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A deployable M cross section thin-walled boom (M boom) can be flattened and coiled elastically around a
hub; and can then be self-deployed by releasing the stored strain energy. The M boom has been proposed
as the key member of membrane deployable structures. First, the covariant base vectors of geometrical
relation of the single type I tape spring were analyzed by establishing three coordinate systems.
Second, the constitutive relation between stress and strain was expressed according to the Kirchhoff-
Love hypothesis. Third, the equilibrium and controlling equations of the single tape spring were modeled
based on Calladine shell theory. Fourthly, the total strain energy model of the single type I tape spring
was built by integration. Fifth, the strain energy of the M boom was modeled by the sum of the strain
energies of the six tape springs. Then, the strain energies of the single type II and III tape springs were
analyzed. The sum of the strain energies of the six tape springs equals the total strain energy of the M
boom. The bending moment model was established based on the minimum potential energy principle.
The experimental equipment and four M boom samples were processed. The bending force value of
the M booms was tested 20 times. Then, the average peak bending moment was calculated. The relative
error between the theoretical and experimental results of the peak bending moment does not exceed
6.5% verifying the accuracy of the theoretical model.
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1. Introduction

Deployable thin-walled boom can be flattened and coiled elasti-
cally around a hub; and can then be self-deployed by releasing
stored strain energy. M cross section thin-walled booms (M booms)
have high specific rigidity and deploying-to-coiling ratio; and have
thus been proposed as members of deployable structures, such as
antennae, solar sail, and drag sail. A 108-m deployable space
antenna was proposed and tested under the Innovative Space Based
Radar Antenna Technology program with thin-walled hinges (Lane
et al.,, 2011). NanoSail-D with four triangular rollable and collapsi-
ble (TRAC) booms was a subscale sail system designed for small
spacecraft applications (Johnson et al., 2011). An advanced flexible
blanket ROSA with two C cross section booms (C booms) was devel-
oped by deployable space systems (Hoang et al., 2016).

The gossamer sail system with a 5 m x 5 m square solar/drag
sail for deorbiting in low earth orbit; was designed and developed
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using four bistable carbon fibers lenticular booms (Fernandez et al,
2014). The flattening process of deployable lenticular boom under
compression and tension was studied (Hu et al., 2017). A retract-
able/deployable mechanism with a lenticular boom was proposed
and its dynamic properties were analyzed (Chu and Lei, 2014). A
thin-walled lenticular boom was fabricated by vacuum-bag and
co-bonding technology and folding analysis was performed (Bai
et al, 2019).The force that a C boom can exert before blossoming
occurs by using the strain energy stored in the coiled boom and
in the compression springs was predicted and tested (Hoskin
etal., 2017). The folding and deployment of tape spring and tubular
booms with integrated folding hinges to smoothen the folding
have been investigated by several authors (Seffen and Pellegrino,
1999; Mallikarachchi and Pellegrino, 2014a, 2014b). The responses
of C boom as a representative thin-walled flexible structure under
static and vibrational loading were studied (Oberst et al., 2018). An
ultra-thin carbon fiber deployable TRAC boom subjected to two
bending conditions was optimized to increase the ultimate buck-
ling loads (Bessa and Pellegrino, 2018). Wrapping dynamic analysis
and optimization were performed on a composite TRAC boom to
increase the peak moment and reduce the stress concentration
by the response surface method (Yang et al, 2018, 2019).
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The structural characteristics of a bi-convex boom were described,
and the effect of the braid mesh’s tension on the stiffness of the
boom was investigated by the analytical method (Miyazaki et al.,
2015). Although the bending stiffness of the TRAC boom is high,
its torsional stiffness is much lower than those of other kinds of
thin-walled deployable boom. This article proposes an M cross sec-
tion boom that consists of four tape springs bonding along one lon-
gitudinal edge, and the four tape springs are mirror-symmetric.
The arc and a straight line are tangent on the cross-section of the
two outer side tape springs. One end of the two arcs on the
cross-section of the two inner side tape springs are inverse tangent,
and the other end of the arc is tangent to the straight line. M boom
has a greater torsional stiffness than TRAC boom.

M booms have a strong self-extensibility, which is an important
behavior in deployable structures. Fig. 1 illustrates an example of
two self-deployable membrane structures using M booms. The
booms support the membrane when deployed, and the deployable
structure can be folded in a small volume. The deployable struc-
tures do not require additional deriving motor because of the
self-deploying property of M booms. Thus M booms are quite suit-
able for use in membrane antennae; and solar and drag sails.

The buckling moment of M booms represents the resistance
capacity of deployable structures in the full deployment state. How-
ever, few research has derived the buckling moment of M booms
theoretically. The buckling moment equals the peak bending
moment. Thus, the deformation of a single tape spring is analyzed,
and the bending moment of the M boom is then derived. In addition
to the analytical solution, parametric studies are performed to inves-
tigate the effects of the section radius, the central angle, the thick-
ness, and the curvature on the peak bending moment.

Section 2 derives the deformation of a single type I tape spring.
The geometrical relation is established in Section 2.1, the strain
energy is derived in 2.2, and the equilibrium equations are derived
in Section 2.3, and the bending moment is presented in Section 2.4.
Section 3 derives the deformation of one type II or III tape spring.
Section 4 derives the bending of six tape springs in the M boom.
Experimental evaluation is provided in Section 5. Finally, the con-
cluding remarks are presented in Section 6.

2. Deformation of a single type I tape spring

The geometric diagram of the M boom is shown in Fig. 2. The M
boom consists of four tape springs bonding along one longitudinal

Membrane

[Folded]

[Deployed]

(a) One hoop deployable mechanism
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edge, and the four tape springs are mirror-symmetric. The M boom
can be flattened and coiled elastically and self-deploy by releasing
stored strain energy around a hub. The M boom consists of three
type tape springs, namely, types I, II, and III, as shown in Fig. 2.
The type I tape springs with central angle ¢, are located inside
the boom, whose bonded web is at the center of the symmetrical
line of the cross section. The type II tape spring with central angle
¢ is tangent to the arc in reverse, and the type III tape springs with
central angle ¢, are located outside the boom. The offset distance
of the type II tape spring from the central symmetrical line is s.
The height of the three bonded webs is I, and the thickness of
the four tape springs is t. An analytical solution of the local defor-
mation of a single type I tape spring under bending is derived in
this section.

2.1. Geometrical relation

The single tape spring under bending is shown in Fig. 3. The
orthogonal coordinate system (x, y, z) and the corresponding
orthonormal base vector (E,, E,, E;) are set up, where 0 <x <1, -
R®[2 <y <R®|2, and -t/2 <z < t/2. The inertial Cartesian frame
is denoted as O-i;-i-i3. The x-axis is parallel to i;, and the y-axis
is along the section curve of the tape spring (Fukunaga and

[Folded]
[Deployed]

(b) One parabolic cylindrical deployable truss.

Fig. 1. Self-deployable boom-membrane structure.
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(a) Initial state
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(b) Deformed state

Fig. 3. The single type I tape spring under bending.

Miyazaki, 2018). The relation between (E,, E,, E;) and (iy, i, is) is
derived as follows:

. . AV ALY PIVA LY AV
Ex=i1,E, = COS<R)12 + sm<R>13, E, = Sl[l(R)lz + cos(R>13 (1)
where R is the cross sectional radius of the four tape springs.

The position vector of an arbitrary point in the thin walled shell
in the initial state is given as

X = (z- R)E; + xiy (2)

Combined with Eq. (2), the covariant base vectors G, G, and G,
along the x-, y-, and z axes in the initial state are expressed as
oxX . X oX
— =i, =—= — =
ox ay 0z

where ky is the initial curvature of the single tape spring, that is,
ko=1 /ao.

The tape spring is subject to the opposite-sense bending of radius
a as shown in Fig. 4(b). The coiling deformed state is shown in Fig. 2
(b). The axis of the hub is along the direction of the y-axis. Orthonor-
mal base vector (x, y, z) is denoted as (ey, ey, €,), and the y-axis is par-
allel to i,. The relation between (ex, ey, e;) and (i, i, i3) is derived as

LN, /x 1N, .
ﬂ)ll — Sln(a—ﬂ>l3€y =1
LY. x 1\,
E)l] +COS<E—E>I3

Gy (1 —ko2)Ey, G, = E, 3)

e fcos(x
= c_
a
4
. <x )
e, =+sin( = —
a

Fig. 4. Stress resultants in a typical element of the single tape spring.
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where a is the radius of the bending circle, and [ is the length of
the tape spring as shown in Fig. 2(a).

The displacement of the single tape spring from the bending
state in the relative axis is (u, v, w), that is, (u, 2, w) is the displace-
ment along (x, y, z). On the basis of the Kirchhoff-Love hypothesis,
the position vector x in the bending deformed state is given as

z

x
dy

OXo O0Xo

X =Xo + WXW

(5)

%
ox

where X is the position vector of the mid-surface (z = 0) of the
single tape spring, that is,

Xo =uex+ (y+ v)ey + (a+w)e;

(6)

The following conditions are assumed: (1) u is a function of x,
while » and w are functions of y; (2) compared to initial radius R,
the thickness t of the single tape spring is adequately small, that
is, zk < 1.

Then, the position vector in the deformed state is derived as

x=utojec+y+ o(y)le, + [+ w) e

+z[e; + ku(x)ex — w'(y)e,]

(7)

where k is the curvature of the single tape spring in the
deformed state, k=1/a.

Substituting Eqs.(7) into (3), covariant base vectors gy, 8y, and g,
are expressed as

8 =2Z=(1+1u+kw+kz)e, — kue,
g =5=0+v—-zw")e, +we,
g, =%=e,+kue, —we,

where the dot denotes the differentiation along x.

2.2. Strain and stress

Only axial stains can be observed along the x-, y-, and z- axes.
The other strains vanish because of the symmetry of the deforma-
tion as shown in Fig. 2. According the assumed condition in Sec-
tion 2.1, the second- or higher- order term of t/R of the strain is
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negligible. The strains (& and ¢,,) along the x- and y- axes are
derived as Eq.(9):

8xx7||§x‘| 1 ,\/(1+u+kw+kz)2+(ku)2_

~ U+ k(w+2) o
€ :@71 :\/(1+U’fzw”)2+(wl)271
vy |Gy| -

~ U +z(ky — W) (10)

Considering the orthotropic linear plain stress field in the
orthonormal coordinate along the embedded coordinates (x, y, z),
the constitutive relation between stress and strain can be
expressed as

Ex

o=
1- v,

(e + Vyeyy) (11)

ey + Vxex) (12)

1- vx vy (

where E, and E, are the elasticity moduli along the x- and y-
axes, respectively; and #, and v, are the Poisson’s ratios along
the x- and y- axes, respectively.

2.3. Equilibrium equations

The stress resultants in a typical element of the single tape
spring are shown in Fig. 4. On the basis of Calladine shell theory,
by solving the force along the z- axis and the moment around
the x- axis, two equations are derived as

dq,
ZFZ_W—kFX_O (13)

> My=—+—q,=0
where F, and F, are the forces per unit length along the x- and z-
axes, respectively; My and M, are the bending-stress moments per
unit length around the x- and y- axes, respectively; and g, is the
stress along the y- axis.
By combining Eq.(13) and Eq.(14), the shell equilibrium equa-
tion is derived by eliminating g,

(14)

2
dy?

According to the definition, the following equations are
provided

/2
Fx—//t/z
Fy:ft/Z

Y 4 kF, =0

(15)

0®(1 — koz)dz;

t2 0 (1 — koz)dz;
Ny = [, 222" (1 — koz)dz;
M, = [, 2 26%(1 — koz)dz;

M, = ff/jz —zo%(1 — koz)dz;

(16)

where N, is the stress resultants along the y-axis, ¢® and ¢?¥ are
the stresses along the x- and y- axes.

Substituting from yjorgottrh Eqs. (9)-(12) into Eq. (16), the fol-
lowing equations are obtained.
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F, = Ed (i +kw + v,v') — Diko [k + vy (ko — W")]
1- vy
) t2ko
= oF, +Et u+l<w— k (17)
Ext , . 7
Fy=—=— [V + ve(u + kw)] — Dyko(vxk + ko — W")) (18)
1- v,
oM ISV
=0 = ~Dyw (19)
My = Dy[ko (i1 + kw + vy V') + k + v, (ko — W")]
t2k .
:71720}: + Dy [k + vy (ko — W")] (20)
My = —=Dy{vik + ko — W' — ko[V/ + vy (U + kw)]}
t21 ~
:]—;"Fy — Dy (vek + ko — W) 21)
where
E.t? ~ 2k
Dy=— _ Dy=D,1--2
T12(1-wwy)” T *( 12 >
E,t3 ~ t2ko”
Dy=—2> _ D,=D,[1--"2
YT12(1 - wey)” y( 12 )

Given the orthotropic material of the single tape spring, the fol-
lowing equations are established

E, = vyE,, D, = v,D, v,D, = v,D, (22)

The single tape spring is in the pure bending deformed state.
Thus, the boundary conditions are expressed as

F,(b) = 0 M, (b) = 0 (23)

Given that u is a function of x, w is a function of y, and M, is a
constant. Eq. (21) leads to

1l = const. = oy (24)

where o, is a constant.

By substituting Eqs. (17), (20), (23), and (24) into shell equilib-
rium equation Eq. (15), the following equation is derived
0

Dyw" s  + Etk* (w — wp) = (25)

ko _ oo

12 k"
5) can be solved as

where wy =
Eq. (2
w = wp + bC;coshyécosné + bCysinhnésingé

where

4 Exb4 tk?
4D,

=

By combining Eqgs. (19) and (21), boundary condition Eq. (23)
can be expressed as

w’(b) = ko + vk, w"(b) =0 (27)
By substituting Eqs. (27) into (26), C; and G, are eliminated, and

the following equation is derived

ko o

12k

2
M (x1;sinhnésingé — y,,coshnécosyé)

(28)
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where

. _ 3(sinhycosy + coshysiny)

In = n2(sinh2y + sin2n)
_3(coshysing — sinhzcosn)

%2 = 12 (sinh2# + sin2n)

)

2.4. Strain energy and bending moment

The strain energy m; stored in the single type I tape spring is
expressed as

b t/2 1
= / / (0% + Weyy) (1 — koz)d.d, (29)
b2

where &y and gy, are the strains along the x- and y- axes,
respectively.

The strain energy per unit length includes two parts: the first
part is the energy for deforming the initial tape spring shell into
the flat plate, and the second part is the energy for bending the flat
plate into a cylindrical shape around the hub with curvature k, that
is,

T = Ty + Ty (30)

Where 7, is the energy for deforming the initial tape spring
shell into flat plate, 7, =& ff’b M,d,; and m;, is the energy for bend-

ing the flat plate into a cylindrical shape, 7;, = — % ff’b M,d,.
By substituting Eqs.(20), (21) and (31) into Eq. (30), the follow-
ing equation is derived:

T = bDy(1 — vxy)k* + bDy (ko + v:k)*(1 — Ar) (31)
On the basis of the minimum potential energy principle, bend-
ing moment M can be obtained as follows

_dm
~dk
By substituting Egs. (31) into (32), the bending moment to be
applied at the end of the single tape spring is derived as
M; = 2bDy (1 — vwy )k + 2bvDy (ko + k) (1 — Ar)
2A4 — Ay

2k

M, (32)

—bD, (ko + v5k) (33)

where

cosh2n — cos2y

'~ p(sinh2y +sin2p)” T (sinh27 + sin2#)*

4sinh2#nsin2n

(a) Initial state

International Journal of Solids and Structures 206 (2020) 236-246
3. Bending of one type II or III tape spring in the M boom

The analytical solution of the local deformation of the single
type II and III tape springs under bending are derived in this sec-
tion. The single type II tape spring under bending is shown in Fig. 5.

3.1. Geometrical relation

The offset distance of the type II tape spring from the central
symmetrical line is s. On the basis of the Kirchhoff-Love hypothesis,
the position vector x in the bending deformed state is given as

z OXo OXo

X=X+ axw

(34)

g 0%
0x><0y

where
Xo=uex+ (y+ue, + (a+w+se;

By substituting Eqgs. (34) into (3), covariant base vectors gy, g
and g, are expressed as

8 =Z=(1+10+kw+kz+ks)e, — kue,;

g = 3—; =1+ —zw")e, + Wey; (35)

8, =% =e,+kue, —we,

3.2. Strain energy and bending moment

By substituting Egs. (35) into (3), the strain is derived as

sxx:%— :\/(1+u+kw+kz)2+(ku)2—l
~U+k(W+z+5) (36)
gl e ew?

w6 T T—koz B
~ U+ z(ko — W) 37)

By substituting Eqgs. (11), (12), (36), and (37) into Eq.(3), the fol-
lowing equations are obtained:

2
Fy= vXFy+EXt(u+kw+ks—%k) (38)
Ext , . /
F, = T [V + vx(U + kw + ks)] — Dyko(vxk + ko —W"))  (39)
— Uy

Zb:R¢0

(b) Deformed state

Fig. 5. Single type II tape spring under bending.
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oM, YW
y = *Tyy =-Dyw (40)
My = Dy [ko (i1 + kw + v, v') + k + vy (ko — W")] )
= K E 4 DyJk+ vy (ko —w")]
M, = —=Dy{vik + ko — W' — ko[v/ + vy (U + kw)]}
g (42)

=tk Dy(vek+ ko — W)

The single type II tape spring is in pure bending deformed state,
and the boundary conditions are expressed as

Fy(b) = 0, My(b) =0, N,(b) = 0 (43)

By substituting Eqs. (38) and (42) into Eq. (15), the following
equations are obtained

D,W" s % + Eytk? (w S (44)

By combining Eqgs. (40) and (42), Eq. (43)can be written as
w’(b) = ko + vik,w'(b) =0 (45)

By substituting Eqgs. (43) and (44) into Eq. (45), the displace-
ment of the type II tape spring is derived as follows

b’ (ko + vxk)
3

o tz k() Oxo

W=T5 % (%11 sinhyésinyé — y,,coshyécosyé)

(46)

The strain energy 7 of the type II tape spring can be written as
follows

k P ko [®
nuzj/,bedy_?O/,bMydy

By substituting Egs. (41), (42), and (46) into (47), strain energy
7y is derived as

(47)

T = bDy (1 — w0y K + bDy (ko + v:k)* (1 — Ay) (48)

The derivative of strain energy 7; with respect to k and the
bending moment My, of the type II tape spring can be derived as

My = 2bDx (1 — vxy)k + 2bw Dy (ko + vxk)(1 — Ay)
2As — Ay
2k

The bending moment has no relation to the reverse curvature based
on Eq. (49). Both type Il and 11l tape springs are opposite bending senses
during the M boom coiling around the hub. Thus, the bending moment
of the type IIl tape spring is similar with the type I tape spring, which is
ignored in this section. The deflection of the type Il tape spring is differ-
ent with that of the type I and III tape springs, but all the deflections
have no effect on the strain energy. Thus, the theoretical bending
moment models of the three types of single tape spring are derived.
Then, the bending moment of the M boom is derived.

— bDy (ko + vik) (49)

4. Bending of six tape springs in the M boom
4.1. Geometrical relation

The M boom consists of four tape springs bonding along one
longitudinal edge, and the four tape springs are mirror-
symmetric. The M boom can be flattened and coiled elastically
and self-deploy by releasing stored strain energy around a hub.
The marks of the tape springs in the M boom are shown in Fig. 6.
The four tape springs in the flattened M boom can be divided into
two parts. The inner part consists of four inner side tape springs,
including two type I and two type III tape springs. The outer parts
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TS6

\ Q

TS2

TS4/ | 4

Fig. 6. The marks of tape spring in the M boom.

consist of two type II tape springs. The marks of the type I tape
springs are TS3 and TS4. The marks of the type II tape springs are
TS1 and TS5. The marks of the type III tape springs are TS2 and
TS6. TS3 and TS4 are symmetric about line bb’, and TS5 and TS6
are symmetric about line aa’. If the length is ignored, TS1 and
TS2 are symmetric about line cc’. What's more, lines aa’ and cc’
are symmetric about line bb’. Therefore, if TS1 and TS2, and TS5
and TS6 are separately considered as a whole, then the integral
tape springs are symmetric about line bb’.

The deformed state geometric diagram of the M boom is shown
in Fig. 7. The central curvature of the four tape springs is k = 1/ao,
the inner curvature of the inner part is ki, = 1/(ap — 2t), and the
outer curvature of the outer part is ko, = 1/(ao + 2t).

The central curvature of the inner part is ks, = 1/(ap — t), and the
inner and outer curvatures of the inner tape spring are k; =1/
(ap — 2t)and k, = 1/ay, respectively. The central curvature of the outer
partis kg = 1/(ao + t), and the inner and outer curvatures of the outer
tape spring are k3 = 1/ao and k4 = 1/(ao + 2t), respectively.

The relationships between the different curvatures are
expressed as

ky =ks =k;

kin =k = ﬁ;

Kour = ka = 155 (50)
kA = ﬁ;

kg = ﬁ;

where ki, k», k3 and k4 represent the curvatures from the inner
to outer tape springs.

4.2. Strain energy
On the basis of the derived strain energy of the single tape

spring in the previous section, the allocation of strain energy for
the M boom (Miyazaki et al., 2015) is given as

Fig. 7. Deformed state geometric diagram of the M boom.



H. Yang et al.
k k

Tt = , Tino + 7— k Touto (51)
Kin Kout

Where 7,0 is the strain energy of the inner part, 7, is the
strain energy of the inner part, and 7, is the total strain energy
of the M boom.

The strain energies 7,,; of the whole parts of TS5 and TS6 and
the TS1 and TS2 are written as

k
kin
Where 7,0 represents the strain energy of TS1 and TS2, and
Tlouro Tepresents the strain energy of TS5 and TS6.
Given that TS5 and TS6 are symmetric about line aa’ and TS1
and TS2 are symmetric about line cc’, the strain energy of the inner
and out part can be written as

k k
Tlinp = ﬁninl + énoutl (53)

k
Tm1 = 7— Tino + k—ﬂ?outo (52)
out

kg
ks

Where 7;,; and 7;,,; represent the strain energies of TS1 and TS2,
respectively; and 7,1 and 7, represent the strain energies of the
TS5 and TS6, respectively.

By substituting Egs. (53), (54) and (50) into Eq.(52), 7t is
expressed as

kg
Tout1 = k Tin2 + 7~ Tour2 (54)

T = Kin (,(1 Tin1 + ¢ [ 7-Coutl) + kout (,(3 Tlin2 + ke noutz)

_ (1-2tk? 1-2tk 142tk (1+2tk)?
Tk inl +IE Ttk Tloutl +5 Ttk Tuin2 T gk Tout2

(55)

Given that TS3 and TS4 are symmetric about line bb’, the strain
energy 7, of the TS3 and TS4 can be written as

kn +k
k™ Tk,

Where m;,3 and 7y, represent the strain energies of TS3 and
TS4, respectively.
By substituting Egs. (50) into Eq. (56), 7,y is expressed as

T2 = Toout3 (56)

Tlin3 + 7— Tourz = (1 - 2”()7'5,,13 + ( + Ztk)nouﬂ (57)

k k
kin k ut

The total strain energy m,, of the M boom is derived as

T =

Tim = Tm1 + T2 (58)

By substituting Egs. (55) into Eq. (57), &, is expressed as

L (1-2tk’ Ll-2ek 1420k
m — .l — tk inl 1 — tk out1 .l T tk in2
1+ 2tk)?
%nwz + (1 = 2thk)Ttin3 + (1 + 2tK) Toues (59)

On the basis of Egs. (31) and (48), the strain energies Ty, Toy¢1,
Tin2, Tout2» Tin3, aNd o3 Of respective tape springs TS1, TS2, TS3,
TS4, TS5, and TS6 are analyzed as follows.

cosh21;,—€0s2115
117 (sinh2n;5+sin21q;) ?

= Aq(k, b1, ko) = A1 (k, b1, —ko) =

cosh2#g3 —C0S21p3
1g3 (sinh21y3-+sin21y3)

= Ai(ks, by, —ko) =

BlZ = Al (kl ’ b27 kO)
P = ko + ?)Xk1 Bo1
Bos = A1 (k,1,0) =

Biz =A; (kl ,1,0) =

B43 = Al (k47 l7 0) =
I~)4 = 7’(0 + TJXk4 B42
_ 4Bl

4 [Exltk,? 4 [Exb i

cosh2ry3—€0s213
113 (sinh21,3-+sin2#;3)
cosh21)p; —€0S21gq
1o1 (sinh2n4 +sin2ny )
cosh21)43—C0S21143
N3 (sinh2i)43-+5in21143)

cosh2ny —cos2iy4y D_ 4 Exby*tky?
14 (Sinh211 45 +5in211 47 ) P=—ko+ vk 1y = D
y

_ 4 fEltks?
M3 = 4D, 01 = 45, 03 = \/"4p, 53 =\/"o,
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(i) strain energy m;,; consists of a circle with positive curvature
k1, central angle ¢, and a web with width of . m;;; can be
expressed as

Tim = (K1, ba, ko) + 7(ky, 1, 0) (60)
By substituting Eqgs. (31) into Eqgs. (60), 7, is expressed as

Tlim :b25X(1 — UXZ/y)k12 +b25y(k0+ ka1 )2(1 —A1 (I{],bz,ko))

z ~ 61
+ID (1 = vy ki* + 1Dy (v3k1)* (1 - A (k1,1,0)) 1)

(ii) strain energies 7,1 and Ttou3 consist of a circle with nega-
tive curvature k, central angle ¢4, and a web with width of
l. TTour1 and 7,3 can be written as

Toout1 = Tout3 = TE(k, bh *kO) + 7'E(k, 17 O) (62)

By substituting Eqs. (31) into (62), Toye1 and 74,3 are expressed
as
Toourt = Toues = b1 D (1 = 0x0) K +b1 Dy (—ko + vk)* (1 — Ay (k, b1, —ko)) (63)
+IDx(1 - w3y )k + 1Dy (v:k)* (1 - Ay (k,1,0))

(iii) strain energies m;;; and 7,3 consist of a circle with positive
curvature k, central angle ¢, and a web with width of L
Tz and 7,3 can be written as

Ting = Tinz = T0(k, b1, ko) + 1(k,1,0) (64)
By substituting Eqs. (31) into (62), 7, and 7,3 are expressed as
Tin2 = Tin3 :b1 Ex(l — Z/xl/y)k +b1 k0+l/xk) (1 7A1 (k,b],ko))

~ 65
+IDX(1—vxvy)k2+lDy(1/Xk) (1—Aq(k,1,0)) (%5)

(iv) strain energy 7., consists of a circle with negative curvature
k,, central angle ¢,, and a web with width of I. 7., can be
written as

Tour2 = To(Kq, b2, —ko) + 7(k4,1,0) (66)
By substituting Eq.(31) into Eq.(66), 7oy is expressed as
Tout2 = bZﬁx(l — Uy Z/y)kzlz +b25y(7k0 + ka4)2(] 7A] (k4,b2, 7](0))
1D (1 = vxvy)ka® + 1Dy (vxka)* (1 - Ai (ka,1,0))

By substituting Eqgs. (61), (63), (65) and (67) into Eq. (59), 7,y is
expressed as

(67)

T = 1122: {sz Ski? +b2DyP1 (1=Bi) +1D,Ski? +1Dy(7/xk1) (1*313)}

T2+ th) [leXSk +b1Dyp2(1—Byy) +1D,SI* +1D, (0,k)* (1 7303)] 68)
12—tk [blﬁ Sk? + by Dy P> (1 — By ) + 1D, SI® + 1D, (0,k)* (1 7303)}

NNIES [bZD Ska? +b,D, P, (l7B4z)+113x5k42+lﬁy(vxk4)2(17343)}

Where

S=1-wv,
ﬁ] = — ko + ka1

P = ko + vk

4 [Exbyttk,?
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4.3. Bending moment theoretical modeling

Combined with Eq. (68), and on the basis of the minimum
potential energy principle, bending moment M,, can be obtained
as follows:

dr
dk

By substituting Eqgs. (59) into (69), the following equation can
be derived:

M

(69)

My, = =2t + (1 — 2tl<) in3 + 2tToues + (1 + 2tk) out3

t 142tk 4(1+th)?
+ (1+tk)2 Tlin2 + Trtk Mina (1+tk)? tnoutZ + 1+tk Mou[2 (70)
1-4(1- tk
a- tk tnml + 1 rk Mm] + (1- tkznoutl + ] tk Moutl

Where Mou[ly Mimv Mout2: MinZy Mout3 and Min3 repl'esent the
moments corresponding to Toutt, Tin1, Tour2s Tin2, Tours and Tin3,
respectively.

(i) on the basis of Eq. (69), Mj;;can be written as

1
ki (1 - 2tk)?

_ 1
(1-2tk)
(71)

By substituting Egs. (33) into (71), the following equations can
be derived

My = = [M(k1, ba, ko) + M(ky,1,0)]

Mins = [szf)x(l — 05y )k + 2by 0Dy (ko + ks (1 = Aq (ki b, ko))
2A4(k1, by, ko) — Aq(kq, b2, ko)

,bzf)y(ko + vykq) 2%
+ 21Dy (1 — vywy) ki + 21Dy (vek1) (1 — Ay (k1,1,0))
~ Ag(ki,1,0) = Ay (ky,1,0), 1
— 21D, (veky > 22 ] 72
y(” 1) 4’(1 J(172tk)2 ( )

(ii) on the basis of Eq. (69), Moy and Myy3 can be written as

anout] _ 87Tout3 _
ok

ok

By substituting Egs. (33) into (71), the following equations can
be derived

Moutl = Mout3 =

M(k, by, ko) + M(k,1,0)  (73)

Moutl :MouB = Zbl bx(l —Ux Uy)k+2b1 vxﬁy(*ko + yxk)(l *Al (k,b1 5 7](0))

b 5y(,k0 + ,,Xk)Z A4<k.b1;—ko»z—kAl(k;bl.—ko))
12D (1 = v vy )k + 21w, Dy (v:k) (1 - As (k,1,0))
715}/ ( yxk>2 M(k'l'olﬂ:\l (k,1,0)
(74)
(iii) on the basis of Eq. (33), Mi,» and My,3 can be written as
om; OT;
Minz = Mins = 8—;:2 = a;<"3 = M(k, by, ko) + M(k,1,0) (75)

By substituting Egs. (49) into (71), the following equations can
be derived

Miny = Mins = 2b; D (1 — vyvy)k +2b 0D

—bl

421D, (1 — vxwy)k + 2lv,Dy (k) (1 — Ay (k,1,0))
_ ll~)y (0x k)z A4(k.l.0)2—kA1 (k.10)

(ko + ka)(] - Ay (](" b, , kO))
(ko + vk)? Aalkbrko) A (kb ko))

(76)
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(iv) on the basis of Eq. (33), Moy, can be written as

1
(1 + 2tk)?

_ 1
(1 + 2tk)?
(77)

By substituting Eqs. (49) into (71), the following equations can
be derived

1% Tlout2

MautZ = 8’(4

= [M(k4, b27 —ko) + M(k4, l, 0)]

Muutz = [szﬁx(] - 7/><7)y)k4"!‘2l72 7/xf)y(_kO"!‘ 7/xk4)(1 —A1(k47b2,—k0))
7b25y(7k0+I/Xk4)2A4(k4’b2’_k0)_Al(k‘l"bz’_ko)

2k,

+2ID, (1 — v vy ) ke + 210, Dy (v:ka) (1 — A (ks 1,0)) — Dy (veka)

XA4(k4,l,0)—A1(k4,l,0)} 1 2 78)
2kq (1+2tk)

By substituting Eqs. (72), (74), (76) and (78) into (70), the pure
bending moment M,, of the M boom can be derived

1-4(1-tk)? 30 a2
Mm == tkt Un + gl +2 kl 3: LA 13 + (2 + th)34
( (79)
28312 1482k 4(1+tk)?
— it <(1Itkt His + (2 = th)Js6 + 1tk ~thy + s
where

Ji1 = baDySki* +byDyP1?(1 — Byy)+IDySki* + 1Dy (vxk1)* (1 — Bys),
Ji2 =Jo1 +Joad3a =Jo3 +Joar Joa = 21D:Sky +21Vx5y(yxl<1)(1 —By3)—
Coodss=JosHosr  Jor=2b2DySki+2byvxDyPy(1-Biz)~lor  Jy3=b1Dx
SK? b1 Dy P” (1—Boy ) +1DSK>+1Dy (04k)>(1-Bos),  Joy=2b DySk++2b;
v.Dy,P(1—Bo1) —lo3,  J15 =b1DxSk* + b1 D,P*(1 — Boy) +ID,Sk* +ID,
(vk)*(1 = Bo3) Jos = 2b1 DSk +2by Dy P(1 —Bo1) — (o5, Jos = 21D, Sk+
2lvyDy(vxk)(1 —Bgz) — Jos =2IDySk +21v Dy (vik)(1 — Bo3) Jso =
Jos +Joa)17 = baDxSks> + b3 DyPa’ (1~ Baz) +1DSks + Loy Jog = 2b DySka +2b,
0,D,P4(1—Ba3) —Cog, Joo =21DxSka + 212Dy (v,ks)(1 — Bys) =b,D,

lop= lﬁy(”x"] )2 Ci3— 313 o3 =bs D P 2 Con ’BUIJ k)2 Coaszﬁozv

Coas — Co6»

- {09- lO]

C04 :lﬁy(”x

2Cp-B
p] 122k] 12,

e b D p2Cou-Bm) + 2 Co3 B, _ 2 —hD
os =byDyP?fofou) (o = lDy(ka) CoaBor ) = 1Dy (vxka)* (1 —Bas), Log =baDy
~ 2 ~ . . . .
Cap—Bsy » 2 Cy3-Bys ___4sinh21y,5in2174, ___4sinh213sin21y3
P4 Py v 09T lDy(Z)sz;) 2k Cia= (sinh2#y5 +sin2175)%’ T (sinh2#3+sin213)?"

4sinh214,sin214,
(sinh2145 +sin21745)%’

4sinh21435in21743

___4sinh2nq;sin2770;
(sinh2#43+sin21743)%" -

Cypp =
42 (sinh2#g; +sin2r; )%’
4sinh211935in21)93

(sinh21g3 +sin2rg3)%"

C43 = CO] C03 =

4.4. Peak bending moment

The M boom is made by laying four 0.0375-mm-thickness plies
[45°/—45°]/—45°/45°]; of T300 carbon fiber reinforced polymer
impregnated with epoxy resin, and the thickness of each tape
spring is 0.15 mm. The material properties of the M boom are
derived based on classical laminated plate theory.

(i) Material parameter of the single ply

The relationship between the stress and strain of the single ply
is written as follows:

01 & Qu Qi O &
gy p=1[Q] & p=|Qu Qp O & (80)
03 V12 0 0 QGG Y12
where [Q] is the reduced stiffness matrix, Qq; = Hﬁ#
_ __vpE v E _ E _
Qi =Qu = =170 Q2 = %5, Qe = G,

U :%7}12; E; and E, are the elasticity moduli along the fiber

direction and its vertical direction, respectively; G is the shear
modulus; and v, and v,; are the Passion’s ratios.
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Given the different ply angles, the relationship between stress
and strain must unify to one natural coordinate system. When
the main directional coordinate system of the ply material is at
arbitrary angle 0 with the natural coordinate system, the relation-
ship between stress and strain is changed to

Ox . Ex B Ex
oy ¢ =MQI(M) & = [Q]4 &
0, ny yxy

Qn Qz O Ex

Qxn Qp O &

0 0 Qel '™

cos20 sin6 2sindcoso

where [T] = | sin%0 cos?0  —2sinfcosf |-

—sinfcos0 sinfcosd cos20 — sin’0
Then, the elements in the newly reduced stiffness matrix are
written as follows:

Q11 =Q,;c05%0+2(Q 45 +2Qgs)sin®0cos?0 + Q,,sin0

Quy = (Q41 + Qs — 4Qgq)sin?0c0s20 + Q1 (Sin“@ + cos49)

Qy = Qy;sin*0+2(Q 4, +2Qgs)sin®0cos?0 + Q,,cos0

(_216 =(Q11 — Q12 —2Qep)sin0cos® 0+ (Q12 — Qa2 +2Q65)5m39C059
ézs =(Q11-Qi2— 2Q66)5in39C059+ (Q12 — Q32 +2Qes)sindcos?0

éas =(Q11+Q2— Q12— ZQGS)SiHZ 0c0s?0+ Qes (sin40 + C0549>
(82)

(ii) material parameter of the integral plies

The M boom is made by laying four 0.0375-mm-thickness plies
[45°/-45°/-45°/45°]1 of T300, which is a symmetrical laminate, and
the relationship between the internal force and the strain is as
follows:

N, An A O &
Ny p=[An Ayn 0 || & (83)
ny 0 0 Ass y)?y

no
where Aj = > (Q“)’ (Zk — Zk_1), tk = Zx — 2,1 is the thickness
k=1 8
of the kth ply, and the total thickness is t.

The material properties of each ply of the M boom are listed in
Table 1. By substituting the material properties into Eq. (80), the
converted reduced stiffness matrix is derived as

JQn Qs O 11453 177 0
[Q]=|an @ 0 |=| 177 592 o0 (84)
0 0 Qg 0 0 45

By substituting Egs. (84) into (82), [Q]k can be derived. Then, it

is substituted into Eq. (83), and the relationship between the inter-
nal force and the strain is derived as

Table 1

Material properties of the single ply T300.
Material properties Values
Longitudinal stiffness E;/GPa 114
Transverse stiffness E,/GPa 5.89
Shear stiffness G/GPa 4.5
Poisson’s ratio v 0.3
Density p/kg/m* 2500
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Ny 3554t 26.50t 0 P
N, » = 2650t 3554t 0 € (101)
N,y 0 0 2967t] |9

Then, the integral elasticity modulus of the M boom can be
derived as E, =E, = 34.99Gpa. The geometrical parameters of
the M boom are b; =5 mm, b, =15 mm, [ =5 mm, R=20 mm and
t=0.15 mm which are substituted into Eq. (79). The theoretical

peak bending moment M}, of the M boom is derived as

ML = My, = 0.33Nm

5. Experimental evaluation

The M boom samples and the experimental equipment were
processed. The experimental equipment is shown in Fig. 8. One
end of the M boom was clamped at the hub. The push-pull gauge
was used to measure the peak bending force at the end of the rod,
and the other end was fixed to the axis of the hub. The M boom was
a thin-walled structure, which is difficult to manufacture. The sin-
gle tape spring with one web was processed. Then the four tape
springs were bonded together in a vacuum chamber. The two
M-boom samples were developed first. The other two M—boom
samples were fabricated by modified processing method because
some crack was appeared when the M booms were bended several
times. The four M booms are shown in Fig. 9. Average bending peak

force F, multiplies by the length [, = 0.108 m of the arm to derive
the bending peak moment M?, of the M boom.

The curve of the bending force versus the experimental time for
one measurement is shown in Fig. 10. The bending force first
increases to a peak value of 3.10 N and then suddenly reduces to
a stable value. The bending force value of the four M booms was
tested 20 times. The peak bending force during one measurement
is shown in Fig. 11, and the bending force values F, in 20 measure-
ments are listed in Table 2.

According to Table 2, average bending peak force Fj is 3.043 N.
Then, the average bending peak moment M", of experiment is
derived as 0.32869 Nm. Theoretical bending peak moment M,, is
0.33Nm based on the bending moment theoretical model in Sec-
tion 4. The relative error between the theoretical and experimental
results of the peak bending moment is —0.396%, verifying the accu-
racy of the theoretical model. The discrepancy can be attributed to
the start of the M boom’s bending from the completely natural sta-
tus in the theoretical modeling, but one end of the M boom is flat-
tened before the push-pull gauge is measured in the test, and the
fibers are broken and failed after the M boom wrapped around the
hub many times, reducing the bending stiffness and the peak bend-
ing moment.

Fig. 8. Experimental equipment.
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Fig. 9. Four M booms.
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Fig. 10. Curve of the bending force vs. the experimental time for one measurement.
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Fig. 11. Bending force during twenty time measurements.

6. Conclusions

The covariant base vectors of the geometrical relation of the sin-
gle tape spring was analyzed by establishing three coordinate sys-
tems. The constitutive relation of the single tape spring between
stress and strain was expressed based on the Kirchhoff-Love
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Table 2
Bending force values of 20 measurements.

Sample code  Number Peak force Fy/N  Peak bending moment M?, /Nm
M-1 1 2.948 0.3184
2 2933 0.3168
3 2.823 0.3048
4 2.969 0.3049
5 2.713 0.2930
M-2 1 2.864 0.3093
2 3.093 0.3340
3 2.611 0.2820
4 2.812 0.3037
5 2.869 0.3089
M-3 1 3.380 0.371
2 3.289 0.361
3 3.269 0.359
4 3.403 0.374
5 3.171 0.348
M-4 1 3.253 0.357
2 3.189 0.351
3 2.986 0.328
4 3.250 0.357
5 3.044 0.335

hypothesis. The equilibrium and controlling equations of the single
tape spring were modeled based on Calladine shell theory. Then
the strain energy of the single tape spring was modeled by
integration.

The strain energies of each type tape spring were derived by the
method for single tape springs. The total strain energy of the M
boom was calculated by the sum of those of different type tape
springs. The closed-form expression of the bending moment model
of the M boom was established based on the minimum potential
energy principle and the peak bending moment was derived by
maximizing the theoretical model of the bending moment.

The four M—boom samples and the experimental equipment
were processed. The peak bending moment of the M boom can
be derived by 20 measurements of the samples. The experimental
and theoretical peak bending moments are 0.32869 and 0.33Nm,
respectively. The relative error between the theoretical and exper-
imental results is —0.396% validating the accuracy of the theoreti-
cal model for the peak bending moment of the M boom.

The theoretical model derived in this article can be applied to
obtain the bending deformation and peak bending moment of
the tape springs and the M booms. In addition, the theory is of
great important for designing membrane deployable structures.
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