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A deployable M cross section thin-walled boom (M boom) can be flattened and coiled elastically around a
hub; and can then be self-deployed by releasing the stored strain energy. The M boom has been proposed
as the key member of membrane deployable structures. First, the covariant base vectors of geometrical
relation of the single type I tape spring were analyzed by establishing three coordinate systems.
Second, the constitutive relation between stress and strain was expressed according to the Kirchhoff-
Love hypothesis. Third, the equilibrium and controlling equations of the single tape spring were modeled
based on Calladine shell theory. Fourthly, the total strain energy model of the single type I tape spring
was built by integration. Fifth, the strain energy of the M boom was modeled by the sum of the strain
energies of the six tape springs. Then, the strain energies of the single type II and III tape springs were
analyzed. The sum of the strain energies of the six tape springs equals the total strain energy of the M
boom. The bending moment model was established based on the minimum potential energy principle.
The experimental equipment and four M boom samples were processed. The bending force value of
the M booms was tested 20 times. Then, the average peak bending moment was calculated. The relative
error between the theoretical and experimental results of the peak bending moment does not exceed
6.5% verifying the accuracy of the theoretical model.

� 2020 Published by Elsevier Ltd.
1. Introduction using four bistable carbon fibers lenticular booms (Fernandez et al,
Deployable thin-walled boom can be flattened and coiled elasti-
cally around a hub; and can then be self-deployed by releasing
stored strain energy. M cross section thin-walled booms (M booms)
have high specific rigidity and deploying-to-coiling ratio; and have
thus been proposed as members of deployable structures, such as
antennae, solar sail, and drag sail. A 108-m deployable space
antennawas proposed and tested under the Innovative Space Based
Radar Antenna Technology program with thin-walled hinges (Lane
et al., 2011). NanoSail-D with four triangular rollable and collapsi-
ble (TRAC) booms was a subscale sail system designed for small
spacecraft applications (Johnson et al., 2011). An advanced flexible
blanket ROSAwith two C cross section booms (C booms) was devel-
oped by deployable space systems (Hoang et al., 2016).

The gossamer sail system with a 5 m � 5 m square solar/drag
sail for deorbiting in low earth orbit; was designed and developed
2014). The flattening process of deployable lenticular boom under
compression and tension was studied (Hu et al., 2017). A retract-
able/deployable mechanism with a lenticular boom was proposed
and its dynamic properties were analyzed (Chu and Lei, 2014). A
thin-walled lenticular boom was fabricated by vacuum-bag and
co-bonding technology and folding analysis was performed (Bai
et al, 2019).The force that a C boom can exert before blossoming
occurs by using the strain energy stored in the coiled boom and
in the compression springs was predicted and tested (Hoskin
et al., 2017). The folding and deployment of tape spring and tubular
booms with integrated folding hinges to smoothen the folding
have been investigated by several authors (Seffen and Pellegrino,
1999; Mallikarachchi and Pellegrino, 2014a, 2014b). The responses
of C boom as a representative thin-walled flexible structure under
static and vibrational loading were studied (Oberst et al., 2018). An
ultra-thin carbon fiber deployable TRAC boom subjected to two
bending conditions was optimized to increase the ultimate buck-
ling loads (Bessa and Pellegrino, 2018). Wrapping dynamic analysis
and optimization were performed on a composite TRAC boom to
increase the peak moment and reduce the stress concentration
by the response surface method (Yang et al., 2018, 2019).
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The structural characteristics of a bi-convex boom were described,
and the effect of the braid mesh’s tension on the stiffness of the
boom was investigated by the analytical method (Miyazaki et al.,
2015). Although the bending stiffness of the TRAC boom is high,
its torsional stiffness is much lower than those of other kinds of
thin-walled deployable boom. This article proposes an M cross sec-
tion boom that consists of four tape springs bonding along one lon-
gitudinal edge, and the four tape springs are mirror-symmetric.
The arc and a straight line are tangent on the cross-section of the
two outer side tape springs. One end of the two arcs on the
cross-section of the two inner side tape springs are inverse tangent,
and the other end of the arc is tangent to the straight line. M boom
has a greater torsional stiffness than TRAC boom.

M booms have a strong self-extensibility, which is an important
behavior in deployable structures. Fig. 1 illustrates an example of
two self-deployable membrane structures using M booms. The
booms support the membrane when deployed, and the deployable
structure can be folded in a small volume. The deployable struc-
tures do not require additional deriving motor because of the
self-deploying property of M booms. Thus M booms are quite suit-
able for use in membrane antennae; and solar and drag sails.

The buckling moment of M booms represents the resistance
capacity of deployable structures in the full deployment state. How-
ever, few research has derived the buckling moment of M booms
theoretically. The buckling moment equals the peak bending
moment. Thus, the deformation of a single tape spring is analyzed,
and the bendingmoment of theM boom is then derived. In addition
to the analytical solution, parametric studies areperformed to inves-
tigate the effects of the section radius, the central angle, the thick-
ness, and the curvature on the peak bending moment.

Section 2 derives the deformation of a single type I tape spring.
The geometrical relation is established in Section 2.1, the strain
energy is derived in 2.2, and the equilibrium equations are derived
in Section 2.3, and the bending moment is presented in Section 2.4.
Section 3 derives the deformation of one type II or III tape spring.
Section 4 derives the bending of six tape springs in the M boom.
Experimental evaluation is provided in Section 5. Finally, the con-
cluding remarks are presented in Section 6.
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Fig. 2. Geometric diagram of the M boom.
2. Deformation of a single type I tape spring

The geometric diagram of the M boom is shown in Fig. 2. The M
boom consists of four tape springs bonding along one longitudinal
M booms

Membrane

Hubs

[Folded][Deployed]

(a) One hoop deployable mechanism    (b

Fig. 1. Self-deployable boom
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edge, and the four tape springs are mirror-symmetric. The M boom
can be flattened and coiled elastically and self-deploy by releasing
stored strain energy around a hub. The M boom consists of three
type tape springs, namely, types I, II, and III, as shown in Fig. 2.
The type I tape springs with central angle /1 are located inside
the boom, whose bonded web is at the center of the symmetrical
line of the cross section. The type II tape spring with central angle
/1 is tangent to the arc in reverse, and the type III tape springs with
central angle /2 are located outside the boom. The offset distance
of the type II tape spring from the central symmetrical line is s.
The height of the three bonded webs is l, and the thickness of
the four tape springs is t. An analytical solution of the local defor-
mation of a single type I tape spring under bending is derived in
this section.
2.1. Geometrical relation

The single tape spring under bending is shown in Fig. 3. The
orthogonal coordinate system (x, y, z) and the corresponding
orthonormal base vector (Ex, Ey, Ez) are set up, where 0 � x � l, -
RU/2 � y � RU/2, and -t/2 � z � t/2. The inertial Cartesian frame
is denoted as O-i1-i2-i3. The x-axis is parallel to i1, and the y-axis
is along the section curve of the tape spring (Fukunaga and
Links
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Fig. 3. The single type I tape spring under bending.

H. Yang et al. International Journal of Solids and Structures 206 (2020) 236–246
Miyazaki, 2018). The relation between (Ex, Ey, Ez) and (i1, i2, i3) is
derived as follows:

Ex ¼ i1; Ey ¼ cos
y
R

� �
i2 þ sin

y
R

� �
i3; Ez ¼ �sin

y
R

� �
i2 þ cos

y
R

� �
i3 ð1Þ

where R is the cross sectional radius of the four tape springs.
The position vector of an arbitrary point in the thin walled shell

in the initial state is given as

X ¼ z� Rð ÞEz þ xi1 ð2Þ
Combined with Eq. (2), the covariant base vectors Gx, Gy and Gz

along the x-, y-, and z axes in the initial state are expressed as

Gx ¼ @X
@x

¼ i1; Gy ¼ @X
@y

¼ 1� k0zð ÞEy; Gz ¼ @X
@z

¼ Ez ð3Þ

where k0 is the initial curvature of the single tape spring, that is,
k0„1/a0.

The tape spring is subject to the opposite-sense bending of radius
a as shown in Fig. 4(b). The coiling deformed state is shown in Fig. 2
(b). The axis of the hub is along the direction of the y-axis. Orthonor-
mal base vector (x, y, z) is denoted as (ex; ey; ez), and the y-axis is par-
allel to i2. The relation between (ex; ey; ez) and (i1, i2, i3) is derived as

ex ¼ cos
x
a
� l
2a

� �
i1 � sin

x
a
� l
2a

� �
i3ey ¼ i2

ez ¼ þsin
x
a
� l
2a

� �
i1 þ cos

x
a
� l
2a

� �
i3

ð4Þ
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Fig. 4. Stress resultants in a typical element of the single tape spring.
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where a is the radius of the bending circle, and l is the length of
the tape spring as shown in Fig. 2(a).

The displacement of the single tape spring from the bending
state in the relative axis is (u, v, w), that is, (u, v, w) is the displace-
ment along (x, y, z). On the basis of the Kirchhoff-Love hypothesis,
the position vector x in the bending deformed state is given as

x ¼ x0 þ z
@x0
@x � @x0

@y

��� ��� @x0@x
� @x0

@y
ð5Þ

where x0 is the position vector of the mid-surface (z = 0) of the
single tape spring, that is,

x0 ¼ uex þ yþ vð Þey þ aþwð Þez ð6Þ
The following conditions are assumed: (1) u is a function of x,

while v and w are functions of y; (2) compared to initial radius R,
the thickness t of the single tape spring is adequately small, that
is, zk 6 1.

Then, the position vector in the deformed state is derived as

x ¼ u xð Þex þ yþ v yð Þ½ �ey þ 1
k
þw yð Þ

� �
ez

þ z ez þ ku xð Þex �w0 yð Þey
	 
 ð7Þ

where k is the curvature of the single tape spring in the
deformed state, k„1/a.

Substituting Eqs.(7) into (3), covariant base vectors gx, gy, and gz
are expressed as

gx ¼ @x
@x ¼ 1þ _uþ kwþ kzð Þex � kuez

gy ¼ @x
@y ¼ 1þ v 0 � zw00ð Þey þw0ez

gz ¼ @x
@z ¼ ez þ kuex �w0ey

8><>: ð8Þ

where the dot denotes the differentiation along x.
2.2. Strain and stress

Only axial stains can be observed along the x-, y-, and z- axes.
The other strains vanish because of the symmetry of the deforma-
tion as shown in Fig. 2. According the assumed condition in Sec-
tion 2.1, the second- or higher- order term of t/R of the strain is
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negligible. The strains (exx and eyy) along the x- and y- axes are
derived as Eq.(9):

exx ¼ gxj j
Gxj j � 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _uþ kwþ kzð Þ2 þ kuð Þ2

q
� 1

� _uþ k wþ zð Þ ð9Þ

eyy ¼
gy

�� ��
Gy

�� ��� 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v 0 � zw00ð Þ2 þ w0ð Þ2

q
1� k0z

� 1

� v 0 þ z k0 �w00ð Þ ð10Þ
Considering the orthotropic linear plain stress field in the

orthonormal coordinate along the embedded coordinates (x, y, z),
the constitutive relation between stress and strain can be
expressed as

rxx ¼ Ex

1� vxvy
exx þ vyeyy
� 
 ð11Þ

ryy ¼ Ey

1� vxvy
eyy þ vxexx
� 
 ð12Þ

where Ex and Ey are the elasticity moduli along the x- and y-
axes, respectively; and vx, and vy are the Poisson’s ratios along
the x- and y- axes, respectively.

2.3. Equilibrium equations

The stress resultants in a typical element of the single tape
spring are shown in Fig. 4. On the basis of Calladine shell theory,
by solving the force along the z- axis and the moment around
the x- axis, two equations are derived asX

Fz ¼
dqy

dy
� kFx ¼ 0 ð13Þ

X
Mx ¼ dMy

dy
� qy ¼ 0 ð14Þ

where Fx and Fz are the forces per unit length along the x- and z-
axes, respectively; Mx and My are the bending-stress moments per
unit length around the x- and y- axes, respectively; and qy is the
stress along the y- axis.

By combining Eq.(13) and Eq.(14), the shell equilibrium equa-
tion is derived by eliminating qy.

d2My

dy2
þ kFx ¼ 0 ð15Þ

According to the definition, the following equations are
provided

Fx ¼
R t=2
�t=2 r

xx 1� k0zð Þdz;
Fy ¼

R t=2
�t=2 r

yy 1� k0zð Þdz;
Ny ¼

R t=2
�t=2 z

@ryy

@y 1� k0zð Þdz;
Mx ¼

R t=2
�t=2 zr

xx 1� k0zð Þdz;
My ¼

R t=2
�t=2 �zryy 1� k0zð Þdz;

8>>>>>>>>><>>>>>>>>>:
ð16Þ

where Ny is the stress resultants along the y-axis, rxx and ryy are
the stresses along the x- and y- axes.

Substituting from yjorgottrh Eqs. (9)–(12) into Eq. (16), the fol-
lowing equations are obtained.
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Fx ¼ Ext
1� vxvy

_uþ kwþ vyv 0� 
� Dxk0 kþ vy k0 �w00ð Þ	 

¼ vxFy þ Ext _uþ kw� t2k0

12
k

� �
ð17Þ

Fy ¼ Ext
1� vxvy

v 0 þ vx _uþ kwð Þ½ � � Dyk0 vxkþ k0 �w00ð ÞÞ ð18Þ

Ny ¼ � @My

@y
¼ �eDyw000 ð19Þ

Mx ¼ Dx k0 _uþ kwþ vyv 0� 
þ kþ vy k0 �w00ð Þ	 

¼ � t2k0

12
Fx þ eDx kþ vy k0 �w00ð Þ	 
 ð20Þ

My ¼ �Dy vxkþ k0 �w00 � k0 v 0 þ vx _uþ kwð Þ½ �f g

¼ t2k0
12

Fy � eDy vxkþ k0 �w00ð Þ ð21Þ

where

Dx ¼ Ext3

12 1� vxvy
� 
 ; eDx ¼ Dx 1� t2k0

2

12

 !
;

Dy ¼ Eyt3

12 1� vxvy
� 
 ; eDy ¼ Dy 1� t2k0

2

12

 !
Given the orthotropic material of the single tape spring, the fol-

lowing equations are established

Ey ¼ vyEx; vxDy ¼ vyDx vx
eDy ¼ vy

eDx ð22Þ
The single tape spring is in the pure bending deformed state.

Thus, the boundary conditions are expressed as

Fy �bð Þ ¼ 0 My �bð Þ ¼ 0 ð23Þ
Given that u is a function of x, w is a function of y, and My is a

constant. Eq. (21) leads to

_u ¼ const: � ax0 ð24Þ
where ax0 is a constant.
By substituting Eqs. (17), (20), (23), and (24) into shell equilib-

rium equation Eq. (15), the following equation is derivedeDyw000 	 	 þ Extk
2 w�w0ð Þ ¼ 0 ð25Þ

where w0 ¼ t2k0
12 � ax0

k .
Eq. (25) can be solved as

w ¼ w0 þ bC1coshgncosgnþ bC2sinhgnsingn ð26Þ
where

n ¼ y
b
; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exb

4tk2

4eDy

4

vuut
By combining Eqs. (19) and (21), boundary condition Eq. (23)

can be expressed as

w00 bð Þ ¼ k0 þ vxk;w000 bð Þ ¼ 0 ð27Þ
By substituting Eqs. (27) into (26), C1 and C2 are eliminated, and

the following equation is derived

w ¼ t2k0
12

� ax0

k
þ b2 k0 þ vxkð Þ

3
v11sinhgnsingn� v12coshgncosgn
� 


ð28Þ
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where

v11 ¼ 3 sinhgcosgþ coshgsingð Þ
g2 sinh2gþ sin2gð Þ ;

v12 ¼ 3 coshgsing� sinhgcosgð Þ
g2 sinh2gþ sin2gð Þ
2.4. Strain energy and bending moment

The strain energy pI stored in the single type I tape spring is
expressed as

pI ¼
Z b

�b

Z t=2

�t=2

1
2
rxxexx þ ryyeyy
� 


1� k0zð Þdzdy ð29Þ

where exx and eyy are the strains along the x- and y- axes,
respectively.

The strain energy per unit length includes two parts: the first
part is the energy for deforming the initial tape spring shell into
the flat plate, and the second part is the energy for bending the flat
plate into a cylindrical shape around the hub with curvature k, that
is,

pI ¼ pIx þ pIy ð30Þ
Where pIx is the energy for deforming the initial tape spring

shell into flat plate, pIx ¼ k
2

R b
�b Mxdy; and pIy is the energy for bend-

ing the flat plate into a cylindrical shape, pIy ¼ � k0
2

R b
�b Mydy.

By substituting Eqs.(20), (21) and (31) into Eq. (30), the follow-
ing equation is derived:

pI ¼ beDx 1� vxvy
� 


k2 þ beDy k0 þ vxkð Þ2 1� A1ð Þ ð31Þ
On the basis of the minimum potential energy principle, bend-

ing moment M can be obtained as follows

MI ¼ dpI

dk
ð32Þ

By substituting Eqs. (31) into (32), the bending moment to be
applied at the end of the single tape spring is derived as

MI ¼ 2beDx 1� vxvy
� 


kþ 2bvx
eDy k0 þ vxkð Þ 1� A1ð Þ

� beDy k0 þ vxkð Þ2 A4 � A1

2k
ð33Þ

where

A1 ¼ cosh2g� cos2g
g sinh2gþ sin2gð Þ ; A4 ¼ 4sinh2gsin2g

sinh2gþ sin2gð Þ2
y z
x

Ey Ez
Ex

l

R

i1
i3
i2

O

S

(a) Initial state                     

Fig. 5. Single type II tape s
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3. Bending of one type II or III tape spring in the M boom

The analytical solution of the local deformation of the single
type II and III tape springs under bending are derived in this sec-
tion. The single type II tape spring under bending is shown in Fig. 5.

3.1. Geometrical relation

The offset distance of the type II tape spring from the central
symmetrical line is s. On the basis of the Kirchhoff-Love hypothesis,
the position vector x in the bending deformed state is given as

x ¼ x0 þ z
@x0
@x � @x0

@y

��� ��� @x0@x
� @x0

@y
ð34Þ

where

x0 ¼ uex þ yþ uð Þey þ aþwþ sð Þez
By substituting Eqs. (34) into (3), covariant base vectors gx, gy

and gz are expressed as

gx ¼ @x
@x ¼ 1þ _uþ kwþ kzþ ksð Þex � kuez;

gy ¼ @x
@y ¼ 1þ v 0 � zw00ð Þey þw0ez;

gz ¼ @x
@z ¼ ez þ kuex �w0ey

8><>: ð35Þ
3.2. Strain energy and bending moment

By substituting Eqs. (35) into (3), the strain is derived as

exx ¼ gxj j
Gxj j � 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _uþ kwþ kzð Þ2 þ kuð Þ2

q
� 1

� _uþ k wþ zþ sð Þ ð36Þ

eyy ¼
gy

�� ��
Gy

�� ��� 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v 0 � zw00ð Þ2 þ w0ð Þ2

q
1� k0z

� 1

� v 0 þ z k0 �w00ð Þ ð37Þ
By substituting Eqs. (11), (12), (36), and (37) into Eq.(3), the fol-

lowing equations are obtained:

Fx ¼ vxFy þ Ext _uþ kwþ ks� t2k0
12

k
� �

ð38Þ

Fy ¼ Ext
1� vxvy

v 0 þ vx _uþ kwþ ksð Þ½ � � Dyk0 vxkþ k0 �w00ð ÞÞ ð39Þ
ez
ex
ey

z
x
y a

2b
=
R ᶲ
0

(b) Deformed state

pring under bending.
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Ny ¼ � @My

@y
¼ �eDyw000 ð40Þ

Mx ¼ Dx k0 _uþ kwþ vyv 0� 
þ kþ vy k0 �w00ð Þ	 

¼ � t2k0

12 Fx þ eDx kþ vy k0 �w00ð Þ	 
 ð41Þ

My ¼ �Dy vxkþ k0 �w00 � k0 v 0 þ vx _uþ kwð Þ½ �f g
¼ t2k0

12 Fy � eDy vxkþ k0 �w00ð Þ ð42Þ

The single type II tape spring is in pure bending deformed state,
and the boundary conditions are expressed as

Fy bð Þ ¼ 0; My bð Þ ¼ 0; Ny bð Þ ¼ 0 ð43Þ
By substituting Eqs. (38) and (42) into Eq. (15), the following

equations are obtained

eDyw000 	 	 þ Extk
2 w� t2k0

12
� ax0

k
� s

� �
¼ 0 ð44Þ

By combining Eqs. (40) and (42), Eq. (43)can be written as

w00 bð Þ ¼ k0 þ vxk;w00 bð Þ ¼ 0 ð45Þ
By substituting Eqs. (43) and (44) into Eq. (45), the displace-

ment of the type II tape spring is derived as follows

w¼ t2k0
12

�ax0

k
� sþb2 k0þvxkð Þ

3
v11sinhgnsingn�v12coshgncosgn
� 


ð46Þ
The strain energy pII of the type II tape spring can be written as

follows

pII ¼ k
2

Z b

�b
Mxdy � k0

2

Z b

�b
Mydy ð47Þ

By substituting Eqs. (41), (42), and (46) into (47), strain energy
pII is derived as

pII ¼ beDx 1� vxvy
� 


k2 þ beDy k0 þ vxkð Þ2 1� A1ð Þ ð48Þ
The derivative of strain energy pII with respect to k and the

bending moment MII of the type II tape spring can be derived as

MII ¼ 2beDx 1� vxvy
� 


kþ 2bvx
eDy k0 þ vxkð Þ 1� A1ð Þ

� beDy k0 þ vxkð Þ2 A4 � A1

2k
ð49Þ

Thebendingmomenthasno relation to the reverse curvaturebased
onEq. (49). Both type II and III tape springs areoppositebending senses
during theMboomcoiling around the hub. Thus, the bendingmoment
of the type III tape spring is similarwith the type I tape spring,which is
ignored in this section. Thedeflectionof the type II tape spring is differ-
ent with that of the type I and III tape springs, but all the deflections
have no effect on the strain energy. Thus, the theoretical bending
moment models of the three types of single tape spring are derived.
Then, the bending moment of the M boom is derived.

4. Bending of six tape springs in the M boom

4.1. Geometrical relation

The M boom consists of four tape springs bonding along one
longitudinal edge, and the four tape springs are mirror-
symmetric. The M boom can be flattened and coiled elastically
and self-deploy by releasing stored strain energy around a hub.
The marks of the tape springs in the M boom are shown in Fig. 6.
The four tape springs in the flattened M boom can be divided into
two parts. The inner part consists of four inner side tape springs,
including two type I and two type III tape springs. The outer parts
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consist of two type II tape springs. The marks of the type I tape
springs are TS3 and TS4. The marks of the type II tape springs are
TS1 and TS5. The marks of the type III tape springs are TS2 and
TS6. TS3 and TS4 are symmetric about line bb’, and TS5 and TS6
are symmetric about line aa’. If the length is ignored, TS1 and
TS2 are symmetric about line cc’. What’s more, lines aa’ and cc’
are symmetric about line bb’. Therefore, if TS1 and TS2, and TS5
and TS6 are separately considered as a whole, then the integral
tape springs are symmetric about line bb’.

The deformed state geometric diagram of the M boom is shown
in Fig. 7. The central curvature of the four tape springs is k ¼ 1=a0,
the inner curvature of the inner part is kin ¼ 1= a0 � 2tð Þ, and the
outer curvature of the outer part is kout ¼ 1= a0 þ 2tð Þ.

The central curvature of the inner part is kA ¼ 1= a0 � tð Þ, and the
inner and outer curvatures of the inner tape spring are k1 ¼ 1=
a0 � 2tð Þandk2 ¼ 1=a0, respectively.Thecentral curvatureof theouter
part is kB ¼ 1= a0 þ tð Þ, and the inner and outer curvatures of the outer
tape spring are k3 ¼ 1=a0 and k4 ¼ 1= a0 þ 2tð Þ, respectively.

The relationships between the different curvatures are
expressed as

k2 ¼ k3 ¼ k;

kin ¼ k1 ¼ k
1�2tk ;

kout ¼ k4 ¼ k
1þ2tk ;

kA ¼ k
1�kt ;

kB ¼ k
1þkt ;

8>>>>>>><>>>>>>>:
ð50Þ

where k1, k2, k3 and k4 represent the curvatures from the inner
to outer tape springs.

4.2. Strain energy

On the basis of the derived strain energy of the single tape
spring in the previous section, the allocation of strain energy for
the M boom (Miyazaki et al., 2015) is given as
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pm ¼ k
kin

pin0 þ k
kout

pout0 ð51Þ

Where pin0 is the strain energy of the inner part, pout0 is the
strain energy of the inner part, and pm is the total strain energy
of the M boom.

The strain energies pm1 of the whole parts of TS5 and TS6 and
the TS1 and TS2 are written as

pm1 ¼ k
kin

pin0 þ k
kout

pout0 ð52Þ

Where pin0 represents the strain energy of TS1 and TS2, and
pout0 represents the strain energy of TS5 and TS6.

Given that TS5 and TS6 are symmetric about line aa’ and TS1
and TS2 are symmetric about line cc’, the strain energy of the inner
and out part can be written as

pin0 ¼ kA
k1
pin1 þ kA

k2
pout1 ð53Þ

pout1 ¼ kB
k3
pin2 þ kB

k4
pout2 ð54Þ

Where pin1 and pin2 represent the strain energies of TS1 and TS2,
respectively; and pout1 and pout2 represent the strain energies of the
TS5 and TS6, respectively.

By substituting Eqs. (53), (54) and (50) into Eq.(52), pm1 is
expressed as

pm ¼ k
kin

kA
k1
pin1 þ kA

k2
pout1

� �
þ k

kout
kB
k3
pin2 þ kB

k4
pout2

� �
¼ 1�2tkð Þ2

1�tk pin1 þ 1�2tk
1�tk pout1 þ 1þ2tk

1þtk pin2 þ 1þ2tkð Þ2
1þtk pout2

ð55Þ

Given that TS3 and TS4 are symmetric about line bb’, the strain
energy pm2 of the TS3 and TS4 can be written as

pm2 ¼ kA
k1
pm3 þ kA

k2
pout3 ð56Þ

Where pin3 and pout2 represent the strain energies of TS3 and
TS4, respectively.

By substituting Eqs. (50) into Eq. (56), pm2 is expressed as

pm2 ¼ k
kin

pin3 þ k
kout

pout3 ¼ 1� 2tkð Þpin3 þ 1þ 2tkð Þpout3 ð57Þ

The total strain energy pm of the M boom is derived as

pm ¼ pm1 þ pm2 ð58Þ
By substituting Eqs. (55) into Eq. (57), pm is expressed as

pm ¼ 1� 2tkð Þ2
1� tk

pin1 þ 1� 2tk
1� tk

pout1 þ 1þ 2tk
1þ tk

pin2

þ 1þ 2tkð Þ2
1þ tk

pout2 þ 1� 2tkð Þpin3 þ 1þ 2tkð Þpout3 ð59Þ

On the basis of Eqs. (31) and (48), the strain energies pin1, pout1,
pin2, pout2, pin3, and pout3 of respective tape springs TS1, TS2, TS3,
TS4, TS5, and TS6 are analyzed as follows.
B12 ¼ A1 k1; b2; k0ð Þ ¼ cosh2g12�cos2g12
g12 sinh2g12þsin2g12ð Þ ; B13 ¼ A1 k1; l;0ð Þ ¼ cosh2g13�co

g13 sinh2g13þð

P1 ¼ k0 þ vxk1 B01 ¼ A1 k; b1; k0ð Þ ¼ A1 k; b1;�k0ð Þ ¼ cosh2g01�cos2g01
g01 sinh2g01þsin2g01ð Þ

B03 ¼ A1 k; l;0ð Þ ¼ cosh2g03�cos2g03
g03 sinh2g03þsin2g03ð Þ B43 ¼ A1 k4; l;0ð Þ ¼ cosh2g43�cos2

g43 sinh2g43þsinðeP4 ¼ �k0 þ vxk4 B42 ¼ A1 k4; b2;�k0ð Þ ¼ cosh2g42�cos2g42
g42 sinh2g42þsin2g42ð Þ

eP ¼ �k0 þ

g13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Exl

4tk1
2

4Dy

4
q

g01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Exb1

4tk2

4eDy

4

r
g03 ¼

ffiffiffiffiffiffiffiffiffiffiffi
Exl

4tk2

4Dy

4
q

g43 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Exl

4tk4
2

4Dy

4
q
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(i) strain energy pin1 consists of a circle with positive curvature
k1, central angle /2, and a web with width of l. pin1 can be
expressed as

pin1 ¼ p k1; b2; k0ð Þ þ p k1; l;0ð Þ ð60Þ
By substituting Eqs. (31) into Eqs. (60), pin1 is expressed as

pin1 ¼ b2
eDx 1�vxvy
� 


k1
2þb2

eDy k0þvxk1ð Þ2 1�A1 k1;b2;k0ð Þð Þ
þleDx 1�vxvy

� 

k1

2þ leDy vxk1ð Þ2 1�A1 k1; l;0ð Þð Þ
ð61Þ

(ii) strain energies pout1 and pout3 consist of a circle with nega-
tive curvature k, central angle /1, and a web with width of
l. pout1 and pout3 can be written as

pout1 ¼ pout3 ¼ p k; b1;�k0ð Þ þ p k; l;0ð Þ ð62Þ
By substituting Eqs. (31) into (62), pout1 and pout3 are expressed

as

pout1 ¼pout3 ¼ b1
eDx 1�vxvy
� 


k2þb1
eDy �k0þvxkð Þ2 1�A1 k;b1;�k0ð Þð Þ

þleDx 1�vxvy
� 


k2þ leDy vxkð Þ2 1�A1 k; l;0ð Þð Þ
ð63Þ

(iii) strain energies pin2 and pin3 consist of a circle with positive
curvature k, central angle /1, and a web with width of l.
pin2 and pin3 can be written as

pin2 ¼ pin3 ¼ p k; b1; k0ð Þ þ p k; l;0ð Þ ð64Þ
By substituting Eqs. (31) into (62), pin2 and pin3 are expressed as

pin2 ¼pin3 ¼ b1
eDx 1�vxvy
� 


k2þb1
eDy k0þvxkð Þ2 1�A1 k;b1;k0ð Þð Þ

þleDx 1�vxvy
� 


k2þ leDy vxkð Þ2 1�A1 k; l;0ð Þð Þ
ð65Þ

(iv) strain energy pou2 consists of a circle with negative curvature
k1, central angle /2, and a web with width of l. pout2 can be
written as

pout2 ¼ p k4; b2;�k0ð Þ þ p k4; l;0ð Þ ð66Þ
By substituting Eq.(31) into Eq.(66), pout2 is expressed as

pout2 ¼ b2
eDx 1�vxvy
� 


k4
2þb2

eDy �k0þvxk4ð Þ2 1�A1 k4;b2;�k0ð Þð Þ
þleDx 1�vxvy

� 

k4

2þ leDy vxk4ð Þ2 1�A1 k4; l;0ð Þð Þ
ð67Þ

By substituting Eqs. (61), (63), (65) and (67) into Eq. (59), pm is
expressed as

pm ¼ 1�2tkð Þ2
1�tk b2

eDxSk1
2 þb2

eDyP1
2 1�B12ð Þþ leDxSk1

2 þ leDy vxk1ð Þ2 1�B13ð Þ
h i

þ 2þ tkð Þ b1
eDxSk

2 þb1
eDyep2 1�B01ð Þþ leDxSk

2 þ leDy vxkð Þ2 1�B03ð Þ
h i

þ 2� tkð Þ b1
eDxSk

2 þb1
eDyP

2 1�B01ð Þþ leDxSk
2 þ leDy vxkð Þ2 1�B03ð Þ

h i
þ 1þ2tkð Þ2

1þtk b2
eDxSk4

2 þb2
eDy
eP4

2
1�B42ð Þþ leDxSk4

2 þ leDy vxk4ð Þ2 1�B43ð Þ
h i

ð68Þ

Where
s2g13
sin2g13Þ S ¼ 1� vxvyeP1 ¼ � k0 þ vxk1
g43
2g43Þ P ¼ k0 þ vxk

vxk g12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exb2

4tk1
2

4eDy

4

r
g42 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exb2

4tk4
2

4eDy

4

r
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4.3. Bending moment theoretical modeling

Combined with Eq. (68), and on the basis of the minimum
potential energy principle, bending moment Mm can be obtained
as follows:

Mm ¼ dpm

dk
ð69Þ

By substituting Eqs. (59) into (69), the following equation can
be derived:

Mm ¼ �2tpin3 þ 1� 2tkð ÞMin3 þ 2tpout3 þ 1þ 2tkð ÞMout3

þ t
1þtkð Þ2 pin2 þ 1þ2tk

1þtk Min2 þ 4 1þtkð Þ2�1
1þtkð Þ2 tpout2 þ 1þ2tkð Þ2

1þtk Mout2

1�4 1�tkð Þ2
1�tkð Þ2 tpin1 þ 1�2tkð Þ2

1�tk Min1 þ �t
1�tkð Þ2 pout1 þ 1�2tk

1�tk Mout1

ð70Þ

Where Mout1, Min1, Mout2, Min2, Mout3 and Min3 represent the
moments corresponding to pout1, pin1, pout2, pin2, pout3 and pin3,
respectively.

(i) on the basis of Eq. (69), Min1can be written as

Min1 ¼ @pI

@k1

 1

1� 2tkð Þ2
¼ M k1; b2; k0ð Þ þ M k1; l; 0ð Þ½ � 1

1� 2tkð Þ2
ð71Þ

By substituting Eqs. (33) into (71), the following equations can
be derived

Min1 ¼ 2b2
eDx 1� vxvy
� 


k1 þ 2b2vx
eDy k0 þ vxk1ð Þ 1� A1 k1; b2; k0ð Þð Þ

h
�b2

eDy k0 þ vxk1ð Þ2 A4 k1; b2; k0ð Þ � A1 k1; b2; k0ð Þ
2k1

þ 2leDx 1� vxvy
� 


k1 þ 2lvx
eDy vxk1ð Þ 1� A1 k1; l;0ð Þð Þ

� 2leDy vxk1ð Þ2 A4 k1; l;0ð Þ � A1 k1; l;0ð Þ
4k1

� 1

1� 2tkð Þ2
ð72Þ

(ii) on the basis of Eq. (69), Mout1 and Mout3 can be written as
Mout1 ¼ Mout3 ¼ @pout1

@k
¼ @pout3

@k
¼ M k; b1;�k0ð Þ þM k; l; 0ð Þ ð73Þ

By substituting Eqs. (33) into (71), the following equations can
be derived

Mout1 ¼Mout3 ¼2b1
eDx 1�vxvy
� 


kþ2b1vx
eDy �k0þvxkð Þ 1�A1 k;b1;�k0ð Þð Þ

�b1
eDy �k0þvxkð Þ2 A4 k;b1 ;�k0ð ÞÞ�A1 k;b1 ;�k0ð ÞÞ

2k

þ2leDx 1�vxvy
� 


kþ2lvx
eDy vxkð Þ 1�A1 k; l;0ð Þð Þ

�leDy vxkð Þ2 A4 k;l;0ð Þ�A1 k;l;0ð Þ
4k

ð74Þ

(iii) on the basis of Eq. (33), Min2 and Min3 can be written as

Min2 ¼ Min3 ¼ @pin2

@k
¼ @pin3

@k
¼ M k; b1; k0ð Þ þM k; l; 0ð Þ ð75Þ

By substituting Eqs. (49) into (71), the following equations can
be derived

Min2 ¼ Min3 ¼ 2b1
eDx 1� vxvy
� 


kþ 2b1vx
eDy k0 þ vxkð Þ 1� A1 k; b1; k0ð Þð Þ

�b1
eDy k0 þ vxkð Þ2 A4 k;b1 ;k0ð ÞÞ�A1 k;b1 ;k0ð ÞÞ

2k

þ2leDx 1� vxvy
� 


kþ 2lvx
eDy vxkð Þ 1� A1 k; l;0ð Þð Þ

�leDy vxkð Þ2 A4 k;l;0ð Þ�A1 k;l;0ð Þ
2k

ð76Þ
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(iv) on the basis of Eq. (33), Mout2 can be written as

Mout2 ¼ @pout2

@k4

1

1þ 2tkð Þ2
¼ M k4; b2;�k0ð Þ þM k4; l;0ð Þ½ � 1

1þ 2tkð Þ2
ð77Þ

By substituting Eqs. (49) into (71), the following equations can
be derived

Mout2 ¼ 2b2
eDx 1�vxvy
� 


k4þ2b2vx
eDy �k0þvxk4ð Þ 1�A1 k4;b2;�k0ð Þð Þ

h
�b2

eDy �k0þvxk4ð Þ2A4 k4;b2;�k0ð Þ�A1 k4;b2;�k0ð Þ
2k4

þ2leDx 1�vxvy
� 


k4þ2lvx
eDy vxk4ð Þ 1�A1 k4; l;0ð Þð Þ� leDy vxk4ð Þ2

� A4 k4; l;0ð Þ�A1 k4; l;0ð Þ
2k4

� 1

1þ2tkð Þ2
ð78Þ

By substituting Eqs. (72), (74), (76) and (78) into (70), the pure
bending moment Mm of the M boom can be derived

Mm ¼ 1�4 1�tkð Þ2
1�tkð Þ2 tJ11 þ 1

1�tk J12 þ 2t3k2�4t2kþt
1�tkð Þ2 J13 þ 2þ tkð ÞJ34

� 2t3k2þ4t2kþt
1þtkð Þ2 J15 þ 2� tkð ÞJ56 þ 4 1þtkð Þ2�1

1þtkð Þ2 tJ17 þ 1
1þtk J18

ð79Þ

where

J11 ¼ b2
eDxSk1

2 þ b2
eDyP1

2 1� B12ð ÞþleDxSk1
2 þ leDy vxk1ð Þ2 1� B13ð Þ,

J12 ¼ J01 þ J02,J34 ¼ J03 þ J04, J02 ¼ 2leDxSk1 þ 2lvx
eDy vxk1ð Þ 1� B13ð Þ�

f02,J56¼J05þJ06, J01¼2b2
eDxSk1þ2b2vx

eDyP1 1�B12ð Þ�f01 J13¼b1
eDx

Sk2þb1
eDy
eP2

1�B01ð ÞþleDxSk
2þleDy vxkð Þ2 1�B03ð Þ, J03¼2b1

eDxSkþ2b1

vx
eDy
eP 1�B01ð Þ� f03, J15 ¼ b1

eDxSk
2þb1

eDyP
2 1�B01ð Þþ leDxSk

2þ leDy

vxkð Þ2 1�B03ð Þ,J05 ¼2b1
eDxSkþ2b1vx

eDyP 1�B01ð Þ�f05, J04 ¼2leDxSkþ
2lvx

eDy vxkð Þ 1�B03ð Þ� f04, J06 ¼2leDxSkþ2lvx
eDy vxkð Þ 1�B03ð Þ� f06, J89 ¼

J08 þ J09J17 ¼ b2
eDxSk4

2 þb2
eDy
eP4

2
1�B42ð Þþ leDxSk4

2 þ f07, J08 ¼2b2
eDxSk4þ2b2

vx
eDy
eP4 1�B42ð Þ� f08, J09 ¼2leDxSk4 þ2lvx

eDy vxk4ð Þ 1�B43ð Þ� f09, f01 ¼ b2
eDy

P1
2 C12�B12

2k1
, f02 ¼ leDy vxk1ð Þ2 C13�B13

2k1
,f03 ¼ b1

eDy
eP2 C01�B01Þ

2k , f04 ¼ leDy vxkð Þ2 C03�B03
2k ,

f05 ¼ b1
eDyP

2 C01�B01Þ
2k , f06 ¼ leDy vxkð Þ2 C03�B03

2k , f07 ¼ leDy vxk4ð Þ2 1�B43ð Þ, f08 ¼ b2
eDyeP4

2 C42�B42
2k4

, f09 ¼ leDy vxk4ð Þ2 C43�B43
2k4

, C12 ¼ 4sinh2g12sin2g12
sinh2g12þsin2g12ð Þ2, C13 ¼ 4sinh2g13sin2g13

sinh2g13þsin2g13ð Þ2,

C42 ¼ 4sinh2g42sin2g42
sinh2g42þsin2g42ð Þ2, C43 ¼ 4sinh2g43sin2g43

sinh2g43þsin2g43ð Þ2, C01 ¼ 4sinh2g01sin2g01
sinh2g01þsin2g01ð Þ2, C03 ¼

4sinh2g03sin2g03
sinh2g03þsin2g03ð Þ2.

4.4. Peak bending moment

The M boom is made by laying four 0.0375-mm-thickness plies
[45�/�45�/�45�/45�]T of T300 carbon fiber reinforced polymer
impregnated with epoxy resin, and the thickness of each tape
spring is 0.15 mm. The material properties of the M boom are
derived based on classical laminated plate theory.

(i) Material parameter of the single ply

The relationship between the stress and strain of the single ply
is written as follows:

r1

r2

r3

8><>:
9>=>; ¼ ½Q �

e1
e2
c12

8><>:
9>=>; ¼

Q11 Q12 0
Q21 Q22 0
0 0 Q66

264
375 e1

e2
c12

8><>:
9>=>; ð80Þ

where [Q] is the reduced stiffness matrix, Q11 ¼ E1
1�v12v21

,

Q12 ¼ Q21 ¼ v12E2
1�v12v21

¼ v21E1
1�v12v21

, Q22 ¼ E2
1�v12v21

, Q66 ¼ G,

v21 ¼ E2
E1
v12; E1 and E2 are the elasticity moduli along the fiber

direction and its vertical direction, respectively; G is the shear
modulus; and v12 and v21 are the Passion’s ratios.
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Given the different ply angles, the relationship between stress
and strain must unify to one natural coordinate system. When
the main directional coordinate system of the ply material is at
arbitrary angle h with the natural coordinate system, the relation-
ship between stress and strain is changed to

rx

ry

rz

8><>:
9>=>; ¼ T½ ��1 Q½ � T½ ��1

� �T ex
ex
cxy

8><>:
9>=>; ¼ Q

�h i ex
ex
cxy

8><>:
9>=>;

¼
Q
�
11 Q

�
12 0

Q
�
21 Q

�
22 0

0 0 Q
�
66

2664
3775

ex
ey
cxy

8><>:
9>=>;

ð81Þ

where ½T� ¼
cos2h sin2h 2sinhcosh
sin2h cos2h �2sinhcosh

�sinhcosh sinhcosh cos2h� sin2h

24 35.
Then, the elements in the newly reduced stiffness matrix are

written as follows:

Q
�
11 ¼Q11cos4hþ2 Q12þ2Q66ð Þsin2hcos2hþQ22sin

4h

Q
�
12 ¼ Q11þQ22�4Q66ð Þsin2hcos2hþQ12 sin4hþcos4h

� �
Q
�
22 ¼Q11sin

4hþ2 Q12þ2Q66ð Þsin2hcos2hþQ22cos4h

Q
�
16 ¼ Q11�Q12�2Q66ð Þsinhcos3hþ Q12�Q22þ2Q66ð Þsin3hcosh

Q
�
26 ¼ Q11�Q12�2Q66ð Þsin3hcoshþ Q12�Q22þ2Q66ð Þsinhcos3h

Q
�
66 ¼ Q11þQ22�Q12�2Q66ð Þsin2hcos2hþQ66 sin4hþcos4h

� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð82Þ

(ii) material parameter of the integral plies
The M boom is made by laying four 0.0375-mm-thickness plies

[45�/-45�/-45�/45�]T of T300, which is a symmetrical laminate, and
the relationship between the internal force and the strain is as
follows:

Nx

Ny

Nxy

8><>:
9>=>; ¼

A11 A12 0
A12 A22 0
0 0 A66

264
375 e0x

e0y
c0xy

264
375 ð83Þ

where Aij ¼
Pn
k¼1

Q
�
11

� �
k
zk � zk�1ð Þ, tk ¼ zk � zk�1 is the thickness

of the kth ply, and the total thickness is t.
The material properties of each ply of the M boom are listed in

Table 1. By substituting the material properties into Eq. (80), the
converted reduced stiffness matrix is derived as

Q
�h i

¼
Q11 Q12 0
Q21 Q22 0
0 0 Q66

264
375 ¼

114:53 1:77 0
1:77 5:92 0
0 0 4:5

264
375 ð84Þ

By substituting Eqs. (84) into (82), Q
�h i

k
can be derived. Then, it

is substituted into Eq. (83), and the relationship between the inter-
nal force and the strain is derived as
Table 1
Material properties of the single ply T300.

Material properties Values

Longitudinal stiffness E1/GPa 114
Transverse stiffness E2/GPa 5.89
Shear stiffness G/GPa 4.5
Poisson’s ratio m 0.3
Density q/kg/m3 2500

244
Nx

Ny

Nxy

8><>:
9>=>; ¼

35:54t 26:50t 0
26:50t 35:54t 0

0 0 29:67t

264
375 e0x

e0y
c0xy

264
375 ð101Þ

Then, the integral elasticity modulus of the M boom can be
derived as Ex ¼ Ey ¼ 34:99Gpa. The geometrical parameters of
the M boom are b1 = 5 mm, b2 = 15 mm, l = 5 mm, R = 20 mm and
t = 0.15 mm which are substituted into Eq. (79). The theoretical
peak bending moment MT

m of the M boom is derived as

MT
m ¼ Mmjmax ¼ 0:33Nm
5. Experimental evaluation

The M boom samples and the experimental equipment were
processed. The experimental equipment is shown in Fig. 8. One
end of the M boom was clamped at the hub. The push–pull gauge
was used to measure the peak bending force at the end of the rod,
and the other end was fixed to the axis of the hub. The M boomwas
a thin-walled structure, which is difficult to manufacture. The sin-
gle tape spring with one web was processed. Then the four tape
springs were bonded together in a vacuum chamber. The two
M�boom samples were developed first. The other two M�boom
samples were fabricated by modified processing method because
some crack was appeared when the M booms were bended several
times. The four M booms are shown in Fig. 9. Average bending peak

force F
�
b multiplies by the length lr = 0.108 m of the arm to derive

the bending peak moment Mp
m of the M boom.

The curve of the bending force versus the experimental time for
one measurement is shown in Fig. 10. The bending force first
increases to a peak value of 3.10 N and then suddenly reduces to
a stable value. The bending force value of the four M booms was
tested 20 times. The peak bending force during one measurement
is shown in Fig. 11, and the bending force values Fb in 20 measure-
ments are listed in Table 2.

According to Table 2, average bending peak force F
�
b is 3.043 N.

Then, the average bending peak moment Mp
m of experiment is

derived as 0.32869 Nm. Theoretical bending peak moment Mm is
0.33Nm based on the bending moment theoretical model in Sec-
tion 4. The relative error between the theoretical and experimental
results of the peak bending moment is �0.396%, verifying the accu-
racy of the theoretical model. The discrepancy can be attributed to
the start of the M boom’s bending from the completely natural sta-
tus in the theoretical modeling, but one end of the M boom is flat-
tened before the push–pull gauge is measured in the test, and the
fibers are broken and failed after the M boom wrapped around the
hubmany times, reducing the bending stiffness and the peak bend-
ing moment.
Fig. 8. Experimental equipment.



Fig. 9. Four M booms.
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Fig. 10. Curve of the bending force vs. the experimental time for one measurement.
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Fig. 11. Bending force during twenty time measurements.

Table 2
Bending force values of 20 measurements.

Sample code Number Peak force Fb/N Peak bending moment Mp
m/Nm

M�1 1 2.948 0.3184
2 2.933 0.3168
3 2.823 0.3048
4 2.969 0.3049
5 2.713 0.2930

M�2 1 2.864 0.3093
2 3.093 0.3340
3 2.611 0.2820
4 2.812 0.3037
5 2.869 0.3089

M�3 1 3.380 0.371
2 3.289 0.361
3 3.269 0.359
4 3.403 0.374
5 3.171 0.348

M�4 1 3.253 0.357
2 3.189 0.351
3 2.986 0.328
4 3.250 0.357
5 3.044 0.335
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6. Conclusions

The covariant base vectors of the geometrical relation of the sin-
gle tape spring was analyzed by establishing three coordinate sys-
tems. The constitutive relation of the single tape spring between
stress and strain was expressed based on the Kirchhoff-Love
245
hypothesis. The equilibrium and controlling equations of the single
tape spring were modeled based on Calladine shell theory. Then
the strain energy of the single tape spring was modeled by
integration.

The strain energies of each type tape spring were derived by the
method for single tape springs. The total strain energy of the M
boom was calculated by the sum of those of different type tape
springs. The closed-form expression of the bending moment model
of the M boom was established based on the minimum potential
energy principle and the peak bending moment was derived by
maximizing the theoretical model of the bending moment.

The four M�boom samples and the experimental equipment
were processed. The peak bending moment of the M boom can
be derived by 20 measurements of the samples. The experimental
and theoretical peak bending moments are 0.32869 and 0.33Nm,
respectively. The relative error between the theoretical and exper-
imental results is �0.396% validating the accuracy of the theoreti-
cal model for the peak bending moment of the M boom.

The theoretical model derived in this article can be applied to
obtain the bending deformation and peak bending moment of
the tape springs and the M booms. In addition, the theory is of
great important for designing membrane deployable structures.
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