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Abstract

The continuum notions of effective mechanical quantities as well as the conditions that give meaningful deformation
processes for homogenization problems with large deformations are reviewed. A continuum homogenization model is
presented and recast as a Lagrangian-based approach for heterogeneous media that allows for an extension to discrete
systems simulated via molecular dynamics (MD). A novel constitutive relation for the effective stress is derived so that
the proposed Lagrangian-based approach can be used for the determination of the ‘‘stress–deformation’’ behavior of
particle systems. The paper is concluded with a careful comparison between the proposed method and the Parrinello–
Rahman approach to the determination of the ‘‘stress–deformation’’ behavior for MD systems. When compared with
the Parrinello–Rahman method, the proposed approach clearly delineates under what conditions the Parrinello–Rah-
man scheme is valid.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The objective of this paper is to formulate a Lagrangian-based approach to the determination of the
stress–deformation behavior of continua as well as of particle systems, where by ‘‘stress–deformation’’
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behavior we mean the stress (or deformation) history that results from a prescribed deformation (or stress)
history. Specifically, we intend to present a Lagrangian-based approach that can be implemented using
molecular dynamics (MD) and that can deliver the stress response of solid systems in a regime of large
deformations. For this purpose, homogenization theory gives one a framework for constructing a scheme
that, if possible, will lead to a valid constitutive relation that is in accordance with a boundary value prob-
lem defined beforehand. Excellent discussions on homogenization theory, although in a context of infini-
tesimal deformations, are, for example, the works by Suquet (1985, 1987) and Maugin (1992). Based on
these discussions, the first step in constructing a homogenization scheme involves the choice of a represen-
tative volume element (RVE) of the heterogeneous material under study, i.e., a section of the material that
can be taken as a representative sample for constructing an equivalent homogeneous material that resem-
bles and behaves as the original material in some specified average sense. Consequently, this step introduces
two levels of description of the material: one at the macroscopic scale and the other at the microscopic
scale. It is the objective of a homogenization scheme to properly link the material theories at these two
scales. In doing so, one has to be aware of the relation between the macroscopic and microscopic quantities,
the initial/boundary value problem (I/BVP) of the RVE, the conditions that the RVE can be subjected to,
and the constitutive law at the microscopic scale. In addition, some useful guidelines that homogenization
theory imposes are that at the microscopic scale continuum mechanics concepts are applicable, and that
the macroscopic or effective quantities are taken to be the boundary averages of their microscopic
counterparts.

In this context, and as stated earlier, the goal of this paper is to use homogenization theory to derive a
form of a constitutive relation for an effective mechanical variable that is appropriate for use in MD. For
this purpose, the authors have carefully re-examined the definitions of effective deformation gradient and
stress tensors (see Costanzo et al., 2004), and defined the properties that give meaningful deformation pro-
cesses as well as the sufficient conditions for them to hold in an RVE undergoing large deformations (see
Costanzo et al., 2005). These concepts are of crucial importance for establishing the homogenization pro-
cedure. Moreover, a Lagrangian-based approach will be formulated for presenting the equilibrium equa-
tions imposed on the RVE as well as for quantifying its effective stress from the microscopic variables
and prescribed mechanical quantities.

The authors� interest lies also in understanding and quantifying average mechanical properties of mate-
rials that can be utilized in applications related to areas of nanotechnology. More specifically, in how, for
example, MD simulations are formulated for calculating time and space averages of properties of materials
represented by a system of particles behaving under a specified I/BVP. In this context, the main objective of
this paper is to offer a rigorous derivation of a homogenization formalism applicable to both continua and
particle systems alike. Hence, although we do not present any MD calculations, we will derive a new ana-
lytical MD framework. This framework consists of a Lagrangian-based scheme that we rigorously derive
from ‘‘first principles’’.1 Furthermore, we will offer a formal comparison between our scheme and the
Parrinello–Rahman scheme, one of the widely used Lagrangian-based methods applicable to the study
of the stress response of particle systems. For the sake of generality, we choose to develop a homogeniza-
tion scheme in a context of finite deformations so as to study deformation histories that take a chosen mate-
rial element from its reference configuration all the way to failure. We believe that such a choice is the
appropriate one since at the spatial scale in which MD is applicable, that is, at the nanoscale, and depend-
ing on the loading conditions, one can more easily investigate deformations of the material that will more
likely be of similar magnitude to the material�s dimensions and, therefore, the deformations can no longer
be taken to be infinitesimal.
1 We use the expression ‘‘first principles’’ in the context of classical analytical mechanics, as opposed to quantum mechanics.
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Finally, some sections of this paper are a review of the authors� work that has been published and dis-
cussed in detail in Costanzo et al. (2004, 2005). However, the primary results presented herein have not been
included elsewhere and, wherever there is repetition, it is only in the interest of clarity and to present a self-
contained discussion.
2. Notation

The derivations presented in this paper are carried out using direct notation following common conven-
tions (see, e.g., Bowen, 1989; Chadwick, 1999; Gurtin, 1981; Spencer, 2004). However, for completeness, in
this section we provide the index notation corresponding to the chosen direct notation.

We will denote by E the standard three-dimensional Euclidean point space, and by V the corresponding
translation vector space. Vectors, i.e., elements of V, will be denoted by lower-case bold italic Roman or
Greek letters, e.g., n or v. We adopt the standard definition of scalar product of two vectors a and b, and
will denote it by a Æ b. For simplicity, as basis forV we choose an orthonormal basis {e1,e2,e3}, i.e., a triplet
of vectors such that ei Æ ej = dij (i, j = 1, . . . , 3), where dij = 1 if i = j and dij = 0 if i5 j. The components of a
vector a with respect to this basis will be denoted by ai (i = 1, . . . , 3) and can be computed as follows:
ai = a Æ ei. Hence, using index notation and adopting the standard summation convention according to
which the repetition of an index in an expression implies a summation with respect to that index, we have
that the scalar product of two vectors a and b can be represented as aibi.

We will denote the tensor product of two vectors a and b by a � b. The action of the tensor product of
two vectors a and b onto a vector q will be denoted by (a � b)q and will be defined in the standard fashion,
i.e., (a � b)q = (b Æ q)a. As such, the tensor product of two vectors a and b is a linear operation from V into
V since it maps any vector q into the vector (b Æ q)a. We will denote by LinðVÞ the collection of all linear
functions from V into V and we will refer to LinðVÞ as the space of second order tensors. Elements of
LinðVÞ will be denoted by upper-case sans serif letters such as A. Following Gurtin (1981), the ijth com-
ponent of A is defined as Aij = ei Æ Aej. We adopt the standard definitions of all the usual tensor algebra
operations. For example, for the product of two tensors A and B we write AB and its ij-component is deter-
mined by (AB)ij = AikBkj, where the expression (Æ)ij denotes the ij-component of the term in parentheses.
Similarly, we write A Æ B = AijBij for the scalar product of two tensors, tr(A) = Aii for the trace of a tensor,
and (Ab)i = Aijbj for the action of a tensor on a vector.

The material system under consideration in its deformed configuration will be denoted by X and in its
reference configuration will be denoted by Xj. Both X and Xj are assumed to be regular subsets of E. The
boundaries of X and Xj will be denoted by oX and oXj, respectively. The volumes of X and Xj will be de-
noted by Vol(X) and Vol(Xj), respectively. The boundaries oX and oXj are oriented by the outward unit
normal vector fields n and nj, respectively. The position of points in the reference configuration will be de-
noted by v and in the deformed configuration by x.

The operators �Div� and �div� indicate the divergence operators with respect to v and x, respectively. For
example, if b is a vector field2 we have that Divb = obi/ovi, whereas divb = obi/oxi. Similarly, if A is a tensor
field, then (DivA)i = oAik/ovk and (divA)i = oAik/oxk.

The operators �Grad� and �grad� indicate the gradient operators with respect to v and x, respectively. For
example, if b is a vector field we have that (Gradb)ij = obi/ovj, whereas (gradb)ij = obi/oxj.

Finally, the symbol , will indicate a definition.
2 By ‘‘field’’ we mean a ‘‘function of position’’. As such, whenever x is a one-to-one function of v, fields can be viewed as functions of
v or x.
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3. Effective kinematic and kinetic quantities

A proper homogenization scheme must clearly identify the set of primary variables that will be used at
each level of description of the material as well as define their relationships. At the local level, the primary
measure of deformation is the point-wise deformation gradient tensor F, whose determinant must be posi-
tive for it to represent an admissible deformation process (see, e.g., Gurtin, 1981). The stress at the local
level is represented, in the reference configuration, by the point-wise first Piola–Kirchhoff stress tensor S,
and, in the deformed configuration, by the point-wise Cauchy stress tensor T; these two tensors are related
by S = det(F)TF�T. The use of these mechanical quantities corresponds to the fact that this work is in a
context of finite deformations. At the macroscopic scale, to the best of the authors� knowledge, the defini-
tions of effective deformation and stress in a regime of large deformations were first systematically discussed
by Hill (1972) (see also Hill, 1984). Hill (1972) points out that the macrovariables must be defined in terms
of the information given on the boundary of the RVE. However, the definitions he presents for effective
deformation and stress are given as volume averages, which he then relates to boundary averages. The
authors have adopted Hill�s principle (not Hill�s definitions), which is embraced by a good portion of
the micromechanics community (see, e.g., Maugin, 1992; Stolz, 1986; Suquet, 1985, 1987), according to
which a fundamental requirement to be met by acceptable notions of effective kinematic and kinetic quan-
tities is that they be defined as boundary averages instead of volume averages. Consequently, given a
bounded RVE in its reference configuration Xj subject to a motion x = x(v, t), we denote the effective defor-
mation gradient tensor by sFt and define it to be
sFt ,
1

VolðXjÞ

Z
oXj

x� nj dA. ð1Þ
Along with sFt, our primary measure of effective deformation, we introduce two measures of effective
stress, the effective Cauchy stress tensor and the effective first Piola–Kirchhoff stress tensor. These quantities
are denoted by sTt and sSt, respectively, and are defined as follows:
sTt ,
1

VolðXÞ

Z
oX
ðTnÞ � xda; ð2Þ
and
sSt ,
1

VolðXjÞ

Z
oXj

ðSnjÞ � vdA. ð3Þ
In addition, as it plays a crucial role in the determination of the relationship between sTt and sSt, we offer
the following definition of effective inverse deformation gradient tensor, which we denote by sF�1t:
sF�1t ,
1

VolðXÞ

Z
oX

v� nda. ð4Þ
Before continuing, it is important to mention that the authors are not aware of any work presenting a def-
inition of sF�1t.

The definitions presented in Eqs. (1)–(4) can be related to corresponding volume averages (Costanzo
et al., 2004, 2005; Hill, 1972). To illustrate this, assume the RVE to be regular and the deformation process
to be smooth. Then a straightforward application of the divergence theorem to Eqs. (1) and (4) yields
sFt ¼ 1

VolðXjÞ

Z
Xj

FdV and sF�1t ¼ 1

VolðXÞ

Z
X
F�1 dv; ð5Þ
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respectively. Furthermore, if to these assumptions one adds that the underlying deformation process is gov-
erned by divT = 0 (or DivS = 0), i.e., by a quasi-static form of the local balance of linear momentum with-
out body forces, then an application of the divergence theorem to Eqs. (2) and (3) allows one to show that
sTt ¼ 1

VolðXÞ

Z
X
Tdv and sSt ¼ 1

VolðXjÞ

Z
Xj

SdV ; ð6Þ
respectively. However, if the deformation process is fully dynamic, as it is in an MD simulation, then the
relations given in Eq. (6) are no longer valid and a time average operation is required for all effective quan-
tities. For a discussion of the forms taken on by the effective stress tensors in fully dynamical processes, see
Costanzo et al. (2004, 2005).

The definitions of effective kinematic and kinetic quantities presented above, i.e., Eqs. (1)–(4), do not
guarantee that at the macroscopic scale the deformation process of the equivalent homogeneous material
will be physically meaningful. The authors have carefully discussed this issue in Costanzo et al. (2004,
2005), and in order to attach physical meaning to the above effective quantities the following definition
has been proposed:

Definition 1. By a large deformation process with meaningful space averages we mean a deformation process
enjoying the following properties:

(1) sFt�1 = sF�1t, with det(sFt) > 0;
(2) Vol(X) = det(sFt) Vol(Xj); and
(3) sSt = det(sFt)sTtsFt�T.

This definition is motivated by a desire to have effective quantities that formally behave just like their
local counterparts. Consequently, it sets the essential properties that the effective quantities must obey in
order for them to represent a physically meaningful large deformation process. This leads one to the fol-
lowing question: what physical conditions on the RVE allow one to work with meaningful effective kine-
matic and kinetic quantities? The answer to this question will be presented in the next section, and has been
carefully discussed in Costanzo et al. (2005). It concerns a detailed discussion of the boundary conditions
that one can assign to the RVE. In particular, we have focused on the three ‘‘canonical’’ sets of boundary
conditions that are widely accepted by the homogenization community (see, e.g., Suquet, 1987), i.e., uni-
form strain, uniform stress, and periodic.
4. Boundary conditions and meaningful effective quantities

The three ‘‘canonical’’ sets of boundary conditions presented herein are a generalization of those used in
a context where the deformations are taken to be infinitesimal. It is important to mention that they do not
necessarily yield a well posed boundary value problem due to the nonlinear nature of the problem at hand.
However, since this paper does not deal with any specific homogenization problem, all the derivations to be
presented are developed under the assumption that the underlying problem is well posed.

4.1. Uniform strain boundary condition

The first boundary condition typically invoked in homogenization is usually called the uniform strain

boundary condition. In the present context, a bounded RVE that behaves under the uniform strain bound-
ary condition is one such that
xðv; tÞ ¼ F̂ðtÞv for v 2 oXj; ð7Þ
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where, for all t of interest, F̂ðtÞ is a prescribed second order tensor with positive determinant. Note that
quantities with hats will always be considered to be prescribed.

4.2. Uniform stress boundary condition

The second boundary condition typically invoked in homogenization is usually called the uniform stress

boundary condition. In the present context, a bounded RVE that behaves under the uniform stress boundary
condition is one such that
Tðx; tÞnðx; tÞ ¼ R̂ðtÞnðx; tÞ for x 2 oX; ð8Þ
where, for all t of interest, R̂ðtÞ is a prescribed symmetric second order tensor.
4.3. Periodic boundary condition

The third boundary condition typically invoked in homogenization is usually called the periodic bound-
ary condition and its definition is somewhat more technical than the previous two given above. In fact, this
condition is not a boundary condition in a strict sense in that it does not prescribe the boundary values of
the position or traction fields. To view a more detailed presentation of the technical issues concerning this
condition please refer to Costanzo et al. (2005). Nonetheless, it is important to mention that this condition
is only meaningful when the domain Xj is a periodic cell, that is, a domain that can be ‘‘stacked’’ along three
(nonparallel) directions so as to fill E completely. Furthermore, it will be understood that a field is Xj-peri-
odic or Xj-anti-periodic, when, on opposite faces of the boundary of the domain Xj, the field has equal
values or values that are of opposite sign, respectively. In the present context, a bounded RVE that behaves
under the periodic boundary condition is one that obeys the following two conditions:

(1) the deformation function x(v, t) can be given the form
xðv; tÞ ¼ F̂ðtÞvþ ~uðv; tÞ; ð9Þ

where, for all t of interest, F̂ðtÞ is a prescribed second order tensor with positive determinant and ~uðv; tÞ
is an Xj-periodic displacement vector field; and

(2) the boundary traction field Snj is Xj-anti-periodic.

4.4. Propositions concerning effective quantities

The three propositions to be presented in this subsection have been proved in Costanzo et al. (2005), and
are of crucial importance for establishing the homogenization procedure. The first two propositions con-
cern the idea that by enforcing certain boundary conditions it is possible to control the effective value of
a target quantity. The third proposition answers the question posed at the end of Section 3, and its main
consequence is that it restricts one to use only two of the three ‘‘canonical’’ sets of boundary conditions if
one is to work with meaningful effective quantities in a context of finite deformations.

Proposition 1. For any regular, bounded, and simply connected RVE, a smooth deformation process
complying with either uniform strain or periodic boundary conditions is one such that
sFt ¼ F̂; ð10Þ
that is, one can control the effective deformation gradient tensor via the prescribed F̂.



Fig. 1. Two-dimensional schematic of the decomposition formula given in Eq. (12).
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Proposition 2. For any regular, bounded, and simply connected RVE, a smooth deformation process under
uniform stress boundary conditions is one such that
3 He
sTt ¼ R̂; ð11Þ

that is, using the uniform stress boundary condition one can control the effective Cauchy stress tensor via the

prescribed R̂.

Proposition 3. For any regular, bounded, and simply connected RVE, any smooth deformation process under

uniform strain or periodic boundary conditions enjoys all three properties stated in Definition 1.

Remark 1 (X* configuration). As it will be crucial for performing the proof of the central claim of this
paper, we need to mention that in proving Proposition 3 an ad hoc intermediate configuration of the
RVE, denoted by X*, was utilized. In particular, we used the following decomposition formula to relate
the position fields in the X and X* configurations:
xðv; tÞ ¼ F̂ðtÞx�ðv; tÞ. ð12Þ

Recalling that the tensor F̂ can always be chosen to belong to LinþðVÞ3 and recalling that F 2 LinþðVÞ, we
have that the deformation gradient F* of the motion x*, given by
F�ðv; tÞ ¼ F̂
�1ðtÞFðv; tÞ; ð13Þ
is also a member of LinþðVÞ. Since F� 2 LinþðVÞ, the motion x*, depicted in Fig. 1, is admissible under the
uniform strain and periodic boundary conditions. The decomposition in Eq. (12) enjoys another important
property, namely that the motion x� satisfies the same type of boundary conditions satisfied by the motion
x. Specifically, for uniform strain boundary conditions we have that
x� ¼ v 8v 2 oXj. ð14Þ
re, LinþðVÞ denotes the subset of LinðVÞ characterized by tensors with positive determinant.
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In other words, the motion x* is the identity map for points on the boundary of Xj. For periodic boundary
conditions, we have that
x� ¼ vþ u� 8v 2 Xj; ð15Þ

where u� ¼ F̂

�1
~u is Xj-periodic. Therefore, on oXj, x* behaves like the identity map modulo a periodic dis-

placement field. Under both uniform strain and periodic boundary conditions one can readily show that the
effective deformation gradient tensor for the motion x* is the identity tensor, i.e., sF�t = I.
5. A Lagrangian-based approach

As described in the works of Suquet (1985, 1987) and Maugin (1992), a homogenization procedure re-
quires the knowledge of the relations between global and local quantities, the equilibrium equations of the
RVE, the boundary conditions enforced on the RVE, and the microscopic constitutive law characterizing
the behavior of the RVE. In this section, we will discuss the equilibrium equations and the microscopic con-
stitutive law. The definitions of effective kinematic and kinetic quantities presented in Section 3 correlate the
macroscopic and microscopic quantities. The three ‘‘canonical’’ sets of boundary conditions introduced in
Section 4 allow one to properly pose the boundary value problem underlying the homogenization process.
As far as the microscopic constitutive law is concerned, we will assume that at the local level the RVE be-
haves as an isothermal elastic material. The constitutive theory of an isothermal elastic material is very well
established (see, e.g., Gurtin, 1981; Bowen, 1989), and for the purposes of the present work it can be sum-
marized as follows: when a regular, bounded, and simply connected body is subjected to an isothermal elas-
tic deformation process, its constitutive relations state that the first Piola–Kirchhoff stress tensor is given by
SðF; vÞ ¼ qjðvÞ
owðF; vÞ

oF
; ð16Þ
where qj is the mass density distribution in the reference configuration and w represents the Helmholtz free
energy per unit mass, which, generally, is a function of position and strain measure. Now, the last item
needed for carrying out the homogenization procedure is the statement of the equilibrium equations of
the RVE, which were briefly mentioned and used in Section 3, although not formally introduced. The equi-
librium equations of the RVE in the present context are given by the local statement of the balance of linear
momentum without considering body forces, which in the reference configuration is written as
DivS ¼ qj _v; ð17Þ
where v denotes the material velocity field and the dot over a quantity denotes the material time derivative
of that quantity.

The equations introduced so far are sufficient to carry out the homogenization procedure in a continuum
context. However, our interest is to formulate a homogenization scheme that can be applied to both con-
tinuum as well as discrete systems, for example, using MD. For this reason, we now proceed to reformulate
the homogenization scheme in question using a Lagrangian-based approach. One of the main contributions
of this paper is to show that a classical Lagrangian function can be used to formulate a workable MD
scheme for the determination of the stress–deformation behavior, as opposed to formulating ad hoc

Lagrangians, as one can find in commonly used MD schemes such as those of Parrinello and Rahman
(1980, 1981, 1982). This point will be better illustrated later in the paper when we present a formal com-
parison between the cited schemes and the one derived herein.

The Lagrangian of the RVE will be denoted by L and will be given the following classical expression:
Lðx; vÞ ¼ T � U ; ð18Þ
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where T and U denote the RVE�s total kinetic and potential energies, respectively. The total kinetic energy
of the RVE is given by (Bedford, 1985; Marsden and Hughes, 1994)
T ¼
Z
Xj

1

2
qjv � vdV . ð19Þ
For the total potential energy, we will follow the standard definition given in continuum mechanics (Ger-
main, 1982; Gurtin, 1981; Marsden and Hughes, 1994). Hence, without considering body forces (although
these can be easily included), we have that
U ¼ W�
Z
oXj2

ŝj � ðx� vÞdA; ð20Þ
where oXj2 denotes the portion of the boundary of Xj over which the traction field ŝj is prescribed, with
ŝj ¼ Snj by Cauchy law, and W is the total Helmholtz free energy, i.e.,
W ¼
Z
Xj

qjwdV . ð21Þ
In the case of uniform stress boundary conditions, oXj2 = oXj. In the case of uniform strain boundary con-
ditions, it is the position field that is prescribed over the entire oXj and, therefore, oXj2 is empty. For peri-
odic boundary conditions case, in a continuum context, one can argue that oXj2 is empty since the
boundary traction field is not prescribed in the strict sense of the word. Therefore, the total potential energy
for both uniform strain and periodic boundary conditions reduces to
U ¼ W. ð22Þ

For periodic boundary conditions, another argument can be offered to justify the conclusion in Eq. (22),
namely that the vector fields ŝj and x � v are anti-periodic and periodic, respectively, thus making the sca-
lar field ŝj � ðx� vÞ anti-periodic. Consequently, the second term on the right side of Eq. (20) vanishes iden-
tically, because the boundary integral of any anti-periodic field is null.

In continuum mechanics, the derivation of the field equations using the Lagrangian formalism is a well
established result under ‘‘standard’’ boundary conditions, i.e., under pure displacement, pure traction, or
mixed (again see Germain, 1982; Gurtin, 1981; Marsden and Hughes, 1994). However, to the authors�
knowledge, a similar result has not been shown in the case of periodic boundary conditions. Therefore,
we need to verify that, under periodic boundary conditions, the choice in Eq. (22) does indeed allow one
to derive the correct field equations using the standard Lagrangian formalism. This verification is important
because of the unusual nature of the periodic boundary conditions. In fact, the expression ‘‘periodic bound-
ary conditions’’ is a bit of a misnomer in the sense that, in enforcing periodic boundary conditions, one is
prescribing neither a boundary displacement field nor a boundary traction field. Rather, to impose periodic
boundary conditions simply means to simultaneously constrain the class of functions to which the admis-
sible boundary displacement as well as boundary traction fields belong.

We now verify that by using the Lagrangian of Eq. (18) one recovers the equilibrium equations for the
proposed material system via the Euler–Lagrange equations (see, e.g., Marsden and Hughes, 1994), which
are
d

dt
oL

ov

� �
� oL

ox
¼ 0; ð23Þ
where oL=ov and oL=ox denote the two vector fields (i.e., vector-valued functions of position and time)
defined via the following relations:
dvL ¼
Z
Xj

oL

ov
� dvdV ; ð24Þ
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and
dxL ¼
Z
Xj

oL

ox
� dxdV ; ð25Þ
for all variations dv and dx, respectively, and where dvL and dxL denote the variation of the functional L
due to variations in the fields v and x, respectively. It is important to note that the terms oL=ov and oL=ox
need to be interpreted as functional derivatives and not as common partial derivatives. In fact, roughly
speaking, these derivatives represent the derivatives of the Lagrangian with respect to the entire velocity
and position fields, respectively (this notation is also used in Section 9.5.3 of Maugin, 1992 and in Section
5.2 of Suquet, 1987 among others; for a more rigorous treatment of Lagrangian mechanics for continuum
systems, consistent with the one presented herein, see Chapter 5 of Marsden and Hughes, 1994).

Proposition 4. For any regular, bounded, and simply connected RVE behaving as an isothermal elastic

material, a smooth deformation process governed by Eq. (17) under uniform strain, uniform stress, or periodic

boundary conditions admits the Lagrangian proposed in Eq. (18).

Proof. Before presenting the proof of Proposition 4, we wish to clarify that the claim of this proposition is
novel only with regard to periodic boundary conditions. As far as uniform strain and uniform stress bound-
ary conditions are concerned, the proof can be obtained from classical results concerning Dirichlet and
Neumann boundary data, respectively (see, e.g., Section 5.4 in Chapter 5 of Marsden and Hughes,
1994). Here we present the proof for all three cases of interest for convenience. With this in mind, the proof
of this proposition will be given by deriving the equilibrium equations of the RVE from the proposed
Lagrangian and using the Euler–Lagrange equations. The proof of the entire proposition will be carried
out by identifying each term in the Euler–Lagrange equations for each of the boundary conditions and then
assembling them for each case. In addition, observe that in order to obtain the terms on the left side of Eq.
(23) we will have to resort to variational theory. Hence, we begin by taking the variation of Eq. (18) with
respect to the velocity field, which is
dvL ¼ dv

Z
Xj

1

2
qjv � vdV ¼

Z
Xj

qjv � dvdV . ð26Þ
Comparing Eq. (26) with Eq. (24), we conclude that
oL

ov
¼ qjv. ð27Þ
Now, taking the time derivative of Eq. (27) we obtain the first term on the left side of Eq. (23), that is,
d

dt
oL

ov

� �
¼ qj _v. ð28Þ
Notice that in obtaining the first term on the left side of Eq. (23) there was no need to specify the boundary
condition acting upon the RVE. Consequently, Eq. (28) is valid for all three ‘‘canonical’’ sets of boundary
conditions. Next, to obtain the second term on the left side of Eq. (23) we take the variation of Eq. (18) with
respect to the position field, that is,
dxL ¼ �dx

Z
Xj

qjwdV þ dx

Z
oXj2

ŝj � ðx� vÞdA ¼ �
Z
Xj

qj

ow
oF

� dxFdV þ
Z
oXj2

ŝj � dxdA

¼ �
Z
Xj

S � ðGraddxÞdV þ
Z
oXj2

ŝj � dxdA; ð29Þ
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where Eq. (16) and the definition of the deformation gradient tensor have been applied. Recalling that the
divergence theorem can be given the form
Z

oRj

a � Amj dA ¼
Z
Rj

a � ðDivAÞ þ A � ðGradaÞ½ �dV ; ð30Þ
which holds for any vector a, smooth tensor A and bounded regular regionRj, and where mj is the outward
unit normal vector field on oRj (see, e.g., Gurtin, 1981), then we can rewrite Eq. (29) as
dxL ¼ �
Z
oXj

dx � Snj dAþ
Z
Xj

dx � ðDivSÞdV þ
Z
oXj2

ŝj � dxdA. ð31Þ
Now, in order to continue with the development of the variation of the Lagrangian with respect to the po-
sition field it will be necessary to invoke the boundary conditions. In the case of the uniform stress bound-
ary condition, Eq. (31) reduces to
dxL ¼
Z
Xj

ðDivSÞ � dxdV ; ð32Þ
since oXj2 = oXj. Comparing Eq. (32) with Eq. (25), we conclude that the second term on the left side of
Eq. (23) under uniform stress boundary conditions is
oL

ox
¼ DivS. ð33Þ
In the cases of the uniform strain and periodic boundary conditions, Eq. (31) reduces to
dxL ¼ �
Z
oXj

dx � SnjdAþ
Z
Xj

dx � ðDivSÞdV ; ð34Þ
since oXj2 is empty. Now, for the case of the uniform strain boundary condition, Eq. (7) tells us that the
motion of the boundary is prescribed at all times. Consequently, the variation of the position field on the
boundary of the RVE is zero, i.e., dx = 0 on oXj, and Eq. (34) reduces to Eq. (32). Moreover, we conclude
that Eq. (33) gives the second term on the left side of Eq. (23) under uniform strain boundary conditions. In
the case of periodic boundary conditions, recall the two requirements stated in Section 4.3. The first
requirement, given by Eq. (9), implies that the variation of the position field dxmust have a periodic nature.
The second requirement enforces the traction field Snj acting upon the boundary of the reference config-
uration to be anti-periodic. Hence, the scalar field dx Æ Snj is anti-periodic and its boundary integral van-
ishes. Consequently, under periodic boundary conditions the first integral on the right side of Eq. (34)
vanishes and, therefore, the development of Eq. (34) for this case is similar to the uniform strain case. More
importantly, the second term on the left side of Eq. (23) under periodic boundary conditions is given by Eq.
(33).

Finally, by assembling the Euler–Lagrange equations for each of the boundary conditions (i.e., using
Eqs. (28) and (33) we obtain the local statement of the balance of linear momentum, i.e., Eq. (17).
Therefore, the Lagrangian proposed in Eq. (18) is valid for an isothermal elastic material behaving under
this particular boundary value problem for any of the three ‘‘canonical’’ sets of boundary conditions. h
6. An effective constitutive relation

The continuum homogenization model we are presenting is based on the homogenization procedure as
outlined by Suquet (1985, 1987) and Maugin (1992), and it aims to obtain an effective constitutive relation
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that is consistent with the behavior of the RVE at the microscopic scale as well as with the properties en-
forced at the macroscopic scale, all in a context of large deformations. In other words, what is missing in the
present model is an expression that is able to relate the effective kinematic and kinetic quantities with the
local behavior of the RVE. This is no easy task and is sometimes not possible, especially in nonlinear prob-
lems such as the one that we are studying. In fact, one of the reasons for introducing a Lagrangian-based
approach earlier in this paper is to aid the development of the homogenization procedure for obtaining
such an expression. Given this premise, recall that the specification of a type of boundary condition pre-
scribes some effective quantities and, therefore, controls some of the overall behavior of the RVE. More-
over, from Proposition 3 we infer that, in order to always guarantee that the underlying averaging
process be meaningful (as specified in Definition 1), one can only prescribe effective kinematic quantities,
i.e., the effective deformation gradient tensor. Therefore, we can conjecture that the constitutive relation
that must come out of the model should be capable of expressing the effective first Piola–Kirchhoff stress
tensor in terms of the prescribed deformation gradient (i.e., F̂) and the microscopic behavior of the RVE,
behavior that is embedded in the RVE�s Lagrangian as written in Eq. (18). In summary, we present the fol-
lowing claim:

Proposition 5. For any regular, bounded, and simply connected RVE behaving as an isothermal elastic

material, a smooth deformation process governed by Eq. (17) under uniform strain or periodic boundary
conditions obeys the following effective constitutive relation:
sSt ¼ 1

VolðXjÞ
d

dt
oL

o
_̂
F

 !
� oL

oF̂

" #
. ð35Þ
Proof. For the sake of conciseness, we present only the proof under periodic boundary conditions since the
proof for the uniform strain case can be obtained from the one to be presented by simply letting ~u ! 0 (in
boundary integrals only). The strategy we will implement to prove Eq. (35) is to patiently construct the
expression on its right side under the specified conditions. Hence, we begin by noting that under the stated
assumptions, and due to Proposition 4, the Lagrangian of the RVE is that given in Eq. (18). However, note
that the Lagrangian is not directly dependent on the deformation gradient tensor prescribed by either
boundary condition. To express the Lagrangian in terms of the prescribed deformation gradient, we will
need to use the decomposition scheme of the deformation process of the RVE discussed in Remark 1, illus-
trated in Fig. 1, and admissible under both boundary conditions. Therefore, recall Eq. (12) and take its
material time derivative so as to obtain the velocity field, that is,
v ¼ F̂v� þ _̂
Fx�. ð36Þ
Inserting Eq. (36) into the Lagrangian of the RVE, we can write
L ¼
Z
Xj

1

2
qjðF̂v�Þ � ðF̂v�ÞdV þ

Z
Xj

qjðF̂v�Þ � ð
_̂
Fx�ÞdV þ

Z
Xj

1

2
qjð

_̂
Fx�Þ � ð _̂Fx�ÞdV �

Z
Xj

qjwdV . ð37Þ
Eq. (37) shows in an explicit manner the dependence of the Lagrangian on the prescribed deformation gra-
dient and its material time derivative. It is important to mention that the Helmholtz free energy per unit
mass function is also dependent on the prescribed deformation gradient due to Eq. (13). Now, we will begin
the development of the right side of Eq. (35) by obtaining the term oL=o

_̂
F, that is,
oL

o
_̂
F

¼ F̂

Z
Xj

qjv
� � x� dV þ _̂

F

Z
Xj

qjx
� � x� dV ; ð38Þ
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where the identity (Aa) � b = A(a � b) has been used. Next, we take the time derivative of Eq. (38) to
obtain
d

dt
oL

o
_̂
F

 !
¼ F̂

Z
Xj

qj _v
� � x� dV þ

Z
Xj

qjv
� � v� dV

� �
þ _̂
F 2

Z
Xj

qjv
� � x� dV þ

Z
Xj

qjx
� � v� dV

� �
þ €̂
F

Z
Xj

qjx
� � x� dV . ð39Þ
Notice that, in obtaining Eq. (39), there was no need to specify the boundary condition acting upon the
RVE. Consequently, Eq. (39) is valid for both boundary conditions. Continuing with the development
of the right side of Eq. (35), we will now focus on obtaining the term oL=oF̂. For this purpose, we take
the corresponding partial derivative of Eq. (37) and write
oL

oF̂
¼ F̂

Z
Xj

qjv
� � v� dV þ _̂

F

Z
Xj

qjx
� � v� dV �

Z
Xj

qj

ow

oF̂
dV ; ð40Þ
where, again, the identity (Aa) � b = A(a � b) has been used. Observe that the last term on the right side of
Eq. (40) can be further developed. In particular, using the chain rule along with Eqs. (16) and (13), we can
write
 Z

Xj

qj

ow

oF̂
dV ¼

Z
Xj

SðF�ÞT dV ¼
Z
Xj

SFTF̂
�T

dV ¼
Z
Xj

SðGradxÞT dV
� �

F̂
�T
; ð41Þ
where the identity (AB)T = BTAT and the definition of the deformation gradient tensor have been applied.
Noting the following form of the divergence theorem:
Z

oRj

ðAmjÞ � adA ¼
Z
Rj

ðDivAÞ � aþ AðGradaÞT
h i

dV ; ð42Þ
which holds for any vector a, smooth tensor A and bounded regular regionRj, and where mj is the outward
unit normal vector field on oRj (see, e.g., Gurtin, 1981), we can then rewrite Eq. (41) as
Z

Xj

qj

ow

oF̂
dV ¼

Z
oXj

ðSnjÞ � xdA�
Z
Xj

ðDivSÞ � xdV
� �

F̂
�T
. ð43Þ
Furthermore, notice that one can apply Eq. (9) (from the periodic boundary condition) to the boundary
integral on the right side of Eq. (43), while for the volume integral (on the right side of Eq. (43)) one
can apply the equilibrium equations and the decomposition formula given by Eqs. (17) and (12), respec-
tively. Therefore, we obtain
Z

Xj

qj

ow

oF̂
dV ¼

Z
oXj

ðSnjÞ � ðF̂vÞdAþ
Z
oXj

ðSnjÞ � ~udA�
Z
Xj

qj _v� ðF̂x�ÞdV
� �

F̂
�T
. ð44Þ
The second integral on the right side of Eq. (44) vanishes. In order to view this, first recall that the traction
field Snj and the displacement field ~u are anti-periodic and periodic fields over Xj, respectively, thus making
the tensor field ðSnjÞ � ~u anti-periodic. In turn, since the boundary integral of any anti-periodic tensor field
vanishes, this implies that Eq. (44) reduces to
Z

Xj

qj

ow

oF̂
dV ¼

Z
oXj

ðSnjÞ � vdA�
Z
Xj

qj _v� x� dV ; ð45Þ
where the identity a � (Ab) = (a � b)AT has been used. Now, observe that the material time derivative of v
can be obtained from Eq. (36), that is,
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_v ¼ F̂ _v� þ 2
_̂
Fv� þ €̂

Fx�. ð46Þ
Hence, inserting Eq. (46) into Eq. (45), we can write
Z
Xj

qj

ow

oF̂
dV ¼ VolðXjÞsSt� F̂

Z
Xj

qj _v
� � x� dV � 2

_̂
F

Z
Xj

qjv
� � x� dV � €̂

F

Z
Xj

qjx
� � x�dV ; ð47Þ
where we have made use of the definition of the effective first Piola–Kirchhoff stress tensor and the identity
(Aa) � b = A(a � b). Referring back to Eq. (40), we can now write
oL

oF̂
¼ F̂

Z
Xj

qj _v
� � x� dV þ

Z
Xj

qjv
� � v� dV

� �
þ _̂
F 2

Z
Xj

qjv
� � x� dV þ

Z
Xj

qjx
� � v� dV

� �
þ €̂
F

Z
Xj

qjx
� � x� dV � VolðXjÞsSt. ð48Þ
Finally, subtracting Eq. (48) from Eq. (39) yields the effective constitutive relation given by Eq. (35). h
7. A Lagrangian-based MD method

In this section we present a Lagrangian-based MD scheme for the determination of the stress–deforma-
tion response of particle systems. This MD scheme is viewed as the discrete version of the homogenization
scheme outlined in the preceding sections, in which a particle system is subjected to a deformation history
by prescribing the history of the effective deformation gradient and for which a corresponding stress history
is calculated. In order to better illustrate how the continuum and discrete schemes relate to one another, we
first revisit the continuum scheme to make it explicit what variables we view as prescribed and what vari-
ables we choose as primary unknowns.

7.1. Homogenization scheme revisited

To offer a meaningful extension of the homogenization approach outlined thus far to an MD context, we
make the following three choices.

(i) Although this choice has already been implicitly made, we now explicitly state that we choose to view
the homogenization procedure as being Lagrangian-based. By this we mean that the field equations to
be solved in the homogenization problem are the Euler–Lagrange equations obtained from the
Lagrangian function given in Eq. (18).

(ii) Since periodic boundary conditions are used in the vast majority of MD schemes, we will limit our
discussion to this type of boundary conditions (although the results presented in Section 7.1 also hold
under uniform strain boundary conditions).

(iii) We choose to make F̂ appear explicitly in the Lagrangian (see, e.g., Eq. (37)) due to the adoption of
the decomposition of the system�s motion given by Eq. (12).

These choices are not necessary in a continuum homogenization context. However, they turn out to be use-
ful for ‘‘porting’’ the scheme to a discrete context.

As observed in Remark 1, the adoption of the decomposition formula in Eq. (12) is always admissible
within the stated assumptions and does not add any new constraints on the system�s overall motion. In par-
ticular, Eq. (12) does not limit x(v, t) to be a homogeneous deformation. The primary consequence of
adopting the decomposition formula in Eq. (12), in which we treat the tensor F̂ðtÞ as a given function of
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time, is that the primary unknown of our homogenization scheme is no longer the motion x(v, t), but is the
motion x*(v, t). Hence, in view of our stated choices, the time evolution of our primary unknown x*(v, t) is
determined by solving the I/BVP defined by

(1) the following field equations (defined over Xj):
Div S Að ÞjA¼F̂F�½ � ¼ qjF̂€x
� þ 2qj

_̂
F _x� þ qj

€̂
Fx�; ð49Þ

F� ¼ Gradx�; ð50Þ

SðAÞ ¼ qj

owðA; vÞ
oA

8A 2 LinþðVÞ; ð51Þ
where, as discussed in relation to Eq. (16), the function w defines the local constitutive equations;
(2) the following initial conditions:
x�ðv; 0Þ ¼ p�ðvÞ and _x�ðv; 0Þ ¼ w�ðvÞ 8v 2 Xj; ð52Þ

where the functions p* and w* are the prescribed initial position and velocity fields, respectively, and
are related to the true initial position and velocity fields through Eq. (12); and

(3) the following boundary conditions:
x�ðv; tÞ ¼ vþ u�ðv; tÞ 8v 2 oXj [ Xj; ð53Þ
SðbFF�; vÞnjðvÞ ¼ sjðv; tÞ 8v 2 oXj; ð54Þ
with u*(v, t) and sj(v, t) being unknown functions that are constrained to be periodic and anti-periodic
over Xj, respectively.

Finally, if a solution x*(v, t) corresponding to the prescribed deformation history F̂ðtÞ can be found, we
then substitute this solution into Eq. (35) to determine the corresponding response of the system in terms of
the effective first Piola–Kirchhoff stress tensor; and we can then make use of the third relation in Definition
1, which can be proven to hold under the stated assumptions (Costanzo et al., 2005) to obtain the corre-
sponding effective Cauchy stress tensor.

Remark 2 (Swapping viewpoints). The continuum homogenization scheme presented above has been
derived starting from the definitions of effective quantities given in Eqs. (1)–(4). However, it is possible to
‘‘turn the scheme on its head’’ and state that, for any given function F̂ðtÞ 2 LinþðVÞ and 8t 2 R, Eq. (35)
defines the effective first Piola–Kirchhoff stress tensor corresponding to F̂, as long as the right side of Eq.
(35) is evaluated using the solution to the I/BVP stated above. That is, rather than letting the definitions of
effective strain and effective stress determine our I/BVP, we let the I/BVP determine the definitions of
effective strain and effective stress. This is a rather abstract view of what has been presented herein, but it is
a view that can be adapted to other mechanical systems and, in particular, to the particle systems studied in
MD.
7.2. Formulation of the homogenization procedure applicable to MD

Constructing a homogenization procedure for a discrete system starting from the definitions in Eqs. (1)–
(4) does not seem a viable option because one would have to come up with some precise notion of boundary
of a particle system. Therefore, we will extend the homogenization scheme outlined above to MD following
the abstract approach described in Remark 2.

We begin by considering a system of particles in an MD simulation cell. This cell replaces the notion of
the RVE in the continuum case. Initial and boundary conditions, as well as an interparticle potential energy
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function (or more than one depending on the problem), need to be prescribed in the same way that initial
and boundary conditions, as well as the local constitutive law, must be prescribed in the continuum case.

Next we define the Lagrangian of the particle system. Hence, considering an MD cell containing N par-
ticles, we denote the Lagrangian of the system of particles by LMD and write
4 As
5 It i

and in
LMDðr 1; . . . ; rN ; _r1; . . . ; _rN Þ ¼
XN
i¼1

1

2
mi _ri � _ri �Wðr1; . . . ; rNÞ; ð55Þ
where mi, ri, and _ri denote the mass, position, and velocity of the ith particle, respectively, and W denotes
the system�s energy stored in the internal interparticle bonds or interactions. In other words, at a time in-
stant t, the value of the function W(r1(t), . . . , rN(t)), corresponding to a given configuration {r1(t), . . . , rN(t)},
must be computed as if the particle system were removed from its surroundings, thus removing the interac-
tion with any agency external to the system. As in the continuum case, the interaction between the system
and its surroundings must be accounted for via the enforcement of a chosen set of boundary conditions.

Remark 3 (Perspectives in Lagrangian mechanics). As this may be a source of confusion, especially later in
the paper, we wish to provide a brief reminder concerning the use of Lagrangian functions. Specifically, it is
important to keep in mind that a Lagrangian approach can be set up in essentially two equivalent ways.
One way is to define the Lagrangian function as La ¼ T � U , where U = W�Qiqi, qi being the ith degree of
freedom of the system and Qi being the external generalized force conjugate to qi. With such a definition,
the contribution from an external force system is ‘‘built-in’’ into the Lagrangian function and the Euler–
Lagrange equations are obtained as follows:
d

dt
oLa

o _qi

� �
� oLa

oqi
¼ 0. ð56Þ
A second approach (see, e.g., Meirovitch, 1988) is one in which the Lagrangian function is defined as
Lb ¼ T �W. In this case, the Lagrangian formalism must be carried out in the following manner:
d

dt
oLb

o _qi

� �
� oLb

oqi
¼ Qi. ð57Þ
For consistency, in Section 7.2 we are following this second approach since in the continuum analysis pre-
sented earlier the Lagrangian function we have used for the analysis of periodic (and uniform strain)
boundary conditions ended up being of the type �T � W�, i.e., it accounted for only internal interactions.

Having defined the system�s Lagrangian, we continue to lay out our MD scheme by deriving the system�s
Euler–Lagrange equations. However, before carrying out this derivation, we adopt the discrete version of
Eq. (12) to explicitly represent the effective deformation of the system, i.e.,
riðtÞ ¼ F̂ðtÞr�i ðtÞ i ¼ 1; . . . ;N ; ð58Þ

where, by analogy with Eq. (12), r�i defines the position of the ith particle in the (discrete) X* configuration
and F̂ðtÞ 2 LinþðVÞ 8t 2 R is viewed as being prescribed.4 Again, this strategy is implemented so as to
avoid having to deal with an explicit definition for the system�s boundary.

Substituting Eq. (58) into the Lagrangian in Eq. (55), the Euler–Lagrange equations (according to the
Lagrangian formalism sketched in Eq. (57)) renders the following equations of motion:5
we will see later in the paper, the proposed scheme is not limited to strain controlled simulations.
s important to note that Eq. (59), if rewritten in terms of ri, would take on the form mi€ri ¼ f i, with fi being the total (i.e., external
ternal) force acting on the ith particle. Hence, Eq. (59) is precisely Newton�s second law of motion.



P.C. Andia et al. / International Journal of Solids and Structures 42 (2005) 6409–6432 6425
miF̂€r
�
i þ 2mi

_̂
F_r�i þ mi

€̂
Fr�i ¼ �F̂

�T oW
or�i

þ f e
i i ¼ 1; . . . ;N ; ð59Þ
where the motion r�i (i = 1, . . . ,N) represents our primary variables and where f ei denotes the total force on
particle i due to the interaction of the system with external agencies. Specifically, when imposing periodic
boundary conditions, the external agencies interacting with particle i are the particles belonging to a peri-
odic lattice of identical systems. Therefore, the forces f ei are determined by accounting for all interactions
between the particles in the system of interest and the particles in the surrounding systems. For future ref-
erence, we observe here that a straightforward application of the chain rule allows one to rewrite the first
term on the right side of Eq. (59) as
F̂
�T oW

or�i
¼ oW

ori
. ð60Þ
Remark 4 (On Eq. (58)). Following up on the discussion concerning choice (iii) in Section 7.1, it is
important to reaffirm that Eq. (58) does not represent a constraint on the possible motion of the system�s
particles. The reason why it is important to restate this idea here is that, from a formal viewpoint, Eq.
(58) resembles the celebrated Cauchy–Born (or, sometimes, Born) rule typically employed in the study of
crystal elasticity (see, e.g., the very careful discussions by Ericksen (1984) and Zanzotto (1992)). To see
that Eq. (58) is different from the Cauchy–Born rule one needs to observe that Eq. (58) does not map
positions in the reference configuration (even when understood as the initial configuration) to positions in
the deformed configuration. Indeed, the motion r�i ðtÞ (i = 1, . . . ,N) is influenced by the prescribed F̂ðtÞ
only through the equations of motion in Eq. (59) and therefore is not subject to the more severe
kinematic restrictions that are imposed by the Cauchy–Born rule in crystal elasticity. In fact, in the
proposed MD scheme, we are not in a position to restrict a priori the possibility that a particle might
change its neighbors with time. This means that, in practice, we are not in a position to prevent our
particle ensemble from experiencing diffusion. With this in mind, we wish to make it clear that, for our
discrete scheme to be fully consistent with our continuum formalism, its application should be limited to
the study of diffusionless deformations of a solid system. The reason for imposing such a restriction is
that we have implicitly excluded phenomena such as diffusion in our continuum model. At the same
time, Eq. (58) does not impose any intrinsic restriction on the deformation extent, which is therefore not
limited to being infinitesimal.

Remark 5 (Uniform strain boundary conditions). Since the Lagrangian functions for the periodic and uni-
form strain boundary conditions are formally identical, one would conclude that the equations of motion in
Eq. (59) are also applicable to the uniform strain boundary condition case. However, there are some impor-
tant differences which are worth discussing to gain a better insight into the distinction between external and
internal forces. Hence, suppose that uniform strain boundary conditions are indeed applied. This means
that, somehow, one has to define what particles are the ‘‘boundary particles’’ and then prescribe their
motion. Specifically, for simplicity, let the particles numbered from 1 to M (with M < N) be the boundary
particles in question. Then, as required by Eqs. (7) and (58), we have that
r�i ðtÞ ¼ r�i ð0Þ i ¼ 1; . . . ;M 8t P 0; ð61Þ
where it is understood that _r�i for the boundary particles are equal to zero. As the motion of particles 1 toM

is prescribed, the system�s only equations of motion are as follows:
miF̂€r
�
i þ 2mi

_̂
F_r�i þ mi

€̂
Fr�i ¼ �F̂

�T oW
or�i

i ¼ M þ 1; . . . ;N . ð62Þ
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Notice that in Eq. (62) we have used the fact that the external forces f ei ¼ 0 for i =M + 1, . . . ,N. The
reason why there are no external forces acting on the interior particles, is because enforcing uniform strain
boundary conditions is physically identical to ‘‘glueing’’ the system�s boundary particles to the walls of a
container and then prescribing the motion of these walls (i.e., by prescribing F̂ðtÞ). Clearly, this does not
mean that the system is isolated. Rather, it means that the interaction between the interior particles and
the system�s exterior (i.e., the walls) is mediated by the interaction between the interior particles and the
boundary particles. This interaction being expressed by the right side of Eq. (62). As far as the boundary
particles are concerned, these are being subjected to a system of external (reaction) forces translating the
action of the ‘‘glue’’ that keeps the boundary particles from leaving the walls. Following standard Lagrang-
ian mechanics, it turns out that one can rely again on the Euler–Lagrange equations for the boundary par-
ticles, this time to measure the external forces, i.e.,
6 In
to the
typica
f e
i ¼ mi

€̂
Fr�i þ F̂

�T oW
� i ¼ 1; . . . ;M . ð63Þ
ori
Remark 6 (More on periodic boundary conditions in MD). As discussed earlier, the enforcement of periodic
boundary conditions in MD is done by explicitly computing the interaction forces between the system�s
particles and the external particles that are placed around the system in such a way that the system of
interest appears as a unit cell within a lattice of identical cells. This strategy automatically enforces the
periodicity of the particle displacements as well as the anti-periodicity of the force system acting through
some convenient notion of boundary surface. It should be noted that the description of periodic boundary
conditions just given follows a Lagrangian kinematic description of a system�s motion. For completeness,
we note here that periodic boundary conditions usually employed in MD (see, e.g., Allen and Tildesley,
1987; Frenkel and Smit, 1996) are often enforced according to an Eulerian viewpoint instead of a
Lagrangian6 viewpoint, as used in this paper. In other words, many MD computational schemes place a
particle ensemble within a control volume. This control volume is a fixed geometrical entity and, similarly to
what is typically done in fluid dynamics calculations, the system�s particles are allowed to flow in and out of
the control volume in question. In such a context (i.e., in an Eulerian context), the application of periodic
boundary conditions requires that, when a particle exits the control volume, a companion particle with
identical mass and velocity be introduced at a location homologous (according to periodicity) to the exit
point of the original particle. The message we wish to convey with this remark is that our description of
periodic boundary conditions for particle systems does not mention particles flowing in or out of an MD
cell because we are adopting a Lagrangian (kinematic) viewpoint.

Going back to the formulation of the proposed discrete homogenization scheme, we can now conclude
our description with the determination of the first Piola–Kirchhoff stress tensor via Eq. (35) by using the
expression in Eq. (55) for the system�s Lagrangian. This operation yields the following result:
sSt ¼ 1

VolðXjÞ
F̂
XN
i¼1

mi€r
�
i � r�i þ 2

_̂
F
XN
i¼1

mi _r
�
i � r�i þ

€̂
F
XN
i¼1

mir
�
i � r�i þ

oW

oF̂

 !
. ð64Þ
Substituting Eq. (59) into Eq. (64), the expression for the effective first Piola–Kirchhoff stress tensor takes
on the following form:
the present discussion, the adjectives �Eulerian� and �Lagrangian� are used as qualifiers of the kinematic description, as opposed
formalisms used to derive the equations of motion. As is well known, the Eulerian and Lagrangian kinematic descriptions are
lly used in fluid and solid mechanics, respectively.
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sSt ¼ 1

VolðXjÞ
oW

oF̂
�
XN
i¼1

F̂
�T oW

or�i
� r�i þ

XN
i¼1

f ei � r�i

 !
. ð65Þ
Next, by applying the chain rule of calculus on the term oW=oF̂ we see that this term can be rewritten as
follows:
oW

oF̂
¼
XN
i¼1

oW
ori

� r�i ¼
XN
i¼1

F̂
�T oW

or�i
� r�i ; ð66Þ
where we have used Eq. (60) to obtain the last equality. Hence, in view of Eq. (66), we see that the measure
of the effective first Piola–Kirchhoff stress takes on the following simple expression:
sSt ¼ 1

VolðXjÞ
XN
i¼1

f e
i � r�i . ð67Þ
Finally, using the second and third property in Definition 1, whose validity under the current assumptions
has been rigorously proven by Costanzo et al. (2005), one obtains the following form of the effective Cau-
chy stress:
sTt ¼ 1

detðF̂ÞVolðXjÞ
XN
i¼1

f e
i � r�i

 !
F̂
T ¼ 1

VolðXÞ
XN
i¼1

f ei � ri. ð68Þ
It is important to notice that this form of the effective Cauchy stress does not coincide with the virial stress
(for an extensive review of the concept of the virial stress see Zhou, 2003), i.e., with the stress measure al-
most universally used in MD calculations, which we will denote by P and that can be given the following
form:
P ¼ 1

VolðXÞ
XN
i¼1

oW
ori

� ri � mi _ri � _ri

� �
. ð69Þ
For this reason, the proposed scheme is novel both in its derivation and in its measure of the stress. With
this in mind, Costanzo et al. (2005) have proven that, for most physically acceptable conditions and at a
constant volume, sTt and P coincide only in a time average sense, i.e.,
lim
s!1

1

s

Z s

0

sTtdt ¼ lim
s!1

1

s

Z s

0

Pdt. ð70Þ
However, we wish to emphasize that, on an instant by instant basis, i.e., without proper time averaging, the
virial stress does not have any clear continuum mechanical interpretation.

7.3. Comparison with the Parrinello–Rahman scheme

The current paper is theoretical in nature and therefore a detailed exploration of the numerical predic-
tions in terms of stress–strain curves (along with tangent moduli) that the proposed formulation allows one
to predict will be presented in a forthcoming paper. Here we limit ourselves to offer a formal comparison
between our formulation and the widely-used Parrinello–Rahman scheme (Parrinello and Rahman, 1980,
1981, 1982). The comparison is relevant because the Parrinello–Rahman scheme, which is a Lagrangian-
based MD scheme intended for the study of the effective stress–strain behavior of particle systems, has
been, and still is, extensively used either in both its original and modified formulations. For the sake of sim-
plicity, we limit our comparison to the formulation �A� offered by Parrinello and Rahman (1981), that is, a
formulation requiring the effective state of stress to be hydrostatic. However, the comparison in question
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can be extended to the more complex formulation �B� (in the same paper), which is meant to be applicable to
more general states of stress. Finally, to facilitate this comparison, we write all relevant equations in the
notation adopted herein, as opposed to the notation originally used by Parrinello and Rahman (1981)
(see the Appendix A for key relations).

The starting point of the formulation given by Parrinello and Rahman (1981) is the definition of the MD
simulation cell. This cell is taken to be a parallelepiped whose sides, as functions of time, are described by
three nonparallel vectors ai(t) (i = 1, . . . , 3). These vectors are then used to construct a second order tensor
H0, whose ij-component is defined as follows:
7 Pa
extern
indica
sound
ðH0Þij ¼ ðajð0ÞÞi. ð71Þ
Due to its definition, H0 2 LinþðVÞ and is such that
VolðXjÞ ¼ detðH0Þ ð72Þ

if we take our reference configuration to coincide with the initial configuration of the MD cell.

In Parrinello and Rahman (1981), the Lagrangian function is postulated to be
LPR ¼ 1

2

XN
i¼1

mi _r
�
i � F̂

T
F̂_r�i � UðF̂r�1; . . . ; F̂r�N Þ � pVolðXÞ þ 1

2
W ð _̂FH0 � _̂FH0Þ; ð73Þ
where �PR� stands for �Parrinello–Rahman�, W has dimensions of mass and is given ad hoc values depend-
ing on the system at hand,7 and
sTt ¼ �pI; ð74Þ

I being the identity tensor in LinðVÞ. It should be kept in mind that the PR scheme is meant to provide the
capability to perform numerical experiments in stress control. Hence, the value of the pressure p is viewed
as being prescribed. However, this fact does not cause any problems in our comparison as it is possible, at
least in principle, to view both our scheme and the PR scheme as allowing for both stress and strain con-
trolled numerical experiments. Before proceeding further it is important to remark that, concerning the
Lagrangian function in Eq. (73), Parrinello and Rahman (1981) freely admit that

‘‘Whether such a Lagrangian is derivable from first principles is a question for further study;’’

and they base the validity of their formulation on the resulting equations of motion. In the PR scheme,
these equations are given the following form:
miF̂€r
�
i þ mi

_̂
F_r�i ¼ �F̂

�T oU
or�i

� miF̂
�T _̂
F
T

F̂_r�i ; ð75Þ
and
�pI ¼ PPR þ 1

VolðXÞ
€̂
FF̂

�1
JPR; ð76Þ
where PPR is a pseudo virial stress, which PR call the ‘‘internally generated stress tensor’’, and that is related
to the true virial stress (see Eq. (69)) as follows:
rrinello and Rahman (1981) indicate that W ‘‘determines the relaxation time for recovery from an imbalance between the
al pressure and the internal stress’’. Furthermore, based on a suggestion by Andersen (1980), Parrinello and Rahman (1981)
te that they chooseW so as to make said recovery time to be of the order of L/c, L being the MD cell size and c being the speed of
(presumably in the bulk material).
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PPR ¼ Pþ 1

VolðXÞ
XN
i¼1

mi ð _̂Fr�i Þ � ð _̂Fr�i Þ þ ð _̂Fr�i Þ � ðF̂_r�i Þ þ ðF̂_r�i Þ � ð _̂Fr�i Þ
h i

; ð77Þ
and where JPR has the dimensions of an inertia tensor and is given by
JPR ¼ W ðF̂H0ÞðF̂H0ÞT. ð78Þ
Remark 7 (On boundary conditions and Newton�s second law). Parrinello and Rahman (1981) seem to have
followed the Lagrangian formalism sketched in Eq. (56). However, we find it surprising that Eq. (75) does
not contain any term suggesting the interactions of the system�s particles with the exterior. In fact,
Parrinello and Rahman do not explicitly discuss the boundary conditions they apply nor the means with
which they apply them. Also, there is no indication that the equations of motion can be related in an exact
way to Newton�s second law of motion. This should come as no surprise given the previously-quoted
statement made by Parrinello and Rahman. In fact, it would be very surprising if an ad hoc Lagrangian,
such as that used by Parrinello and Rahman, did provide equations of motion satisfying Newton�s second
law. Finally, notice that, since p is considered a prescribed quantity, Eq. (76) is to be considered an equation
of motion for F̂.

Although the PR equations of motion in Eq. (75) are quite different from those in Eq. (59), it turns out
that these equations can be made equivalent with one another under a suitable set of assumptions. In
particular,

(1) assume that the term mi
€̂
Fr�i can be neglected with respect to the other terms in Eq. (59);

(2) recalling that the polar decomposition theorem (see, e.g., Gurtin, 1981) guarantees the existence of a
unique rotation R̂ and a unique symmetric Û with positive determinant so that F̂ ¼ R̂Û, assume that
R̂ ¼ I, so that any deviations of F̂ from I are symmetric; and

(3) finally, assume that the overall deformation of the system is small, that is, F̂ � I;

then, we have that the term F̂
�T _̂
F
T

F̂ on the right side of Eq. (75) can be approximated as follows:
F̂
�T _̂
F
T

F̂ � _̂
F
T

� _̂
F. ð79Þ
Hence, under the approximation in Eq. (79), we see that Eqs. (59) and (75) are equivalent as long as f ei ¼ 0,
that is, as long as the system is isolated. Clearly, this conclusion is very troubling in that if a particle system
is isolated then the system should be in a stress-free configuration. This is one of the reasons why the pres-
ent authors speculated that in the PR scheme one may need to enforce some boundary conditions that are
not explicitly accounted for in LPR. However, all things considered, it seems that the PR scheme would
require an assumption of small deformation to be comparable to the one presented herein.

We now attempt to reconcile Eq. (68) with Eq. (76). We start by using the simplified form of the equa-

tions of motion, that is, that one obtained by neglecting the term mi
€̂
Fr�i in Eq. (59),8 and we substitute these

simplified relations into Eq. (64), which can then be rewritten as
sSt ¼ 1

VolðXjÞ
oW

oF̂
�
XN
i¼1

F̂
�T oW

or�i
� r�i þ

XN
i¼1

f ei � r�i þ
€̂
F
XN
i¼1

mir
�
i � r�i

 !
; ð80Þ
e comparison of our stress relation with PR�s only requires the first of the three assumptions needed to compare our equations of
with PR�s.
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which, using Eq. (66), can be further simplified to
sSt ¼ 1

VolðXjÞ
XN
i¼1

f e
i � r�i þ

€̂
F
XN
i¼1

mir
�
i � r�i

 !
. ð81Þ
Now, implementing the transformation that takes the first Piola–Kirchhoff stress tensor into the corre-
sponding Cauchy stress tensor, we have that the above expression takes on the form
T̂ ¼ 1

VolðXÞ
XN
i¼1

f e
i � ri þ €̂

FF̂
�1
J

 !
; ð82Þ
where, adopting a PR viewpoint, T̂ is the desired value of the effective Cauchy stress and J is the system�s
inertia tensor, i.e.,
J ¼
XN
i¼1

miri � ri. ð83Þ
Note that, due to the approximation being used in the current derivation, T̂ cannot be expected to satisfy
Eq. (68) point-wise in time. Now, comparing Eqs. (82) and (76), we have that T̂ plays the same role played
by �pI since, in the present context, they must be interpreted as prescribed stress states. Furthermore, we
see that the pseudo virial stress PPR plays the role of the first term on the right side of Eq. (82). However,
notice that in order for PPR to be equal to P one must have

_̂
F ¼ 0. In addition, even if one could claim that

PPR represents P in some sense, there still remains the fact that, as discussed earlier, P is a meaningful mea-
sure of mechanical stress only in a time average sense at constant volume. These observations lead to the
conclusion that the PR scheme is intrinsically limited to a regime of small deformations. Finally, by com-
paring the two inertia tensors JPR and J, one has a rigorous way of attributing a meaning to the quantityW.
In fact, we have shown that there is no need to make any ad hoc assumptions concerning W since one can
rigorously show that the correct inertia tensor to use is the inertia tensor!
8. Conclusion

A continuum homogenization model has been presented for heterogeneous media that behave locally as
isothermal elastic materials within a context of finite deformations. The homogenization procedure dis-
cussed led to an effective constitutive relation, which is, to the best of the authors� knowledge, novel. A
Lagrangian-based approach was introduced for performing the homogenization procedure. In addition,
such an approach has been used to create a corresponding homogenization scheme applicable to MD.
The proposed MD scheme has been compared with the widely-used PR scheme, and it was shown that
the PR scheme is recovered only when severe approximations are made concerning the behavior of the par-
ticle system at hand. Specifically, it has been shown that the applicability of the PR approach should be
limited to a regime of small deformations and (approximately) constant volume calculations. While the ap-
proach presented in this work naturally lends itself to strain controlled MD simulations, stress controlled
simulations are possible. In fact, to do a stress controlled simulation one would begin by prescribing sTt in
the form of Eq. (68) that explicitly contains F̂ and then simultaneously solve the resulting algebraic equa-
tion along with the differential equations of motion given by Eq. (59). This results in a differential-algebraic
system for F̂ and r�i . This is the price one pays for deriving the governing equations from first principles
rather than using an ad hoc scheme as is done in PR. On the other hand, this also emphasizes the attrac-
tiveness of the PR scheme since the numerical solution to their problem under stress control is much more
straightforward. Above all, we have shown that the proposed scheme can be derived from first principles in
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a rigorous way and does not require any of the ad hoc assumptions that are typically made in the PR
scheme.
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Appendix A. Translation between our notation and that of Parrinello and Rahman

In this Appendix A we provide the key relationships to allow one to rewrite the formulation presented in
Parrinello and Rahman (1981) using the notation adopted in this paper.

As mentioned earlier, the starting point of the formulation given by Parrinello and Rahman (1981) is the
definition of the MD simulation cell. This cell is taken to be a parallelepiped whose sides, as functions of
time, are described by three nonparallel vectors a(t), b(t), and c(t), which we have denoted by ai(t)
(i = 1, . . . , 3). Specifically, we write
a1ðtÞ ¼ aðtÞ; a2ðtÞ ¼ bðtÞ; a3ðtÞ ¼ cðtÞ. ðA:1Þ

These vectors are then used to construct a second order tensor, which they call h, whose ij-component is
defined as follows:
ðhðtÞÞij ¼ ðajðtÞÞi; ðA:2Þ
where, for convenience, we have defined the components of h using our notation. Therefore, with reference
to Eq. (71), we see that our tensor H0 is obtained as
H0 ¼ hðtÞjt¼0. ðA:3Þ

Furthermore, we believe that the relation connecting H0 to h(t) defines the effective deformation gradient,
i.e.,
hðtÞ ¼ F̂ðtÞH0. ðA:4Þ

In Parrinello and Rahman (1981), the position ri(t) of the ith particle is identified via a nondimensional vec-
tor si(t), so that
riðtÞ ¼ aðtÞðsiðtÞÞ1 þ bðtÞðsiðtÞÞ2 þ cðtÞðsiðtÞÞ3. ðA:5Þ

This implies that
riðtÞ ¼ hðtÞsiðtÞ. ðA:6Þ

Finally, by comparing Eqs. (A.6) and (58) we have that
riðtÞ ¼ hðtÞsiðtÞ ¼ F̂ðtÞr�i ðtÞ. ðA:7Þ
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