 0; Butlin and Woodhouse, 20 09 ) which are

also of relevance in structural mechanics ( Duffour and Woodhouse,

20 07, 20 04; Woodhouse and Duffour, 20 04 ). In such situations, the

conventional contact equations ought to account for the inertial
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orces of the material, and the problem, formerly parabolic, be-

omes time dependent and hyperbolic. This entails a number of

heoretical complications which means that dynamic contact has

n the past received less attention than its static counterpart. 

A considerable number of the dynamic contact problems that

ave been studied in the past involve moving contact problems

n the absence of friction ( Barber, 2018 ). These problems can be

reatly simplified under the assumption that the contact surfaces

lide at constant speed, because in those cases the fundamental so-

utions become self-similar ( Eringen and Suhubi, 1975 ) (or, equiv-

lently, homogeneous to degree zero in space and time ( Freund,

974 )), so that the problem may be studied in the steady-state as

 simple function of the sliding velocity. This approach has proven

articularly useful in studying the role inertial forces may play in

inetic sliding contacts in plane strain, as done for instance by

alin (1961) , Erigen and Suhubi, 1975 , Craggs and Roberts (1967) ,

eorgiadis and Barber (1993) , or Brock (2002) , amongst many oth-

rs. This class of problems quickly stumbles upon some compli-

ations when exploring sliding motions above the Rayleigh wave

peed and in the transonic regime, since the contact surface in

hose cases appears to be non-unique, and entails the presence of

oving singularities ( Barber, 2018 ). Such problems were recently

larified by Slepyan and Brun (2012) , who offered a complete ac-

ount of that nature of these singularities and how to regularise

hem in steady state contact problems of this kind. 

https://doi.org/10.1016/j.ijsolstr.2019.04.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. Schematic of the system under consideration:a semi-infinite contact inter- 

face is subjected to a remote normal load P ( x, t ) that maintains the contact, and a 

remote shear load R ( x, t ) that induces sliding at the interface. The edge of the con- 

tact zone is x = 0 , y = 0 and the interface runs along the y = 0 , x > 0 positive real 

line. 
A different class of problems concerns the transient contact be-

ween bodies. These problems pertain to studying the temporal

volution of the contact response. Unlike the steady state solutions,

hese problems require a fully elastodynamic treatment of both the

ontact loads, which may vary arbitrarily in time. ( Kostrov, 1964 )

nd Thompson and Robinson (1969) for instance studied the tran-

ient contact between a rigid indenter and an elastic half space

xploiting self-similar loading conditions, which were also briefly

iscussed by Slepyan and Brun (2012) . Kalker (1970) offered a clas-

ical account of ‘transient’ contact between rolling cylinders, but

eglected inertial forces. 

Further work on the transient response has focused on identify-

ng local resonances and instabilities affecting the contact between

wo bodies under time-dependent conditions, usually studying the

ll-posedness of the problem using stability analysis or linearised

odels ( Menq and Griffin, 1985; Berger et al., 20 0 0; Persson, 20 01;

olin, 2016 ). Such approach was employed by Achenbach and Ep-

tein (1967) , who used a linear elastodynamic model to study

he interfacial resonance modes in planar, frictionless contacts ex-

ited by free time-harmonic waves. Similarly, Comninou and Dun-

urs (1977) used harmonic analysis to study the possibility of in-

erfacial separation (loss of contact) along bimaterial interfaces.

enardy (1992) and Martins et al. (1995) extended these studies to

he stability of the dynamic contact problem under the presence of

riction, concluding that large frictional coefficients favoured insta-

ilities. In turn, using linear stability analysis, ( Adams, 1995 ) found

 family of instabilities in the steady state solutions of the normal

ontact between two dissimilar materials, which could lead to sep-

ration or waves of stick and slip. 

As is the case in statics, the study of transient contact prob-

ems involves similar approaches to those used in dynamic frac-

ure mechanics ( Freund, 1998 )–where cracks are typically consid-

red to propagate along an elastodynamic continuum under var-

ed, time-dependent loading–, and in seismology ( Aki and Richards,

002 )—where the far field and the dynamic propagation of geolog-

cal faults are of great interest, often in the presence of frictional

orces that govern the energetics and limit the propagation speed

f the said faults ( Rice, 1993; Scholz, 1998 ). Because of its role in

etermining the propagation speed of geological faults, the study

f the frictional laws affecting them has drawn a lot of attention

 Jaeger et al., 2009; Kawamura et al., 2012 ), usually in the con-

ext of Burridge–Knopoff like models ( Burridge and Knopoff, 1967 )

hat attempt to study the role of frictional laws employing unidi-

ensional models ( Dieterich, 1972; Burridge, 1973; Rice and Ru-

na, 1983 ), or in numerical models of increasing complexity ( Koller

t al., 1992; Rice, 1993; Lapusta et al., 20 0 0 ) where the frictional

aw is required to be rate dependent or proportional to the sliding

etween surfaces ( Liu and Rice, 2005; Kawamura et al., 2012 ). 

Further studies of the transient response of contacting inter-

aces under time-dependent loading conditions include the work of

ineberg and coworkers ( Rubinstein et al., 2004, 2007; Ben-David

t al., 2010 ), who in the context of seismic fault propagation per-

ormed a number of detailed experiments studied the onset of fric-

ional slip under dynamic loading, uncovering a number of insta-

ilities that suggest that, locally, the interfacial contact loads can

e much larger before precipitating slip than would be possible

nder static loading ( Ben-David and Fineberg, 2011 ). Such insta-

ilities have lead to questioning the local validity of Amonton’s

aws under certain dynamic conditions ( Ben-David and Fineberg,

011; Bouchbinder et al., 2011; Capozza and Urbakh, 2012 ) and the

eneral validity of linear frictional models ( Kammer et al., 2012;

oodhouse et al., 2015 ). 

The aim of this article is to add to the existing corpus of

nalytical dynamic contact solutions by presenting the governing

quations of the antiplane dynamic contact problem between two

lastically similar half spaces in the presence of friction and slip.
he elastostatic solution to this problem is generally achievable as

he antiplanar version of the classical Cattaneo–Mindlin problem

 Cattaneo, 1938; Mindlin and Appl, 1949 ), which generally con-

erns in-plane normal and tangential loads (cf. Barber, 2018; Now-

ll and Hills, 1987; Nowell et al., 1988; Dini et al., 2005; Dini et al.,

004 ). In the antiplanar case, the contact is established by a re-

ote normal load, but the shearing load acts out-of-plane. Under

he action of some frictional force a slipping region is necessary to

alance both the frictional and interfacial tractions about the edge

f the contact area ( Johnson, 1987; Barber, 2018 ). 

In this article, we posit that the same loading considerations

sed on the elastostatic problem ought to hold true for a fully tran-

ient situation, and we aim at computing the form of the slipped

egion under transient loading. We shall consider the more gen-

ral case possible, where the driving loads are not necessarily self-

imilar, and reach a governing equation describing the force bal-

nce at the contact interface. Contrary to elastostatics, some of the

escriptions of the relevant dynamic interfacial tractions are not

mmediately available, and will be derived in the following. 

Thus, this article is structured as follows. Section 2 describes

he general characteristics of the elastodynamic antiplane contact

roblem under consideration here, highlighting the need to de-

cribe the interfacial shear tractions due to a remote load and

ue to an unknown slip distribution. The interfacial shear traction

roblem due to a remote load has a well-known ( Achenbach, 1973;

ki and Richards, 2002; Freund, 1998 ) solution, which is briefly

utlined in Section 3 . The interfacial shear traction problem due

o a slip distribution is solved in Section 4 by deriving the funda-

ental solution for the relevant problem. Section 6 provides the

ull governing equation, which is solved for a number of loading

ases. Section 7 closes this article with its concluding remarks. 

. Constitutive hypothesis 

We are concerned with solving the antiplane contact problem

etween two elastically similar half spaces subjected to some a pi-

ri general, time-dependent loading. The contact interface, shown

n Fig. 1 , is flat and semi-infinite; this is an idealisation aimed

t facilitating the study of the contact conditions that woould

ccur about the edge of the contact interface in a bearing or
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geophysical fault subjected to antiplanar loading, and is justified

because the elastodynamic loads are expected to propagate away

from the edge of the contact interface over very short periods of

time. As is shown in Fig. 1 , ex hypothesi 1 , heareafter the contact

interface is defined to be the positive half real line, i.e., the contact

exists and has to be maintained only for x > 0, whilst for x < 0 the

interfaces are free surfaces. 

This contact is maintained by a certain remote load P ( x, t ).

Along the interface, this remote load induces a certain interfacial

normal load N ( x, t ), which in turn entails a frictional distributed

force acting along the interface of the form F fric (x, t) = f · N(x, t) ,

where f is the friction coefficient. As a first approach, here we do

not concern ourselves with the nature of such friction coefficient,

and we assume the simple case of dry friction obeying Amonton’s

law. In more complete approaches one would consider circum-

stances where the frictional coefficient itself is a function of the

interfacial shear slip (see for instance ( Rice, 1993; Scholz, 1998 ));

in such situations, the problem would quickly become heavily non-

linear. Such cases will be the subject of future work. 

Here, the frictional force F fric (x, t) is balanced by a net interfa-

cial shear traction q ( x, t ), which we allow to be the result of two

contributions: 

1. That due to the interfacial shear traction r ( x, t ) induced by a

remote antiplane shear traction R ( x, t ), which will be prescribed

by us. 

2. That due to slip , i.e., the interfacial shear traction s ( x, t ) entailed

by a certain, a priori unknown antiplane displacement distribu-

tion w ( x, t ) which describes the relative slip between the two

surfaces in contact. This slip is necessary to accommodate pos-

sible imbalances between the frictional and shear loads. 

The elastodynamic approach mirrors the usual treatment of

contact under the presence of friction and slip ( Barber, 2018; John-

son, 1987; Nowell and Hills, 1987 ). In particular, we shall distin-

guish between regions of stick and slip. In slip regions we have 

F frict (x, t) = f N(x, t) = | q (x, t) | = | s (x, t) + r(x, t) | (2.1)

with the condition that sign (∂ t u z ) = −sign (q (x, t)) (q.v. Hills and

Nowell (1994) ,p. 43). Hereafter this condition will be referred to

as the ‘ kinematic contact condition ’, and its significance discussed

in Section 6 . 

In stick regions, in turn 

| q (x, t) | ≤ f N(x, t) (2.2)

subject to the additional kinematic condition that ∂ t u z = 0 . In the

following, and for simplicity, we shall assume that q ( x, t ) and

F frict (x, t) are of the same sign and, accordingly, that the underlying

slip is of opposite sign to the frictional traction. 

The elastodynamic problems we ought to solve are therefore

four: 

1. We must find an expression for the interfacial shear trac-

tion r ( x, t ) arising from the remote shear traction R ( x, t ). This

is Kostrov’s problem, which has a well-known solution (see

Kostrov, 1966; Achenbach, 1973 ). 

2. We must find a mathematical expression for the interfacial

shear traction s ( x, t ) due to the relative slip displacement distri-

bution w ( x, t ) acting along the interface. This w ( x, t ) is a priori

unknown, and may or may not be compactly supported, albeit

we expect it to be so over at least some finite region x ∈ (0, a )

(cf. Johnson, 1987; Nowell and Hills, 1987 ). 

3. We must find an appropriate expression for N ( x, t ). 
1 But without loss of generality owing to the translational invariance of the stress 

measure. 

t  

o  

s  

l  
4. The actual problem we are interested in solving is finding

the slip displacement w ( x, t ) arising from the force balance

eqn. 2.1 between the frictional force and the two interfacial

shear traction contributions. This will in principle entail an in-

tegral equation. 

In the following, we give the general form of s ( x, t ) and r ( x, t )

nder elastodynamic loading. 

. Interfacial shear traction due to remote antiplanar loading 

Let R ( x, t ) be some remote and arbitrary shear force acting in

he antiplane z -direction over the system shown in Fig. 1 . We wish

o find the corresponding interfacial shear r ( x, t ) traction acting

long the contact interface ( x ∈ R 

+ ). 
The governing equation is ( Achenbach, 1973 ): 

 

2 u z (x, y, t) = b 2 ü z (3.1)

here u z ( x, y, t ) is the out-of-plane (hereafter, antiplanar) displace-

ent field component, which in antiplanar motion is assumed not

o be dependent on z ; and where b = 

√ 

ρ/μ is the transverse slow-

ess of sound for ρ the material density and μ the shear modulus.

The boundary value problem concerns the geometry shown in

ig. 1 . We require that the free surface x < 0 remains traction free

nder some remote loading R ( x, t ). We model the reciprocal prob-

em, whereby we negate R ( x, t ) along the free surface, and require

hat the displacement along the contact interface vanish by sym-

etry. Thus, 

yz (x, 0 , t) = −R (x, t) x ∈ R 

−

u z (x, 0 , t) = 0 x ∈ R 

+ (3.2)

hat we wish to find is r ( x, t ), the interfacial shear traction for

 ∈ R 

+ . 
The solution to 3.1 when subjected to boundary conditions such

s 3.2 can be expressed in terms of the representation theorem (q.v.

ennett, 1972; Udías, 2002 ) that relates the displacement field to a

ody force distribution via the system’s Green’s function ( Aki and

ichards, 2002 ). For antiplanar loading, this takes the form 

 z (x, y, t) = 

∫ t 

−∞ 

d t ′ 
∫ 
R ×R 

d x ′ d y ′ G zz (x − x ′ , y − y ′ , t − t ′ ) f z (x ′ , y ′ , t ′ )

(3.3)

here G zz ( x, y, t ) ≡ G z ( x, y, t ) denotes the relevant antiplanar

reen’s function of the problem in question ( Mura, 1982; Achen-

ach, 1973 ) (e.g., for an elastic half space, or for an infinite plane),

nd f z ( x, y, t ) any antiplanar force distribution acting on the sys-

em. 

The solution procedure we briefly outline in the following re-

ies on this representaiton theorem, and is due to Kostrov (1966) ,

ho applied it to the study of unsteady crack propagation of finite

ntiplane cracks. Achenbach (1973) , Aki and Richards (2002) , and

reund (1998) , amongst others, reproduce variations of the deriva-

ion. As noted by Kostrov (1966) , r ( x, t ) has by construction support

nly for x > 0, and, again by construction, R ( x, t ) has support only

or x < 0. We can therefore write a global interfacial shear traction

s T (x, t) = −R (x, t) + r(x, t) acting along the whole interface (i.e.,

 ∈ R for y = 0 ). The first term, R ( x, t ), is fixed and prescribed, and

he displacements along x ∈ R 

− can be arbitrary. However the dis-

lacements along x ∈ R 

+ must vanish. This means that r ( x, t ) is the

nterfacial shear traction that ensures that the displacement field

long x ∈ R 

+ cancels. 

In considering T ( x, t ), we are considering a distributed shear

raction acting along the whole y = 0 abscissae line. The problem

f solving the elastic fields resulting from the application of any

uch T ( x, t ) over an elastic half space is Lamb’s (antiplane) prob-

em. The interfacial displacement field u T z (x, 0 , t) due to T ( x, t ) can
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e obtained from T ( x, t ) via the representation theorem: 

 

T 
z (x, 0 , t) = 

∫ 
R ×R 

∫ t 

0 

T (x ′ , t ′ ) G z (x − x ′ , y − y ′ , t − t ′ ) d t ′ d (x ′ × y ′ ) 

= 0 (3.4) 

here G z ( x, y, t ) is the antiplane Green’s function for an elastic half

pace, which is given by Achenbach (1973) and Freund (1998) 

 z (x, y, t) = − 1 

πμ

1 √ 

t 2 − b 2 r 2 
H(t − br) , r = 

√ 

x 2 + y 2 (3.5)

We then substitute T (x, t) = −R (x, t) + r(x, t) , with R ( x, t )

nown, on Eq. (3.4) , leading to the following integral equation for

 = 0 : ∫ 
�1 

R (x ′ , t ′ ) √ 

(t − t ′ ) 2 − b 2 (x − x ′ ) 2 
d t ′ d x ′ 

 

∫ 
�2 

t (x ′ , t ′ ) √ 

(t − t ′ ) 2 − b 2 (x − x ′ ) 2 
d t ′ d x ′ = 0 (3.6) 

he integration limits are found from the support imposed by

he H(t − br) functions, which define �1 = { 0 , ∞} × { 0 , t s } and

2 = {−∞ , 0 } × { 0 , t s } with t s = max (0 , t − b| x − x ′ | ) . From that it

ollows that the equation above may be written as an inte-

ral equation of Abel type, the solution to which is given by

chenbach (1973) 

(ξ , η) = − 1 

π

1 √ 

η − ξ

∫ ξ

−ξ
R (ξ , η′ ) 

√ 

ξ − η′ 
η − η′ d η′ (3.7)

here ξ = 

1 

b 
√ 

2 
(t − bx ) and η = 

1 

b 
√ 

2 
(t + bx ) for ξ ≤η. Expressed

xplicitly in the ( x, t ) coordinates, Eq. (3.7) is given by 

(x, t) = 

1 

iπ

1 √ 

x 

∫ 0 

bx −t 

R (x, t − b(x − x 0 )) 

√ 

x 0 
x − x 0 

d x 0 (3.8)

q. (3.8) describes the interfacial shear traction due to the remote

ntiplane loading. 

In Section 6 , the following two particular loading cases will be

iscussed. For a shock load R (x, t) = R 0 H(t) , 

 

shock (x, t) = 

2 R 0 

π

[√ 

t − bx √ 

x 
− arctan 

(√ 

t − bx √ 

x 

)]
H(t − bx ) (3.9)

or a ramp load R (x, t) = R 0 tH(t) , 

 

ramp (x, t) = 

2 

3 π
R 0 

[√ 

t − bx √ 

x 
(b 2 x + (3 − b) t) 

−3 t arctan 

(√ 

t − bx √ 

x 

)]
H(t − bx ) (3.10) 

The ‘shock’ load would correspond to an antiplane contact

here the sliding shear force is suddenly applied at t = 0 ; the

ramp’ load to a sliding contact where the shear force is applied

radually and increases linearly with time. The ramp load also

erves as an indication of the transient response of the system to

lternating loads, the salient features of which may be reproduced

y a series of ramp loads of alternating slope. 

. Interfacial shear traction due to a displacement distribution 

This is the second problem we are concerned with. In this case,

 certain slip displacement w ( x, t ) is acting along the contact inter-

ace. The governing equation remains Eq. (3.1) setting the following

oundary value problem: 

yz (x, 0 , t) = 0 x ∈ R 

−

u z (x, 0 , t) = w (x, t) x ∈ R 

+ (4.1) 
p
he problem is amenable to solution in a number of ways. For

nstance, one could invoke the distributed dislocation technique

mployed by Freund (1974) , Burgers and Freund (1980, 1981) and

reund (1998) , amongst many others, to solve the problem of a

oint load applied on the faces of a mode I crack, and also reported

y Aki and Richards (2002) in connection with a uniformly propa-

ating shear crack. Such approaches, however, rely on the assump-

ion that w ( x, t ) is self-similar, i.e., w ( x, t ) ∼ w ( x / t )( Freund, 1974 ).

lternatively, the slip displacement may be converted (in the sense

f distributions) into an equivalent force by virtue of the Burridge–

nopoff theorem ( Burridge and Knopoff, 1964 ), and then the repre-

entation theorem may be applied to this force distribution. Here,

e shall generalise the solution by obtaining the relevant funda-

ental solution instead. 

The solution strategy we adopt here therefore relies on obtain-

ng a fundamental solution for the interfacial shear stress (i.e., the

hear stress produced at the interface by a point-like antiplanar

isplacement), and then achieving the actual solution to the in-

erfacial stress due to the displacement w ( x, t ) via convolution be-

ween w ( x, t ) and the fundamental solution. This is justified via the

epresentation theorem, which shows that in linear elasticity the

isplacement and stress fields are isomorphic ( Aki and Richards,

002 ). 

In so doing, we are invoking the linearity between interfacial

lip and interfacial stress. Although it is true that the problem we

ish to solve is inherently non-linear due to the presence of a fric-

ional force at the interface, it is the interfacial shear stress due

hat is affected by this non-linearity via the force balance equation

 Eq. (2.1) ). To wit, the shear stress at the interface is the result of a

on-linear force balance. The associated slip distribution, however,

ill remain linearly dependent on the net interfacial shear stress

ecause the material’s inner behaviour remains linear elastic. Note

hat any potential inelasticity in the constitutive behaviour of the

aterial is neglected here. 

.1. Fundamental solution 

Here we first obtain the fundamental solution , i.e., the interfa-

ial shear traction associated with a point displacement acting on

he contact interface, and then invoke the convolution theorem

o obtain the general interfacial traction. Thus, we first wish to

olve 

yz (x, 0 , t) = 0 x ∈ R 

−

u z (x, 0 , t) = δ(x − x 0 ) δ(t − t 0 ) x ∈ R 

+ (4.2) 

here x 0 > 0, t 0 > 0. 

This problem is of interest on its own as it clarifies the

ature of the fundamental solution. As was commented by

urgers and Freund (1980) , it is not immediately obvious how

o solve it employing standard procedures such as the Wiener–

opf method ( Noble, 1958 ). The reasons for this will be discussed

elow. 

Still, we assume that w ( x, t ) is sufficiently smooth (in principle,

t least C 

2 and compactly supported over R 

+ ), that the problem

ay be solved via Wiener-Hopf. We therefore first extend by con-

inuity the boundary conditions to 

yz (x, 0 , t) = p + (x, t) x ∈ R 

u z (x, 0 , t) = u −(x, t) + δ(x − x 0 ) δ(t − t 0 ) x ∈ R (4.3) 

here p + (x, t) and u −(x, t) are, respectively, the resultant traction

long x ∈ R 

+ and the resultant displacement along x ∈ R 

−; note

hat p + (x, t) is in fact the fundamental solution we seek. Both are

nknown, and form part of the solution to the boundary value

roblem. 
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Fig. 2. Contour of integration for Eq. (4.12) . 
We begin by defining the following integral transforms: 

ˆ f (x, y, s ) = 

∫ ∞ 

0 

f (x, y, t ) e −st d t , 

F (k, y, s ) = 

∫ ∞ 

−∞ 

ˆ f (x, y, s ) e −skx d x (4.4)

and apply them over the governing equation ∇ 

2 u z = b 2 ü z , to get 

∂ 2 U z 

∂y 2 
= s 2 β2 U z (k, y, s ) (4.5)

where β2 = b 2 − k 2 . 

Applying them over the boundary conditions, which we have

extended to apply over the whole line of abscissae, we finally get

the following Hilbert problem: 

− P + (k ) 

μβ(k ) 
= U −(k ) + E(k ) (4.6)

where 

P + (k ) = s 

∫ ∞ 

0 

ˆ p + (x, s ) e −skx d x, U −(k ) = s 2 
∫ 0 

−∞ 

ˆ u −(x, s ) e −skx d x, 

E(k ) = s 2 
∫ ∞ 

0 

ˆ u z (x, s ) e −skx d x ≡ E(k ; s ) = s 2 e −s (t0+ kx 0) (4.7)

We then proceed to decompose the equation into sectionally

analytic functions. To begin with, the first (product) decomposition

concerns β( k ), and is defined as usual (cf. Freund, 1998 ): 

β(k ) = β+ (k ) β−(k ) ⇒ β±(k ) = 

√ 

b ± k (4.8)

The problems arise in the second (sum) decomposition, which

concerns the S(k ; s ) = β−(k ) E(k ; s ) term. We note here that x 0 > 0,

s > 0. Thus, the function S ( k ; s ) is bounded only in the Re[ k ] > 0 half

plane, since in the left half plane the exponential term does not

generally vanish. Unfortunately, because the term is not bounded

for all | k | → ∞ , Liouville’s generalised theorem (see Markushevich,

2005a , p.364) will not be satisfied since this theorem explic-

itly requires that | S(k ) | ≤ M ∀ k ∈ C , M ∈ R ( Markushevich, 2005a;

Knopp, 1996 ), and the usual Wiener-Hopf strategy reliant on

the decomposition of the functions into sectionally analytic func-

tions followed by application of the monodromy theorem(see

Markushevich, 2005b ) and Liouville’s generalised theorem (see

Noble, 1958; Markushevich, 2005a ) is not applicable, because the

latter does not hold. 

An alternative approach is necessary. Here, we shall follow the

one Georgiadis and Charalambakis, 1994 developed for the point

load applied on the faces of a confined mode I crack. This tech-

nique is, in reality, an extension of the usual analytic continuation

techniques (see for instance ( Markushevich, 2005b ) III 8), and can

be justified because albeit it is true that S(k ; s ) = β−(k ) E(k ; s ) does

not fulfil Liouville’s generalised theorem, it still satisfies Picard’s

little theorem (see Markushevich, 2005b ). 

Therefore, let us divide both sides of Eq. (4.6) by 2 π i (k − z) ,

and then integrate the equation along the imaginary axis with the

point z lying on the Re[ k ] > 0 plane alone. This renders 

1 

2 π i 

∫ i ∞ 

−i ∞ 

P + (k ) 

μβ+ (k )(k − z) 
d k + 

1 

2 π i 

∫ i ∞ 

−i ∞ 

β−(k ) s 2 e −s (t0+ kx 0) 

k − z 
d k 

= − 1 

2 π i 

∫ i ∞ 

−i ∞ 

β−(k ) U −(k ) 

k − z 
d k (4.9)

First, we shall tackle the right hand side. We note that

as | k | → ∞ , β−(k ) ∼ k 1 / 2 . In addition, we expect that u z ( x , 0,

t ) ∼ x 1/2 for x → 0 (cf. Mura, 1982 ). Invoking the Tauberian theo-

rem ( Wiener, 1932 ) , this means that U −(k ) ∼ k −3 / 2 . Thus, the first

integrand in the RHS decays with k −1 as | k | → ∞ . We define the

branch cut entailed by β−(k ) for Re[ k ] > b , so that the integrand

on the right hand side is meromorphic on the Re[ k ] < 0 half plane.
e can close the contour of integration along the imaginary axis

ith a semi circle in the Re[ k ] < 0 half plane, and then invoke Jor-

an’s lemma (see Brown and Churchill, 2009 , p.192), by virtue of

hich the integral along the circular contour vanishes. Since there

re no poles enclosed by this contour (by construction z lies on

he Re[ k ] > 0 half plane), then the closed contour integral vanishes,

nd so does the integral along the imaginary axis. 

We further note that P + (k ) ∼ k −1 / 2 , because we expect that

p + (x, t) ∼ 1 / 
√ 

x in the x → 0 + limit (see for instance Mura, 1982 ),

o that the integrand decays with k −1 as | k | → ∞ . The first inte-

rand has poles in k = z and k = −b. We define the branch cut

or Re [ k ] < −b, so we close the contour of integration with a semi

ircle along the positive half plane, where we know by Jordan’s

emma that the integral along the semicircle vanishes. The only

ole being k = z, we have that by Cauchy’s integral theorem: 

1 

2 π i 

∫ i ∞ 

−i ∞ 

P + (k ) 

μβ+ (k )(k − z) 
d k = 

P + (z) 

μβ+ (z) 
(4.10)

hus, we finally find that 

P + (z) 

μβ+ (z) 
= − 1 

2 π i 

∫ i ∞ 

−i ∞ 

β−(k ) s 2 e −s (t 0 + kx 0 ) 

k − z 
d k (4.11)

We are now in a position to evaluate the last remaining inte-

ral, 

 i ∞ 

−i ∞ 

β−(k ) s 2 e −s (t 0 + kx 0 ) 

k − z 
d k, (4.12)

e note that the integrand is meromorphic with a simple pole at

 = z for Re[ z ] > 0. As noted, it only decays for Re[ k ] > 0, so we

ay only close a contour of integration at infinity in the pos-

tive half plane. This carries the added complication of coincid-

ng with the branch cut of the integrand, which we define for

e [ k ] > b, Im [ k ] = 0 . We close the contour of integration as repre-

ented in Fig. 2 . Accordingly, 
 

= 

∫ 
Im [ k ] 

+ 

∫ 
�Jordan 

+ 

∫ 
�branch cut 

= 2 π i Res [ z = k ] (4.13)

here ∫ Im [ k ] represents the integral along the imaginary axis,

Jordan = | k | e iθ , | k |∞ , θ ∈ (π/ 2 , −π, 2) is the Jordan contour tend-

ng to infinity shown in Fig. 2 , and �branch cut the contour

round the branch cut, i.e., �branch cut = (∞ , + b] ∪ [+ b, ∞ ) . Clearly
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�Jordan 
→ 0 by virtue of Jordan’s lemma, and ∫ Im [ k ] is the integral

f interest here. Thus, the only term in contention is the integral

long the branch cut. 

The integral along �branch cut does not contribute to the residue.

et us define �branch cut = �+ + �− with �− = (∞ , + b] , �+ =
+ b, ∞ ) . If we set k − b = re iθ for θ = 0 along �− and θ = 2 π along

+ , so that �− ≡ r ∈ (∞ , 0] , �+ ≡ r ∈ [0 , ∞ ) , we find that 

 

�±

√ 

r e iθ/ 2 

b + re iθ − z 
d r ⇒ 

∫ 
�−

= −
∫ 
�+ 

(4.14) 

pon changing θ = 0 for θ = 2 π . 

Thus, we have that: 

P + (z) 

μβ+ (z) 
= −s 2 e −st 0 β−(z) e −szx 0 (4.15)

.1.1. Inversion of the β(z) e −szx 0 term. This is the sole non-

anishing term contributing to the fundamental solution. Its in-

ersion can be readily achieved through the Cagniard-de Hoop

ethod ( De Hoop., 1960; Cagniard, 1939 ), as we detail here. We

rst write the inversion in k 2 : 

ˆ p + (x, s ) = −s 2 e −st 0 μ
1 

2 π i 

∫ i ∞ 

−i ∞ 

β(z) e −szx 0 e szx d z (4.16)

e set τ = −z(x − x 0 ) ≡ −z ̃  x , and distort the integration path by

losing it along the Re[ z ] > 0 half plane for the case when ˜ x > 0

nd along Re[ z ] < 0 for the case when ˜ x < 0 , in a manner analogous

o what was done in Fig. 2 when evaluating Eq. (4.12) . We now

ave two branch cuts, defined for k ∈ (−∞ , −b] ∪ [ b, ∞ ) . Avoiding

ither results in a contribution, again analogous to the one ob-

ained when evaluating Eq. (4.12) , which invoking Schwartz’s re-

ection principle leads to 

ˆ p + (x, s ) = 

s 2 e −st 0 μ

π ˜ x 

∫ ∞ 

0 

Im 

[ 
β
(
−τ

˜ x 

)] 
H(τ − b ̃  x ) d τ (4.17)

pon inverting in time, and invoking the properties of the Laplace

ransform, we finally obtain: 

p + ( x − x 0 , t − t 0 ) = 

b 2 μH ( t − t 0 − b | x − x 0 | ) 
π

(
( t − t 0 ) 

2 − b 2 ( x − x 0 ) 
2 
)3 / 2 

(4.18) 

hich is the fundamental solution we were seeking. 

.2. Interfacial shear traction through convolution and distributed 

islocations 

The interfacial shear traction s ( x, t ) due to the unknown slip

isplacement distribution w ( x, t ) may then be obtained through

onvolution with the fundamental solution Eq. (4.18) : 

 (x, t) = 

∫ 
R 

∫ t 

0 

w (x 0 , t 0 ) 
b 2 μ

π((t − t 0 ) 2 − b 2 (x − x 0 ) 2 ) 3 / 2 

H(t − t 0 − b| x − x 0 | ) d x 0 d t 0 (4.19) 

e note that s (x, t) = f N(x, t) − r(x, t) is known, so in principle

q. (4.24) expresses an integral equation with w ( x, t ) as its un-

nown. The equation does not appear to have a direct analytical

olution, so besides asymptotic approaches, a numerical scheme is

he only tool left available to explore the transient contact prob-

em. However, we note that the kernel p + (x, t) of Eq. (4.24) is of

rder −3 with a dimensionality of 2, which makes the integral hy-

ersingular (cf. Vainikko, 1993; Muskhelishvili, 1953 ) and funda-

entally ill-posed (cf. Renardy, 1992 ). This prevents an easy nu-

erical solution, to which Section 6 is devoted. 
2 Note that the scaling factor s carried over by the differential measure cancels 

ith the 1/ s factor pre-mutliplying P + (z) when performing inversion. 

t  

p  

a  

n  
The solution to this passes through the distributional properties
f the convolution. In the sequel, and for simplicity we take the
elative slip displacement w ( x, t ) to be defined about the edge of
he contact region (i.e., w (0 , t) = 0 ). We note (cf. Aki and Richards,
002 ) that we may express w ( x, t ) as: 

 (x, t) = 

∂w (x, t) 

∂t 

∫ 
[0 ,t] ×[0 ,x ] 

d w (x ′ × t ′ ) = 

∫ x 

0 

∫ t 

0 

∂ 2 w (x ′ , t ′ ) 
∂ x ′ ∂ t ′ d x ′ d t ′ 

= 

∫ ∞ 

0 

∫ ∞ 

0 

∂ 2 w (x ′ , t ′ ) 
∂ x ′ ∂ t ′ H(t ′ − t)H(x ′ − x ) d x ′ d t ′ (4.20) 

here we have exploited the fact that by construction the support

f w ( x, t ) is t > 0, x > 0. We may express this as 

 ≡ 〈 w 

′′ 
xt , H(t)H(x ) 〉 (4.21)

here 〈 f, g〉 = f 
 g is the convolution, w 

′′ 
xt = ∂ x ∂ t w in Lagrange no-

ation, and where H(t)H(x ) ≡ u dis (x, t) represents the interfacial

lip due to an unitary injected screw dislocation (cf. Markenscoff,

980; Verschueren et al., 2017; Gurrutxaga-Lerma, 2017 ). Now,

ince s ( x, t ) is given by 

 = 〈 w, p + 〉 = 〈〈 w 

′′ 
xt , u dis 〉 , p + 〉 = 〈 w 

′′ 
xt , 〈 u dis , p + 〉〉 (4.22)

he term τ (x, t) ≡ 〈 u dis , p + 〉 represents, of course, the inter-

acial shear traction due to a screw dislocation acting along

he contact interface. Therefore, Eq. (4.22) generalises Freund’s

reund (1974) and Aki and Richards (2002) approaches of express-

ng the displacement function as the sum of contributions due to

islocations of infinitesimal magnitude, themselves derived from

eibfried (1951) original static distributed dislocation technique.

he use of distributed dislocation solutions in static contact and

tatic fracture mechanics problems is well established Hills et al.

1996) ; the model we employ here arises as the natural elastody-

amic extension to these. 

In the following, we shall call w 

′′ 
xt = b(x, t) for simplicity, and

ocus on it, since w may be recovered from b using Eq. (4.20) . Here

 ( x, t ) represents loosely speaking the spatio-temporal gradient of

 (normalised) Burgers vector distribution, but it lacks any crystal-

ographical significance that would relate it to the theory of dislo-

ations: the dislocations under consideration here are not crystal-

ographic dislocations, but a mathematical device to model kernels

f strain. 

We must first find the interfacial shear traction τ ≡ 〈 u dis , p + 〉
ue to a screw dislocation acting along the contact interface, which

s immediately accessible via convolution with p + (x, t) , rendering

(x, t ) = 

μ

π

√ 

t 2 − b 2 x 2 

t x 
H(t − bx ) (4.23)

his entails that 

 (x, t) = 

μ

π

∫ t 

0 

∫ x −1 /b(t−t 0 ) 

0 

b(x 0 , t 0 ) 

√ 

(t − t 0 ) 2 − b 2 (x − x 0 ) 2 

(t − t 0 )(x − x 0 ) 
d x 0 d t 0

(4.24) 

s the alternative form of the interfacial shear traction due to the

isplacement distribution w ( x, t ), in this case weakly singular. This

orm can only be given under the assumption that w ( x, t ) is at least

 

2 – i.e., that b ( x, t ) exists and is generally compactly supported

ver the positive axis of abscissae. 

. The normal contact load 

A remote normal load is required to ensure the contact between

he two elastic half spaces. Here, we regard this normal load inde-

endent from the remote antiplane shear load ( Barber, 2018 ) and,

s a result, in the absence of frictional forces the normal load plays

o part in the shear contact problem ( Barber, 2018; Johnson, 1987 ).
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However, given that here we wish to consider the presence of fric-

tion as well as slip, we need to offer an account of the normal

interfacial load. The resulting problem shall then mirror the usual

elastostatic problems. 

In the most general and protracted case, the contact is estab-

lished and maintained by a certain remote normal load, which in

the sequence we express with the function P ( x, t ). The function P ( x,

t ) must be such that it ensures that the two half surfaces remain in

contact, but no further desideratum is imposed a priori. We wish

to find a general formula for the interfacial normal force N ( x, t )

arising as a result of the application of P ( x, t ), since N ( x, t ) induces

the frictional force. 

That is, the resulting problem is an in-plane problem where a

remote load P ( x, t ) induces an interfacial ‘contact’ pressure over a

half line. This is a classical problem in dynamic fracture ( Freund,

1998 ), corresponding to the remote loading of a quiescent (i.e.,

non-propagating) mode I crack, a partial solution to which may

be found in Miklowitz (1978) and Freund (1998) for the case of

suddenly applied, constant remote loads. Although the normal con-

tact load is described as corresponding to a mode I crack’s normal

stress along the epicentral line, the problem under consideration

here is not a fracture problem: the interface exists by virtue of the

remote normal load, and we merely wish to model its interfacial

normal stress, which happens to be given by a mode I crack’s stress

field (see Hills et al., 1996; Dini et al., 2005; Dini et al., 2004 ). 

The resulting expressions for the interfacial normal traction

cannot generally be given in explicit form. This is because they de-

pend on the inverse of the Rayleigh function. For instance, for a

shock load of magnitude N 0 these are (see Freund, 1998 , Ch.2): 

N + (x, t) = − 1 

πx 

∫ t 

ax 

Im [ �+ (−τ/x ) ] d τ, �+ (k ) = 

N 0 

k 

(
F + (0) 

F + (k ) 
− 1 

)

(5.1)

and 

F + ( k ) = 

√ 

a + k 

( c R + k ) S + ( k ) 
, 

ln S + ( k ) = − 1 

π

∫ b 

a 

1 

τ + k 
arct an 

⎡ 

⎣ 

4 τ 2 

√ (
τ 2 − a 2 

)(
b 2 − τ 2 

)
(
b 2 − 2 τ 2 

)2 

⎤ 

⎦ d τ

(5.2)

where a = 1 /c l is the longitudinal slowness of sound (and c l the

longitudinal speed of sound), and c R the Rayleigh wave speed. 

However, as is done in the elastostatic case ( Barber, 2018 ), the

interfacial normal traction field about the edge of the contact zone

can be asymptotically treated as a near field Williams expansion.

In the elastodynamic case, we have that ( Freund, 1998 ), 

N(x, t) ≈ K I (t) √ 

2 πx 
(5.3)

where K I ( t ) is the dynamic stress intensity factor, and depends on

the nature of the dynamic remote load. For a suddenly applied

shock load ( Freund, 1998 ) of magnitude N 0 , 

K 

shock 
I (t) = 2 N 0 

√ 

(1 − 2 ν) t 

(1 − ν) 
√ 

aπ
(5.4)

In a more general loading case, K I ( t ) will be dependent on the load

history. If the remote P ( x, t ) load is such that its time history can

be separated from its spatial variation (i.e., P (x, t) = P (x ) h (t) ), then

( Ravi-Chandar, 2004; Freund, 1998 ) 

K I (t) = 

∫ t 

K 

shock 
I (t ) 

∂h (t ) 

∂t 
d τ (5.5)
0 
or instance, for a ramp: 

 

ramp 
I 

(t) = 4 N 0 

t 
√ 

(1 − 2 ν) t 

3(1 − ν) 
√ 

aπ
(5.6)

n the following, we shall employ the asymptotic near fields of

he mode I crack to given by Eq. (5.3) as a reasonable model for

he normal traction about the edge of contact zone. Unless other-

ise stated, we shall focus on the shock loaded normal load, which

erves to model the sudden change of the applied remote normal

oad. 

. The force balance equation 

In view of Eqs. (3.8) and (4.24) , the force balance at the inter-

ace becomes the following integral equation: 

μ

π

∫ t 

0 

∫ 
�

b(x 0 , t 0 ) 

√ 

(t − t 0 ) 2 − b 2 (x − x 0 ) 2 

( t − t 0 )( x − x 0 ) 
d x 0 d t 0 

= f N(x, t) − 1 

iπ

1 √ 

x 

∫ 0 

bx −t 

R (x, t − b(x − x 0 )) 

√ 

x 0 
x − x 0 

d x 0 (6.1)

here as in Eq. (4.24) , � ≡ [0 , x + 1 /b(t 0 − t)] . We rewrite

q. (6.1) as 

 τ (x, t) , b(x, t) 〉 = F (x, t) (6.2)

here 

 (x, t) = f N(x, t) − 1 

iπ

1 √ 

x 

∫ 0 

bx −t 

R (x, t − b(x − x 0 )) 

√ 

x 0 
x − x 0 

d x 0 

(6.3)

or a general loading N ( x, t ) and R ( x, t ). We not that F ( x, t ) has

ompact support for t > 0, x > 0 and bx < t , and that τ ( x, t ) is to all

ffects a convolution kernel (cf. Porter and Stirling, 1990 ). In addi-

ion, the kinematic condition that sign (∂ t u z ) = −sign (q (x, t)) must

e satisfied. It is worth pointing out that Eq. (6.2) is of a simi-

ar nature to the dynamic Peierls-Nabarro equation discussed by

ellegrini (2010, 2014) in the context of mobility laws for straight

islocations, although not generally self-similar. As such, general

olutions will be unachievable but numerically; particular ones for

imple loadings may still be found as we describe below. 

.1. Static loading and static limit 

Eq. (6.2) captures only the transient contribution to the general

ontact problem. This may be appreciated in the form of its so-

ution: because the slip convolution integral Eq. () offers compact

upport over t − bx > 0 , then b ( x, t ) (and w ( x, t )) must be com-

actly supported over the said interval. This means that the region

f slip due to the transient solution to Eq. (6.2) will at most be

n ever expanding region within the cone t − bx > 0 , and will not

upport any loading applied away from it. This has been imposed

y construction upon assuming that the loading begins at t > 0.

his means that mixed-type problems where, say, the contact pres-

ure is time-independent quasistatic but the remote shearing force

s time dependent must be solved via superposition of the static

olution under a frictional force and no remote shearing load (see

arber, 2018 for further details), and the transient solution given

y Eq. (6.2) for frictionless case. 

We also note that in the static limit Eq. (6.2) becomes the

tandard static antiplane contact equation. The static limit may be

ound requiring t → ∞ or, alternatively, ρ → 0 (and b → 0), since in

he latter limit perturbations travel instantaneously: 

lim 

→∞ 

τ (x, t) = lim 

t→∞ 

√ 

t 2 − b 2 x 2 

tx 
= 

1 

x 
(6.4)
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o the convolution becomes 

lim 

→∞ 

〈 τ (x, t) , b(x, t) 〉 = 

μ

π

∫ a 

0 

˙ b (x 0 ) 

x − x 0 
d x 0 = 

μ

π

∫ a 

0 

w (x 0 ) 

(x − x 0 ) 2 
d x 0 

(6.5) 

or a slip region over x ∈ [0, a ], and where ˙ b (x ) represents the slip

elocity. This integral is analogous to the one employed in describ-

ng the interfacial shear load σ xz due to a distributed dislocation

cf. Barber, 2018 ). 

.2. Numerical solution of the contact problem 

Owing to the weakly singular nature of the integral kernel,

e may produce a relatively simple general numerical scheme for

he solution of Eq. (6.2) based on the collocation-Nyström method

 Porter and Stirling, 1990; Vainikko, 1993 ). The solution to mul-

idimensional integral equations using such schemes is common-

lace in the literature, and a detailed description of these methods

ight be found in Atkinson (1997) and Vainikko (1993) . Applica-

ion of such methods in the context of elastic defects can be found

n Martin and Rizzo (1989) for static cracks, and Nishimura and

obayashi (1989) for elastodynamic cracks in anisotropic bodies,

mongst many others. 

Here, we largely follow the method laid out in Nishimura and

obayashi (1989) and Martin and Rizzo (1989) . Let S(t) =
0 , x max ] × [0 , t max ] ⊂ R 

+ × R 

+ be the computation space. Because

he problem is one of propagating waves, x max ∈ R 

+ can be arbi-

rarily large for finite times, but for numerical purposes, we must

nsure that the maximum allowable abscissa x max is not reached

efore the maximum allowable time t max , so we require x max <

 max /b. 

We define some a priori arbitrary partition { x i } n x i =0 
, { t j } n t j=0 

of

 ( t ). This allows us to specify the intervals S i j = [ x i , x i +1 ] × [ t j , t j+1 ]

ver which we shall discretise the solution, where (x 0 , t 0 ) = (0 , 0)

nd (x n x , t n t ) = (x max , t max ) . 

We define a basis function set { N ij ( x, t )} offering com pact sup-

ort over [ x i , x i +1 ] × [ t j , t j+1 ] . We do so in order to be able to ex-

ress the Burgers vector gradient b ( x, t ) as 

(x, t) = 

n x ∑ 

i =0 

n t ∑ 

j=0 

b i j N i j (x, t) (6.6)

ith b i j ∈ R is a number. 

Inserting Eq. (6.6) into Eq. (6.2) , we obtain 

 (x, t) = 

∑ 

i j 

b i j 

∫ t 

0 

∫ 
�

N i j (x 0 , t 0 ) τ (x − x 0 , t − t 0 ) d t 0 d x 0 

= 

∑ 

i j 

b i j K i j (x, t) (6.7) 

here 
∑ 

i j ≡
∑ n x −1 

i =0 

∑ n −t−1 
j=0 , and 

 i j (x, t) = 

∫ t 

0 

∫ 
�

N i j (x 0 , t 0 ) τ (x − x 0 , t − t 0 ) d t 0 d x 0 (6.8)

hich is well-defined for each set of basis functions. 

Typically, in Nyström-like methods Eq. (6.8) would be solved

ia numerical quadrature (see Atkinson, 1997 ). However, as ob-

erved by Martin and Rizzo (1989) , if we prescribe the basis func-

ions N ij ( x, t ) to be simple enough C 1 × 1 functions, the analytic

orm of K ij ( x, t ) may in this case be derived a priori. Thus, let

 i +1 − x i = �x i and t j+1 − t j = �t j be the width of the i × j interval.

e may then use a basis set formed by pulse functions in time,

nd piecewise linear shape functions in space, i.e., with N ij ( x, t ) on
 x i , x i +1 ] × [ t j , t j+1 ] of the form: 

 

linear pulse 
i j 

(x, t) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

x − x i 
�x i −1 

(x, t) ∈ [ x i −1 , x i ] × [ t j , t j+1 ] 

x i +1 − x 

�x i 
( x, t) ∈ [ x i , x i +1 ] × [ t j , t j+1 ] 

0 otherwise 

(6.9) 

hese basis functions are equivalent to the constant velocity over

xed time intervals discretisation employed by Pellegrini (2014) in

tudying the mobility law of a dislocation. 

Upon integration of Eq. (6.8) renders (for t j < t, x i < x ) 

 

linear pulse 
i j 

(x, t) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

�x i −1 

L i j (x − x i , t − t j ) 

− 1 

�x i 
L i j (x − x i , t − t j+1 ) (x, t) ∈ [ x i −1 , x i ] × [ t j , t j+1 ] 

1 

�x i −1 

L i j (x − x i +1 , t − t j ) 

− 1 

�x i 
L i j (x − x i +1 , t − t j+1 ) (x, t) ∈ [ x i , x i +1 ] × [ t j , t j+1 ] 

(6.10) 

here 

 i j (x, t ) = 

1 

π

[√ 

t 2 − b 2 x 2 

bx 
+ i ln 

(
bx + i 

√ 

t 2 − b 2 x 2 

t 

)]
H(t − bx ) 

(6.11) 

s obtained from integrating 〈 K, N ij 〉 . On more refined compu-

ations, one may employ higher order basis sets in time and

pace as required (see for instance ( Vainikko, 1993 ), Ch.7, and

tkinson (1997) , Ch. 5). 

A final provision is necessary for the initial interval owing to

he fact that it is subjected to a 1 / 
√ 

x singularity on the exter-

al load F ( x, t ). Here we adopt the commonly employed technique

 Henshell and Shaw, 1975; Barsoum, 1976 ) of making the initial in-

erval [0, x 1 ] a fourth of the regular size. Thus, for [0, x 1 ] we set

x 0 = 1 / 4�x, with the shape function being 

 0 j (x, t) = 

x 1 − x 
1 
4 
�x 

H(x )H(t) (x, t) ∈ [ x 0 , x 1 ] × [ t j , t j+1 ] (6.12)

The resulting problem consists of n x × n t unknowns (the b ij co-

fficients). As done by Nishimura and Kobayashi (1989) in order to

nd them we shall collocate as many points: we choose to evalu-

te F ( x, t ) and K ij ( x, t ) at a discrete set of ( x, t ) collocation points

ocated within each [ x i , x i +1 ] × [ t j , t j+1 ] interval. Collocating within

he integration interval has the advantage of almost diagonalising

he problem due to the compact support provided by the basis

unctions in the i × j interval (cf. Nishimura and Kobayashi, 1989 ).

or simplicity, and aside from the initial interval, we choose inter-

als of constant length in space and time, i.e., �x i ≡ �x = constant

nd δt j ≡ �t = constant , so that all the collocation points may be

iven as (x, t) = (x k , t l ) = (x k + k, t l + l) for ( x k , t l ) nodes of the in-

erval discretisation, and k ≤�x, l ≤�t . We empirically find that

 = 0 . 5�x and l = 0 . 9�t appear to produce the most stable results.

hus, we are effectively bound to solve the following problem: 

 kl = 

n x ∑ 

i =0 

l−1 ∑ 

j=0 

b i j K i jkl (6.13) 

here we use F kl ≡ F (x k + k, t l + l) , K i jkl ≡ K i j (x k − x i + k, t l − t j +
) . This is a simplified deconvolution problem, owing to the fact

hat the summation in j finishes for j < l . 
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The problem can be easily solved by iterating through the time

variable. For l = 0 , F k 0 = 0 trivially. For l = 1 , 

F k 1 = 

n x ∑ 

i =0 

b i 0 K i 0 k 1 (6.14)

is a standard matricial problem from which b i 0 might be found. For

l = 2 , 

F k 2 = 

n x ∑ 

i =0 

( b i 0 K i 0 k 2 + b i 1 K i 1 k 2 ) (6.15)

where we use b i 0 to compute b i 1 . Subsequent time steps depend

on the solution to previous ones. 

The kinematic consideration that sign (∂ t w ) = −sign (q (x, t)) is

checked for each step l in the solution. This is done by comput-

ing through numerical integration the spatial integral of b ( x, t ),

∂ t w = 

∫ 
x b(x, t) d x, which can be readily achieved through spatial

integration of the basis functions, 

∂ t u z (x, t) = 

∫ x 

0 

b i j N i j (x ′ , t) d x ′ (6.16)

If the sign of ∂ t u z ( x, t ) is found to be incorrect over some spatial

interval x̄ sign , the sign in front of the frictional force in Eq. (6.2) is

reversed over that interval, and the b ij solution for time step l is

recalculated. The same sign check is performed anew, and if nec-

essary the sign of the frictional force is again reversed, until sign

convergence is achieved. In general, we have observed that over

two or three re-iterations of the same time step convergence is

achieved, and the sign reversal is carried through to the following

steps. Further comments on the need for and implications of this

kinematic contact condition are discussed below in Section 6.4 . 

The displacement field may be obtained from integrating

Eq. (6.6) , which leads to 

w (x, t) = 

∑ 

i, j 

b i j M i j (x, t) (6.17)

where 

M i j (x, t) = 

[
(t − t j )H(t − t j ) + (t j+1 − t)H(t − t j+1 ) 

]
(

1 

2 

(x − x i ) 
2 H(x − x i ) −

1 

2 

(x − x i +1 ) 
2 H(x − x i +1 ) 

)
(6.18)

with the requirement that w (0 , 0) = 0 . 

The method here described provides a sufficiently stable al-

gorithm for frictionless loading. However, if the frictional loading

arises from a sudden load, the ensuing problem is essentially ill-

posed (cf. Renardy, 1992; Martins et al., 1995 ) and the algorithm

has to be modified to ensure it remains stable. As is commonly

done in deconvolution problems, here we chose to mollify the so-

lution over each time step using a Tikhonov filter ( Hansen et al.,

2006; Tikhonov and Arsenin, 1977 ) (that is, a Tikhonov regulari-

sation using a singular value decomposition). Thus, for each time

step we compute a filtered solution b filt (x, t) of the form 

b filt 
il = 

n t ∑ 

k 

φk b il (6.19)

where 

φk = 

σk 

σ 2 
k 

+ α
(6.20)

is the filter factor, and σ k the singular values of b ij , and α the

Tikhonov regularisation parameter. The Tikhonov regularisation pa-

rameter was computed using Mozorov’s discrepancy principle (see

Hansen et al. (2006) ). The filtered solution is used to propagate

the solution over to the next time step, which is filtered in turn.

The filter has an effect of stabilising the solution, and of mollifying

sudden changes (i.e., steps). 
.3. Frictionless contact 

Consider a loading regime where the normal load is static (i.e.,

ontact is enforced by a time-independent normal load, notionally

ince t → −∞ ). Say that at time t = 0 the shearing load starts to

hange in value, and therefore becomes time dependent. For ex-

mple, assume that for t > 0 the remote shearing load may acquire

ime independent and time dependent components, say R (x, t) =
 static + R dynamic (x, t) . Because the normal load remains static, the

rictional forces imposed by Amonton’s law are time-independent

nd static as well, and the ensuing frictional contact problem,

hich may include the R static time independent component of the

hearing load if there is any, may be studied using the usual elasto-

tatic solutions (see Barber, 2018; Hills and Nowell, 1994; Johnson,

987 for such solutions). 

However, the shearing contact problem becomes dynamic un-

er the influence of R dynamic (x, t) , and must be studied as an elas-

odynamic, frictionless contact, i.e., obeying Eq. (6.2) with f = 0 .

he complete problem (static frictional and frictionless dynamic)

ay be obtained by superposing the solutions to each of the sub-

roblems. Thus, the elastodynamic frictionless problem may be un-

erstood as the time dependent deviation from the static solution.

ere we study the significance of the solution to the latter; by

onstruction, contact is guaranteed to exist by the normal load,

nd in the absence of friction the elastodynamic solution will first

nd foremost offer a measure of the changes in the relative dis-

lacement between the two surfaces. That is, the frictionless prob-

em under consideration here seeks to answer: given an interfacial

hear load r ( x, t ), how much would the interface have to slip to

nsure that the net interfacial shear load is zero? 

Solving Eq. (6.2) with f = 0 numerically as we described in

ection 6.2 , we achieve the solutions depicted in Figs. 3 and 4 .

hese two figures compare at different instants in time the magni-

udes of b ( x, t ) and w ( x, t ) for a shock load and a ramp load shear-

ng load, respectively. As can be seen, the solution for b ( x, t ) van-

shes for x > bt , and is non-zero and divergent at the origin; this is

n response to the equally divergent loads. The slip displacement

 ( x, t ) grows in magnitude from the origin to reach a time-varying

ut constant value in what may be deemed the transient stick re-

ion; in this, the transient response resembles the elastostatic re-

ponse of the classic Cattaneo-Midlin problem (cf. Barber, 2018 ). 

The magnitude of b ( x, t ) is of opposite sign to the shearing

oad’s, indicating the need to distribute negative screw dislocations

o accommodate a positive shearing load. The ensuing slip w ( x, t ) is

lso negative; this is consistent with the expectation in the elasto-

tatic Cattaneo-Midlin problem a relative increase in the shearing

oad results in a relative increase in the slip area ( Barber, 2018 ).

nitially, the shock load produces the strongest variation in both

 ( x, t ) and w ( x, t ), but we do not observe a significant change in

he qualitative behaviour of the solution when we impose a ramp

oad instead: in both cases the transient load propagates as a wave,

nd the area of transient slip is bounded by the transverse speed

f sound itself, for x < c t t . All points not reached by the propagat-

ng loads (i.e., all x > c t t ) are points of transient stick. This transient

tick is inherently different to the elastostatic stick: it exists solely

ecause causality requires that at some t > 0 not all points of the

ontact interface be loaded. In Figs. 3 and 4 the transient stick is

emarcated by a plateau in the value of w ( x, t ), and a zero value

n the Burgers vector density gradient b ( x, t ), consistent with the

xpectation that no distributed dislocations are necessary to ac-

ommodate stick. 

The transient slip is also inherently different to the elastostatic

lip. For one thing, Fig. 4 would suggest that if sufficient time is

llowed for the slip region to develop, the whole interface would

lip. Albeit this is true for the ramp load solution, it is not true

or the shock loading one. This is because whereas the magnitude



B. Gurrutxaga-Lerma / International Journal of Solids and Structures 170 (2019) 142–156 151 

Fig. 3. Burgers vector gradients at different time steps for ( a ) a frictionless shock shearing load ( Eq. (3.9) ) and ( b ) a frictionless ramp shearing load ( Eq. (3.10) ). Here R 0 = 1 , 

b = 1 / 10 , �x = 0 . 1 , �t = 0 . 005 with a mesh size of n x = 100 , n t = 100 . 

Fig. 4. Slip displacement at different time steps for ( a ) a frictionless shock shearing load ( Eq. (3.9) ) and ( b ) a frictionless ramp shearing load ( Eq. (3.10) ). Here R 0 = 1 , 

b = 1 / 10 , �x = 0 . 1 , �t = 0 . 005 with a mesh size of n x = 100 , n t = 100 . 
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f the ramp load monotonically increases over time and, therefore,

here is an increasing need to accommodate an ever increasing in-

erfacial shear traction (which increases with t 3/2 ), the shock load

olution ( Fig. 3 ) saturates over time to the elastostatic prediction.

his may be appreciated in Fig. 3 a, where for the shock load the

agnitude of the Burgers vector density does not increase over

ime at the edge of the contact interface, whereas in Fig. 4 a the

agnitude of the Burgers vector density at the edge of the contact

rea increases in time. This increase in magnitude propagates in-

ards, so that over time the slip distribution of a ramp load will

ome to occupy the whole interface. The shock load tends to sat-

rate to the elastostatic interfacial shear traction, and as such will

ome to be governed by the same contact considerations that con-

rol the Cattaneo–Midlin problem. 

.4. Frictional contact 

Friction plays an important role in the nature of the dynamic

ontact. In the numerical solutions we present in the following,

e set F fric (x, t) < 0 and s ( x, t ) > 0 (see for instance Hills and Now-

ll, 1994 , p.12), so that the signs depicted in Eq. (6.1) are a pri-

ri correct. We expect that the shearing tractions act in opposite

irection to the sliding between the two surfaces, under the as-

umption that w ( x, t ) > 0. As will be discussed below, these con-

iderations are to be corrected in the dynamic case to account for

he kinematic contact condition and the time varying nature of the

ontact loads. As in the frictionless case, we explore the cases of

hock and ramp shear loads. In this case however, we allow the

agnitude of the remote normal and shear loads to vary indepen-

ently from one another. In order to parametrise better the ef-

ect these two loads have on one another, we introduce the pa-

ameter ξ = R 0 / ( f N 0 ) , so that a small ξ entails a large frictional

orce, and a large ξ a weak one, relative to the magnitude of the
emote shearing load. Unless otherwise stated, the same numer-

cal parameters as those employed in the frictionless case were

sed: R 0 = 1 , b = 1 / 10 , �x = 0 . 1 , �t = 0 . 005 with a mesh size of

 x = 100 , n t = 100 , and fN 0 determined from the choice of ξ . 

Figs. 5 and 6 depict the magnitudes of b ( x, t ) and w ( x, t ) for

ifferent ξ under shock loading. As in the frictionless case, the so-

ution always has a region of transient ‘stick’, which is defined rel-

tive to the edge of the contact zone by the region unreached by

he loading wave at some instant in time. In that sense, the tran-

ient ‘stick’ is inherently different to the elastostatic stick, given

hat in the former the condition that | q (, x, t )| ≤ fN ( x, t ) is trivially

ulfilled for all x > tc t , simply because the loading, travelling at the

ransverse speed of sound, lacks sufficient time to reach the cur-

ent region of stick. 

The slip zones we describe here apply best for the instants in

ime following the onset of the loading. Thus, we do not observe

 steady state stick-slip zone of the sort that would be found in

he elastostatic Cattaneo-Midlin problem. In fact, with our under-

ying assumptions we cannot reach the steady state. This is be-

ause in Section 5 we have modelled the frictional load using the

symptotic normal elastodynamic field of a quiescent mode I crack.

hese asymptotic fields are monotonically increasing with t 1/2 (see

q. (5.5) ), which means that unless a reflected ‘release’ wave were

o reach the interface, the near field of a mode I crack is un-

ounded in time as well as space. In order to reach a stationary

olution at t → ∞ , we would be required to employ the full so-

ution (see Freund, 1998 ). The quality of the asymptotic fields we

mploy here is nonetheless good over relatively short periods of

ime ( Ravi-Chandar, 2004; Freund, 1998 ), and indeed the far field

f the full solution increases with t 3/2 ( Gurrutxaga-Lerma, 2018 ),

hich suggests the near field dominates the response for t < bL, L

ome characteristic length-scale of the problem. Over longer peri-

ds of time, the steady state ‘static’ solutions can only be reached
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Fig. 5. Magnitude of b ( x, t ) for different ξ = R 0 / ( f N 0 ) ratios under shock loading. The value of b ( x, t ) for very large ξ are represented in the inset. The same numerical 

solution parameters as those employed in the frictionless case were used. 

Fig. 6. Magnitude of w ( x, t ) for different ξ = R 0 / ( f N 0 ) ratios under shock loading. Those values of ξ more representative of characteristic features of the solution are 

represented. The same numerical solution parameters as those employed in the frictionless case were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Magnitude of w ( x, t ) and (inset) b ( x, t ) for ξ = 150 under a shock load. In 

this intermediate range, the distribution of slip changes sign midway through the 

slip wave to accommodate the increase in the shearing load relative to the frictional 

force. 
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if there are free surfaces involved; this would entail considering a

finite sized problem that would undoubtedly modify the solutions

considered here. Thus, the solution we are modelling here is rele-

vant for short periods of time, and therefore best suited to study

the transient response. 

In the wake of the transient stick region, there arises a region

of slip. It is in this slip region that we observe strong qualitative

and quantitative differences between the frictionless and frictional

loading cases. In particular, as may be seen in Fig. 5 , for large val-

ues of ξ the shock load is found to lead to regions where w ( x,

t ) < 0, i.e., of the same sign as the frictional force. Such regime of

reverse slip is triggered because for large enough ξ , the frictional

force is very weak compared to the shearing force, which comes

to dominate the contact response as in the frictionless case. For

larger values of the frictional force relative to the shearing force

(i.e., low ξ ), the frictional force comes to dominate the slip distri-

bution gradients b ( x, t ), which becomes positive (see Fig. 5 ); the

slip distribution also becomes positive, as expected (see 5 ). 

There exists an intermediate regime of values of ξ for which

the slip distribution changes sign as the slip wave advances. In the

current numerical regime, it was found to happen for ξ� 100. Fig. 7

depicts this situation for ξ = 150 . As may be seen, the sign of w ( x,

t ) changes as the slip wave progresses, in such a way that the dif-

ferential displacement between the edge of the contact zone and

the region of stick is positive, whilst the slip about the edge of the

contact zone is increasingly negative. This is necessary to accom-

modate the increase in magnitude of the shearing load relative to

the frictional one’s, which for such ration ξ . The transition is ac-

companied with a change in sign of b ( x, t ) (see the inset in Fig. 7 );

the distribution of dislocations is continuous across this change. 

The reverse slip regime is a direct consequence of the kinematic

contact condition. If such condition is not observed, and the sign of

the frictional force remains negative throughout the contact, inco-
 d  
erent behaviour arises. Such situation is depicted in Fig. 8 . A pri-

ri, it would seem that the behaviour in this case is not dissimilar

rom the solutions presented in Figs. 5 and 6 , aside from the fact

hat in this case the sign reversal appears to take place for much

maller values of ξ (and, consequently, larger frictional forces). The

roblem arises when one considers the meaning of the reverse slip

n this case. Here, the sign of the frictional force is always negative,

o a negative slip can only be allowed if the sign of the slip veloc-

ty is positive. As may be ascertained by comparing Fig. 5 a with

ig. 6 , this is not the case here: the apparent reverse slip regime

rises from the need to accommodate the shearing force alongside

 weak frictional force, but rather than allowing the sign of the

rictional force reverse its value, here the frictional force is always

ecreasing the magnitude of the net interfacial force, regardless of
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Fig. 8. Magnitude of b ( x, t ) and w ( x, t ) for different ξ = R 0 / ( f N 0 ) ratios and a shock load, under the (incorrect) assumption that the sign of the frictional force is always 

opposite to the shearing force. The same numerical solution parameters as those employed in the frictionless case were used. 
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Fig. 9. Magnitude of the relative w ( x, t ) displacement ξ = 100 under shock loading 

over different instants in time. The solution evolves in time from a fully direct slip 

wave to a reverse stick-slip wave. 
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he sign of the slip velocity gradient. This also explains why the

pparent reverse slip arises in this case for much lower values of ξ
larger values of the frictional force will reduce more the interfa-

ial force), and why the apparent magnitude of the Burgers vector

radient b ( x, t ) is smaller (the interfacial shear force is weaker be-

ause the frictional force is substracting from the shearing force). 

As said, whether the slip reversal will occur is directly re-

ated to the relative magnitude between the frictional and shear-

ng loads, which changes over time. We can better understand this

f we consider the asymptotic short range solution to Eq. (6.2) . Let

s therefore expand the kernel τ (x − x 0 , t − t 0 ) in Eq. (6.2) about

 0 = 0 , x 0 = 0 : 

(x − x 0 , t − t 0 ) = 

√ 

t 2 − b 2 x 2 

tx 
+ O [ t 0 , x 0 ] (6.21)

ntegrating, we find 

√ 

t 2 − b 2 x 2 

tx 
w ( x, t ) + h.o.t. = F ( x, t ) ⇒ 

⇒ w ( x, t ) ≈ tx √ 

t 2 − b 2 x 2 
F ( x, t ) (6.22) 

ere w ( x, t ) < 0 entails | F fric | < | r(x, t) | over short times and short

istances. This shows that the transient reverse slip we describe

ere is related to the relative magnitude of the transient shear-

ng and frictional forces. If the frictional forces are large enough

e.g., in Fig. 5 for ξ < 100 under shock loading), the slip reversal

oes not take place (or else, is observed over very short periods

f time). This behaviour is reminiscent of the Adams instability

 Adams, 1995, 1998 ), which occurs as a result of an interfacial res-

nance along dissimilar materials. As with the Adams instability, it

s less likely for larger frictional forces – however, it does not ap-

ear to be an inherent surface resonance causing it, but a balance

etween the shear and frictional forces. It is also reminiscent of

he extraneous development of the slip zone reported by Fineberg

nd coworkers ( Ben-David et al., 2010; Ben-David and Fineberg,

011; Rubinstein et al., 20 07, 20 04 ), although in that case it was

ttributed to a breakdown of the usual frictional law, and not as

ould happen in this context, due to the interplay between two

arying remote loads. 

The transient nature of the slip reversal manifest itself in an

dditional way, in that if sufficient time is allowed to pass, the so-

ution naturally evolves to an expected stick-slip solution. Fig. 9

hows the solution to the shock loaded contact over an extended

mount of time. The solution begins as depicted in Fig. 6 , as a di-

ect slip solution. Eventually, the magnitude of the shearing force

t the edge of the contact zone becomes dominant, and a zone of

everse slip starts to arise about x = 0 . The solution then evolves

n a similar way as that shown in Fig. 8 for ξ = 150 : the reverse

lip peak increases over time, whilst the forward stick magnitude

ppears to increase. In this case, this mixed reverse-forward slip
egime peaks at about t ≈ 750 �t . Thereafter, the peak of reverse

lip becomes so dominant that the sign of the whole slip distribu-

ion is flipped to reverse slip. 

The opposite phenomenon, whereby a transient reverse-

orward stick-slip wave becomes a fully forwards stick-slip wave,

s observed for lower values of ξ . This is particularly clear in the

ase of a normal ramp loading, where the frictional load increases

n magnitude over time, thereby requiring longer times for the so-

ution to evolve from reverse-forward stick-slip wave to a fully re-

erse (or fully forward) stick-slip wave. Fig. 10 depicts this tran-

ient effect that a ramped normal has on the solution; as may be

een, the same regime of forward-reverse stick slip appears to be

resent; however, in this case the magnitude of the frictional load

s ever increasing because the normal load is a ramp, and its in-

rease rate eventually overtakes that of the shearing load irrespec-

ive of the value of ξ . This means that in this case eventually all

olutions evolve into a fully forward slip ones. Fig. 10 depicts this

lready happening for ξ = 10 in the inset. 

The effect of imposing a shearing ramped load (and therefore a

amp friction) rather than a suddenly applied one is also revealing

f the transient effects affecting the contact. Because the magni-

ude of the frictional load increases with t 3/2 , the singularity 1 / 
√ 

x

t the edge of the contact area is quickly weakened. Thus, the ini-

ial magnitude of the friction loads will quickly lose its dominance

n leading to the transient forward contact which, as can be seen

n Fig. 8 for ξ = 100 , eventually grows to the reverse contact which

e observed in Fig. 6 for ξ = 100 . In this case, this is brought
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Fig. 10. Magnitude of the relative w ( x, t ) displacement ξ under normal ramp load- 

ing over different instants in time. We note that for ξ = 10 the solution changes 

from fully reverse slip to partial reverse slip. Over longer periods of time (inset), 

the solution becomes entirely forward slip. 
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about by the growth in the magnitude of the shearing load, which

being a ramp begins. Thus, an initially slowly varying but subse-

quently faster growing shearing load such as the ramp load is seen

to lead to a transient regime of forward slip that is eventually su-

perseded by a regime of reverse slip. If such sign reversal is to be

avoided, it seems that the best strategies are to either decrease lu-

brication or, else, to impose the external loads in such a way that

the shearing load grows at least as fast as the normal load. 

Thus, the transient solutions in the presence of friction paint

a complicated picture of contact, one where the initiation of the

contact is subjected to a regime where partial reverse (or forward)

slip of the contact surface may take place, either starting at the

edge of the contact zone or within the contact interface. Over time,

however, this behaviour recedes and full stick-slip contact is estab-

lished. Furthermore, and as can be seen in Fig. 11 (and, to a lesser

extent, in Fig. 6 for the shock loading case) the transient slip distri-

bution displays large peaks above the relative displacement of the

region of stick, i.e., we observe regions of slip where the relative

displacement is larger than it is in the region of stick. This is again

a transient feature of the solution, and the magnitude of the peaks

tend to decrease over time. It is also affected by the magnitude of

the frictional forces. For instance, in Fig. 5 .b. the relative amplitude

of the peak slip for ξ = 10 (18% for t = 75�t) is clearly smaller

than that for ξ = 2 , (34% for t = 75�t); in general, the peak of slip

appears to be larger when the frictional forces are weaker. 

This study helps understand the nature of the interplay be-

tween shearing and frictional forces, and how the interfacial slip
Fig. 11. Magnitude of the relative w ( x, t ) and b ( x, t ) when the
ust respond to accommodate it. In general, we find that if the

hearing load is larger than the frictional load, then the interfa-

ial slip will tend to evolve to a regime of reverse slip because the

hearing force grows faster than the frictional force, and it is of

arger magnitude. If the shearing load is close to or weaker than

he frictional force, the transient contact interfacial slip will be one

f forward (or ‘regular’) slip. This finding appears significant, for

n between these two extreme regimes there arises a transitional

egime where forward slip may evolve into reverse slip, or vice

ersa. Because the slip distribution and its sign (and sign reversal)

ffects the interfacial loads, we expect that such transient regimes

ill be of importance in the wear performance of the surfaces. It is

mportant to remark that this intermediate regime has been found

o appear for values of ξ ≈ 10 − 100 . If the normal and shearing

oads are of similar magnitude, this would entail frictional coeffi-

ients of f = 0 . 1 − 0 . 01 , which are not unusual (cf. Johnson, 1987 ).

. Discussion and conclusions 

This article has analysed the transient antiplanar contact be-

ween two elastically similar surfaces subjected to dry friction. We

ave focused solely on the transient problem, i.e., on the nature

f the contact problem immediately after contact is established, or

fter a contact load has changed significantly or significantly fast

ith respect to its elastostatic value. If the loading is such that it

an be divided into a time independent and time dependent part,

he transient solution would concern the deviations the time de-

endent loading induces on the well-known elastostatic solutions

see Barber, 2018; Johnson, 1987 ). 

We have obtained the dynamic loads present in the elastody-

amic equivalent to the classical Cattaneo-Midlin problem for a

emi-infinite contact, antiplanar interface. Thus, we have employed

ostrov (1966) solution to describe the interfacial shear tractions

ue to the application of a remote antiplanar shear load. Using a

odified version of the Wiener-Hopf technique, we have also rig-

rously derived the form of the ‘correction’ interfacial shear trac-

ion due to a general distribution of slip w ( x, t ). We have obtained

he fundamental solution to this problem, and reached a hypersin-

ular integral describing the stress field dual of w ( x, t ). We have

hen employed a convolution argument to modify the integral to

 weakly singular form. This form has been found to be a fully

lastodynamic extension of Leibfried’s distributed dislocation tech-

ique. This approach, not self-similar, may be of further interest

n describing elastodynamic problems where an unknown slip dis-

ribution results in a balanced stressed field, as could be the case

n crack propagation, inclusion expansion, or dislocation pile-ups.

he frictional load has been described invoking Amonton’s laws,

or which we have employed the quiescent mode I crack’s asymp-

otic normal traction fields (cf. Freund (1998) ). 
 shearing load is a ramp, and the normal load a shock. 
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The superposition of shear loading, slip, and friction has lead to

 bivariate Volterra integral equation, the solution to which is the

lip distribution necessary to accommodate the transient loading.

his solution can only generally be achieved numerically. A sim-

le Nyström collocation method has then been proposed to solve

he said equation, and the main features of the solution have been

xplored. We have found that the solution invariably consists of

 region of slip followed by one of stick. The region of stick is a

ransient feature, defined by the regions of contact interface that at

ny instant in time remain unloaded due to the retardation prin-

iple affecting the loading. The ensuing slip region is necessary to

ccommodate the imbalance between the shearing and frictional

oads. As in the static case, it tends to grow from the edge of the

ontact zone inwards; however, in this case it consists of a slip

ave that propagates inwards, and that displays a number of rele-

ant transient features. 

Crucially, we have found that the transient slip wave can entail

 reverse-forward slip regime between the contact surfaces, where

he sign of the slip distribution evolves from forward (or regular)

lip to reverse slip, i.e., from opposing to having the same nom-

nal sign as the frictional force. This reverse-forward slip wave is

rought about by the imbalance between the frictional and shear-

ng loads, and arises when the shearing ones dominate over the

rictional ones. It is therefore greater and it lasts longer when the

rictional loads are weak. The reverse-forward slip is nonetheless

nherently transient, and over time it is observed to lead to either

ully reverse slip (particularly for very weak frictional forces), or

o fully forward slip (particularly for moderate to large frictional

orces). The transient is such that under certain conditions it is

ossible that what begins as reverse slip evolves into forward slip,

r vice versa. The latter appears to occur when the frictional forces

re weak (e.g., highly lubricated contact surfaces), whilst the for-

er seems to occur if the frictional coefficient is large. At the same

ime, the transient slip distribution has been seen to display large

eaks above the displacement of the region of stick, i.e., regions of

lip where the relative displacement is larger than in the regions

f stick, which is not found in the elastostatic case. This peak slip

as found to be larger for weaker frictional forces. Thus, there ap-

ears to exist a trade-off between avoiding the transient reverse

lip by reducing the interfacial friction (for instance, by lubricating

t), and minimising the relative magnitude of the slip peak. 

We have also explored the importance of the time dependence

f the frictional force by considering normal loads other than a

hock (or pulse). In studying a ramped application of the frictional

orce, we have found that this tends to have a stabilising effect

ver the transient. In general, if the interfacial friction cannot be

odified, the best strategy for avoiding transient sign reversals

waves of forward-reverse slip) might be to tune the application

f the shearing loads in such a way that they grow at least as fast

s a shock load in the near field (i.e., faster than t 3/2 ) and faster in

he far field. 

Much of the nature of the transient contact depends on the

orm the frictional law takes. In this study we have assumed that

monton’s law with Coulombian friction applies. The role of the

inematic contact condition, whereby the slip velocity must op-

ose the direction of application of the frictional force, has proven

o be crucial in reaching a stable, physically meaningful solution.

s we have shown, otherwise one may reach solutions where

he slip velocity and the frictional law are of the same sign. De-

ending on specific applications, it is possible that more compli-

ated models for the interfacial friction such as those based in the

utenberg–Richter or Omori laws (see Aki and Richards (2002) ),

ay be necessary to better capture the dynamic effects govern-

ng the frictional law itself. Future work will explore the influence

f frictional laws in the transient response. Alternative kinematic

ontact conditions based on modern observations of the apparent
reakdown of Amonton’s laws under dynamic loading ( Ben-David

nd Fineberg, 2011; Rubinstein et al., 2007 ) would also affect the

olutions presented here. 

Although antiplanar contact is of relevance in many industrial

pplications (e.g., rolling of large cylinders), future work will fo-

us on extending the approach to transient loading presented here

o normal contacts, and to contacts between dissimilar materials.

e believe that the study of the transient conditions affecting the

ontact between two surfaces offers a fruitful venue for feature re-

earch, and one that is of direct interest to industrial practice. This

s because it helps clarify the nature of the contact problem itself

nder transient loading: we have shown that many transient fea-

ures, including peaks of slip and loss of contacts, do not manifest

n the conventional steady state, nor can be found in the t → ∞
lastostatic limit. However, many of these features can affect the

erformance of the contact surfaces and, particularly if they are

ubjected to cyclic loading, impact the fatigue and wear life of the

urfaces. This is particularly true because the transient slip magni-

udes can be large, and because these transient features may arise

nder conditions where the elastostatic solutions expect nothing

nomalous. 
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