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Abstract

A two-dimensional model has been developed for thermal stresses, elastic strains, creep strains, and creep energy density
at the interfaces of short and long trilayer assemblies under both plane stress and plane strain conditions. Both linear (vis-
cous) and non-linear creep constitutive behavior under static and cyclic thermal loading can be modeled for all layers.
Interfacial stresses and strains are approximated using a combination of exact elasticity solutions and elementary strength
of materials theories. Partial differential equations are linearized through a simple finite difference discretization procedure.
The approach is mathematically straightforward and can be extended to include plastic behavior and problems involving
external loads and a variety of geometries. The model can provide input data for thermal fatigue life prediction in solder or
adhesive joints. For a typical solder joint, it is demonstrated that the predicted cyclic stress–strain hysteresis shows shake-
down and a rapid stabilization of the creep energy dissipation per cycle in agreement with the predictions of finite element
analysis.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Layered assemblies of dissimilar materials are a common feature of laminated structures, coatings and
joints that are soldered, brazed or adhesively bonded. Under thermal loading such trilayer assemblies can suf-
fer from unacceptable deformation (e.g. Madras et al., 1996), delamination and cracking because of expansiv-
ity and rigidity mismatch (e.g. Wang et al., 2000), residual stresses (e.g. Humfeld and Dillard, 1998), and
creep-fatigue damage in structures with viscoelastic or viscoplastic materials (e.g. Qi et al., 2006).
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Interfacial thermal stress and strain distributions in layered structures have been analyzed using three main
approaches: two-dimensional elasticity solutions, finite element (FE) analysis, and elementary beam theory.
Many references can be found in the recent papers of Shen and Suresh (1996), Suhir (2001), Wen and Basaran
(2004), and Ghorbani and Spelt (2005).

Two-dimensional elasticity solutions for interfacial thermal stresses were developed by Hayashi (1967),
Bogy (1968), Zeyfang (1971), Chen et al. (1982), Yin (1991), Xie and Sitaraman (2000), Chen et al. (2003),
Matsunaga (2004), and many others. This method usually leads to differential equations which must be solved
numerically. It also results in an unrealistic singular stress field at the free edges of interfaces if an exact solu-
tion with strict adherence to the constitutive relations of linear elasticity is sought. In reality, the exact elas-
ticity solution around free edges reflects the existence of a region with an intense stress or stress gradient (Yin,
1991).

Finite element analysis (FEA) has received wide attention in the analysis of layered assemblies. For
instance, Mackerle (2002) gives a bibliography of 867 FEA papers in adhesive bonding, soldering, and brazing
published in the period 1996–2002. Nevertheless, as shown by Glaser (1990), Basaran and Zhao (2001), Ghor-
bani and Spelt (2005), and many others, the predictions of elastic FEA are strongly mesh sensitive around the
free corners of interlayers under thermal loading. This is a consequence of the underlying elasticity solutions
which predict that peel stresses approach infinity at the free edges. Through the equilibrium equations this also
affects the other stresses (Yin, 1991), causing elastic FE models to be accurate only away from the free edges.

The present elasto-creep analysis is based on the structural mechanics model of Ghorbani and Spelt (2005)
for the thermal stresses in long and short trilayer assemblies. This model satisfies all equilibrium and compat-
ibility requirements using compliances defined through elasticity solutions for both plane stress and plane
strain conditions. The governing differential equations were solved using a straightforward finite difference
procedure.

A few analytical models have been presented for the inelastic analysis of layered structures. Suhir (1986)
proposed a closed-form structural mechanics solution for the elasto-plastic interfacial shear stress distribution
in bilayer assemblies based on his structural mechanics approach and deformational plasticity. In this model,
the plastic deformations due to other stress components (i.e. peel, axial, and out-of-plane) were neglected and
equilibrium requirements for peel stresses were not met. For materials such as solder and polymeric adhesives,
creep can be more detrimental than plastic deformation (Akay et al., 1997). Mirman and Knecht (1990)
extended Suhir’s model to account for creep strains due to only shear stresses in elongated bonded layers.
However, the model neglected other stresses and creep deformations in trilayers.

Shen and Suresh (1995, 1996) developed analytical models for elasto-plastic and steady-state creep defor-
mations in multi-layered materials during thermal cycling. The models were aimed at capturing residual stres-
ses, stress relaxation and curvature reversal during monotonic temperature change. It was reported that the
elasto-plastic model provided a better match with the experimental results during the heating phase, whereas
the creep model was better during the cooling phase. It was assumed that stresses and strains varied only in the
through-thickness direction (independent of longitudinal position), with the curvature being the same for all
layers. This is an approximation since the radius of curvature is variable in both the longitudinal and trans-
verse directions from one layer to another (Ghorbani and Spelt, 2005).

Madras et al. (1996), in an attempt to explain the permanent deformations observed experimentally in
adhesively bonded optical coatings during thermal cycling, modeled the adhesive using a simple Maxwell
(spring-dashpot) element with a temperature-dependent viscosity. Humfeld and Dillard (1998) developed an
analytical Maxwell-type model to calculate the residual stresses and stress relaxation in polymeric materials
bonding to stiff elastic substrates subject to thermal cycling. The model treats the interlayer as a bulk Maxwell
element (i.e. a spring and a dashpot in series), assuming that the axial stress is the only component of stress in
the interlayer and that it is constant. The model is therefore applicable to the midpoint of the adhesive layer,
where the interfacial stresses vanish. Using FEA, Dillard et al. (2003) provided further insights into shrinkage
and hysteresis in viscoelastic adhesive joints under cyclic thermal loads.

As mentioned above, the present 2D elasto-creep analytical model for trilayer assemblies extends an earlier
elastic model for interfacial thermal stresses (Ghorbani and Spelt, 2005). The model is applicable to trilayers
with any aspect ratio (i.e. both long and short) under either plane stress or plane strain conditions, and can be
used with either a linear (viscous) or non-linear creep model for any of the three layers. Sample calculations
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illustrate comparisons with FE models for the time-dependent distribution of elastic and creep interfacial
stresses and strains during thermal cycling.

2. Creep rate under plane stress and plane strain conditions

Assuming a linear relationship between the creep strain rate and stress (i.e. viscous or linear creep) the nor-
mal and shear creep strain rates under plane stress and plane strain conditions can be defined as (Dowling,
1999)
Table
Mater

Examp
trilaye

1

2

3

4

a bðh
b r i
_exCðtÞ ¼
1

bðtÞ ½rxðtÞ � 0:5ðryðtÞ þ rzðtÞÞ� ð1Þ

_eyCðtÞ ¼
1

bðtÞ ½ryðtÞ � 0:5ðrxðtÞ þ rzðtÞÞ� ð2Þ

_ezCðtÞ ¼
1

bðtÞ ½rzðtÞ � 0:5ðrxðtÞ þ ryðtÞÞ� ð3Þ

_exyCðtÞ ¼
3

bðtÞ sxyðtÞ ð4Þ
where t denotes time, and b is the tensile viscosity of the material. These relations are analogous to Hooke’s
law except that they involve strain rates and Poisson’s ratio, m, is replaced by 0.5, E by b, and G by b/3. In
other words, it is assumed that creep deformation occurs at constant volume and is uninfluenced by hydro-
static stress, that the principal axes of stress and creep strain are coincident, and that the material is isotropic
(Findley et al., 1979). Note in Eqs. (1)–(3) that rz(t) is zero under plane stress condition, but _ezðtÞ is not zero
under plane strain condition if elastic and thermal strains are present (see Eq. (51)).

The viscous (linear) creep concept has been used in many analytical models; e.g. Hibbeler and Mura (1969),
Mirman and Knecht (1990), Madras et al. (1996), Humfeld and Dillard (1998), and Dillard et al. (2003). It was
shown by Yang (1997) that the creep controlled by grain boundary viscous flow may have the same mecha-
nism and order as does that controlled by grain boundary diffusion. Dutta et al. (2003) also presented an
1
ial properties (Qi et al., 2004) and dimensions of example trilayers (symbols and layers defined in Fig. 1 and Section 3.1)

le
r

L (mm) Layers (3/2/1) h (mm) E (GPa) m CTE
(ppm/�C)

Creep constitutive lawa (_ecr)
with h (K) and rb (Pa)

0.76 (Short) Resistor 0.65 131 0.30 2.8 4.68 · 10�11 · 441,000rexp[�5412/h]
SAC 0.12 25 �C: 46 0.30 17

50 �C: 44
100 �C: 41

FR-4 1.23 22 0.28 19

0.76 (Short) Resistor 0.65 131 0.30 2.8 441,000[sinh(5 · 10�9r)]4.2exp[�5412/h]
SAC 0.12 25 �C: 46 0.30 17

50 �C: 44
100 �C: 41

FR-4 1.23 22 0.28 19

0.76 (Short) Resistor 0.65 131 0.30 2.8 [926(508 � h)/h]exp[�6360/h]
· {sinh[r/(37.78 · 106 � 74,414h)]}3.3SnPb 0.12 75.940–0.152 · h (K) 0.40 22

FR-4 1.23 22 0.28 19

3.8 (Long) Resistor 0.65 131 0.30 2.8 441,000[sinh(5 · 10�9r)]4.2exp[�5412/h]
SAC 0.12 25�C: 46 0.30 17

50 �C: 44
100 �C: 41

FR-4 1.23 22 0.28 19

Þ ¼ r=_ecr ¼ 1=f4:68� 10�11 � 441; 000 exp½�5412=h�g in the linear creep model of Example 1.
s to be replaced with the von Mises stress.
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interesting discussion on how the interfacial thermal creep in multi-component material systems, such as in
metal–matrix composites and microelectronic interconnects, can be described using linear creep based on both
interfacial shear and peeling stresses. In general, however, it is more accurate to use a non-linear creep con-
stitutive relation in multi-layered structures (Lewis et al., 2003), particularly if stresses are relatively large
(Shen and Suresh, 1996).

In order to extend the above equations to cases where the creep constitutive law is non-linear (e.g. dislo-
cation glide creep, power-law creep, power-law breakdown creep, diffusional flow creep), b may be interpreted
as a secant modulus on a stress versus strain rate plot (Dowling, 1999):
Fig. 1.
symme
bðtÞ ¼ SðtÞ
_ecrðtÞ

ð5Þ
where S is the von Mises stress as defined by Eq. (54) below, and _ecr is the corresponding creep strain rate of
the material (Table 1).

3. Problem formulation

3.1. Free-body diagram

Fig. 1 shows a plane view of a trilayer assembly of length L = 2l. The Poisson ratio, elastic modulus, coef-
ficient of thermal expansion, thickness, and extensional viscosity of each layer respectively, are mj, Ej(t), aj(t),
hj, and bj(t) where the index j = 1,2,3 denotes the layers. The elastic and creep rigidities of each layer are
assumed to be temperature-dependent. Under a uniform temperature change, Dh(t), the layers may undergo
elastic and inelastic creep deformations. The interfacial shear stress, sxym(x, t), and peel stresses, rym(x, t), vary
with the interface number, m = 1,2. The axial, transverse shear and bending loads acting at the midplane of
each layer cross-section are, respectively, Tj(x, t), Vj(x, t), and Mj(x, t). The axial and transverse shear forces
are due to the interlaminar shear and peel stresses, respectively. Together with the bending moments, they van-
ish at the free ends of the assembly.

The interlaminar shear stresses, created by the mismatch of the coefficient of thermal expansion (CTE) of
the layers, will vanish at the ends of the assembly. The peel stresses are due to differences in the elastic and
creep rigidities of the adjacent layers and must be self-equilibrating.
Free-body diagram of a trilayer subject to a uniform time-dependent temperature change. z = 0 corresponds to the x–y plane of
try along the centreline of the trilayer assembly.
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3.2. Equilibrium equations

The equilibrium of horizontal forces at each cross-section implies that (Fig. 1):
T 1ðx; tÞ ¼ �
Z x

�l
sxy1ðn; tÞdn ð6Þ

T 2ðx; tÞ ¼
Z x

�l
½sxy1ðn; tÞ � sxy2ðn; tÞ�dn ¼ �½T 1ðx; tÞ þ T 3ðx; tÞ� ð7Þ

T 3ðx; tÞ ¼
Z x

�l
sxy2ðn; tÞdn ð8Þ
Similarly, equilibrium of the transverse forces at each cross-section gives (Fig. 1):
V 1ðx; tÞ ¼ �
Z x

�l
ry1ðn; tÞdn ð9Þ

V 2ðxÞ ¼
Z x

�l
½ry1ðn; tÞ � ry2ðn; tÞ�dn ¼ �½V 1ðx; tÞ þ V 3ðx; tÞ� ð10Þ

V 3ðx; tÞ ¼
Z x

�l
ry2ðn; tÞdn ð11Þ
Lastly, equilibrium of the bending moments at each cross-section yields (Fig. 1):
M1ðx; tÞ ¼ �
h1

2
T 1ðx; tÞ �

Z x

�l
V 1ðn; tÞdn ð12Þ

M2ðx; tÞ ¼
h2

2
½T 3ðx; tÞ � T 1ðx; tÞ� þ

Z x

�l
½V 1ðn; tÞ þ V 3ðn; tÞ�dn ð13Þ

M3ðx; tÞ ¼
h3

2
T 3ðx; tÞ �

Z x

�l
V 3ðn; tÞdn ð14Þ
Finally, from Eqs. (6)–(14), the condition that these forces and moments must be zero at x = ±l yields:
Z l

�l
sxymðn; tÞdn ¼

Z l

�l
rymðn; tÞdn ¼

Z l

�l
V jðn; tÞdn ¼ 0 ð15Þ
implying that the interfacial shear and peel stresses, and transverse shear forces remain self-equilibrating.

3.3. Compatibility of horizontal deformations

The time-dependent longitudinal displacements of the component, interlayer and substrate in the neighbor-
hood of each interface, um

j ðx; tÞ, are comprised of three terms; free thermal expansion with respect to the assem-
bly vertical centerline, elastic deformations, um

jEðx; tÞ, and creep deformations, um
jCðx; tÞ:
um
j ðx; tÞ ¼ a�j ðtÞDhðtÞxþ um

jEðx; tÞ þ
Z t

0

_um
jCðx; sÞds ð16Þ
where a�j ðtÞ is the effective coefficient of thermal expansion equal to aj(t) if the layer is subject to creep defor-
mation in both plane stress and plane strain. If the layer is subject to elastic deformation only, a�j ðtÞ equals aj(t)
in plane stress and (1 + mj)aj(t) under plane strain. The elastic interfacial deformations of Eq. (16) may be ex-
pressed as (Ghorbani and Spelt, 2005):
u1
1Eðx; tÞ ¼ k1EðtÞ

Z x

0

T 1ðn; tÞdnþ g1EðtÞ½sxy1ðx; tÞ � d1s
00
xy1ðx; tÞ� �

1

2

h1

D1EðtÞ

Z x

0

M1ðn; tÞdn ð17Þ

u1
2Eðx; tÞ ¼ k2EðtÞ

Z x

0

T 2ðn; tÞdn� g2EðtÞ½sxy1ðx; tÞ � d2s
00
xy1ðx; tÞ� þ

1

2

h2

D2EðtÞ

Z x

0

M2ðn; tÞdn ð18Þ
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u2
2Eðx; tÞ ¼ k2EðtÞ

Z x

0

T 2ðn; tÞdnþ g2EðtÞ½sxy2ðx; tÞ � d2s
00
xy2ðx; tÞ� �

1

2

h2

D2EðtÞ

Z x

0

M2ðn; tÞdn ð19Þ

u2
3Eðx; tÞ ¼ k3EðtÞ

Z x

0

T 3ðn; tÞdn� g3EðtÞ½sxy2ðx; tÞ � d3s
00
xy2ðx; tÞ� þ

1

2

h3

D3EðtÞ

Z x

0

M3ðn; tÞdn ð20Þ
where kjE(t) is the axial compliance, gjE(t) is the shear compliance, and DjE(t) is the flexural rigidity of the jth
layer subject to elastic deformation as defined in Ghorbani and Spelt (2005) for both plane stress and plane
strain conditions. In Eqs. (17)–(20), the first terms are longitudinal displacements due to the axial loads, while
the second and third terms capture the deformations due to interfacial shear and bending, respectively.

The present model can be regarded as ‘‘non-local’’ as defined by Ru (2002) since it includes the effect of
s00xymðxÞ in the interfacial shear displacements. It was seen in Ghorbani and Spelt (2005) that this is essential
if the elastic model is to predict the large shear stress gradient near the free ends, enabling the interfacial shear
stresses to vanish at the free surfaces. It was also seen that the shear parameters dj control the shape of the
shear stress gradient close to the free ends of the interfaces, and that h2

j=1000p2 was a phenomenologically
acceptable value for dj under elastic deformations. As discussed in Section 5.2 below, dj approaches zero under
elasto-creep conditions as the creep deformations are accumulated in the interfacial region.

Similarly, the rate of interfacial creep deformation in Eq. (16) can be defined as
_u1
1Cðx; tÞ ¼ k1CðtÞ

Z x

0

T 1ðn; tÞdnþ g1CðtÞsxy1ðx; tÞ �
1

2

h1

D1CðtÞ

Z x

0

M1ðn; tÞdn ð21Þ

_u1
2Cðx; tÞ ¼ k2CðtÞ

Z x

0

T 2ðn; tÞdn� g2CðtÞsxy1ðx; tÞ þ
1

2

h2

D2CðtÞ

Z x

0

M2ðn; tÞdn ð22Þ

_u2
2Cðx; tÞ ¼ k2CðtÞ

Z x

0

T 2ðn; tÞdnþ g2CðtÞsxy2ðx; tÞ �
1

2

h2

D2CðtÞ

Z x

0

M2ðn; tÞdn ð23Þ

_u2
3Cðx; tÞ ¼ k3CðtÞ

Z x

0

T 3ðn; tÞdn� g3CðtÞsxy2ðx; tÞ þ
1

2

h3

D3CðtÞ

Z x

0

M3ðn; tÞdn ð24Þ
where kjC(t), gjC(t), and DjC(t) are, respectively, the axial and shear creep compliances and the creep flexural
rigidity of the jth layer. These terms are derived in Appendix A for both plane stress and plane strain condi-
tions. In Eqs. (21)–(24), the first terms are longitudinal creep displacements due to the axial loads and the sec-
ond and third terms are interfacial shear and flexural creep deformations, respectively. Note that the non-local
term s00xymðxÞ is no longer used since the creep displacements can be described accurately without it (Appendix
A).

Substituting for the bending moments from Eqs. (12)–(14), using compatibility of the horizontal displace-
ments at each interface (i.e. u1

1ðx; tÞ ¼ u1
2ðx; tÞ and u2

2ðx; tÞ ¼ u2
3ðx; tÞÞ and differentiating with respect to x leads

to the following system of coupled time-dependent integro-differential equations:
� k1EðtÞT 1ðx; tÞ þ k2EðtÞT 3ðx; tÞ � k3EðtÞs0xy1ðx; tÞ þ k6EðtÞs000xy1ðx; tÞ þ k8EðtÞ
Z x

�l
V 1ðn; tÞdn

þ k9E

Z x

�l
V 3ðn; tÞdnþ

Z t

0

�
�k1CðsÞT 1ðx; sÞ þ k2CðsÞT 3ðx; sÞ � k3CðsÞs0xy1ðx; sÞ

þ k8CðsÞ
Z x

�l
V 1ðn; sÞdnþ k9CðsÞ

Z x

�l
V 3ðn; sÞdn

�
ds ¼ ½a�1ðtÞ � a�2ðtÞ�DhðtÞ ð25Þ

� k2EðtÞT 1ðx; tÞ þ k4EðtÞT 3ðx; tÞ � k5EðtÞs0xy2ðx; tÞ þ k7EðtÞs000xy2ðx; tÞ þ k9EðtÞ
Z x

�l
V 1ðn; tÞdn

þ k10EðtÞ
Z x

�l
V 3ðn; tÞdnþþ

Z t

0

�
�k2CðsÞT 1ðx; sÞ þ k4CðsÞT 3ðx; sÞ � k5CðsÞs0xy2ðx; sÞ

þ k9CðsÞ
Z x

�l
V 1ðn; sÞdnþ k10CðsÞ

Z x

�l
V 3ðn; sÞdn

�
ds ¼ ½a�2ðtÞ � a�3ðtÞ�DhðtÞ ð26Þ
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where the elastic stiffnesses k1E(t)–k10E(t) are given in Ghorbani and Spelt (2005). The creep compliances
k1C(t)–k10C(t) are exactly the same as the corresponding elastic compliances except that Ej(t) is replaced by
bj(t) and mj by 0.5. Substituting for the axial forces from Eqs. (6) and (8) and differentiating yields:
k6EðtÞ
d4

dx4
� k3EðtÞ

d2

dx2
þ k1EðtÞ

� �
sxy1ðx; tÞ þ k2EðtÞsxy2ðx; tÞ þ k8EðtÞV 1ðx; tÞ þ k9EðtÞV 3ðx; tÞ

þ
Z t

0

�k3CðsÞ
d2

dx2
þ k1CðsÞ

� �
sxy1ðx; sÞ þ k2CðsÞsxy2ðx; sÞ þ k8CðsÞV 1ðx; sÞ þ k9CðsÞV 3ðx; sÞ

� �
ds

¼ 0 ð27Þ

k2EðtÞsxy1ðx; tÞ þ k7EðtÞ
d4

dx4
� k5EðtÞ

d2

dx2
þ k4EðtÞ

� �
sxy2ðx; tÞ þ k9EðtÞV 1ðx; tÞ þ k10EðtÞV 3ðx; tÞ

þ
Z t

0

k2CðsÞsxy1ðx; sÞ þ �k5CðsÞ
d2

dx2
þ k4CðsÞ

� �
sxy2ðx; sÞ þ k9CðtÞV 1ðx; sÞ þ k10CðsÞV 3ðx; sÞ

� �
ds

¼ 0 ð28Þ
It can be seen that the interfacial transverse shear forces and shear stresses are coupled; the other required
equations and boundary conditions must be derived from compatibility of vertical deformations as discussed
below.

3.4. Compatibility of vertical deformations

The time-dependent vertical deformations of the component, interlayer and substrate in the neighborhood
of each interface, wm

j ðx; tÞ, consist of elastic displacements, wm
jEðx; tÞ, and creep deformations, wm

jCðx; tÞ:
wm
j ðx; tÞ ¼ wm

jEðx; tÞ þ
Z t

0

_wm
jCðx; sÞds ð29Þ
The elastic interfacial displacements in Eq. (29) may be written as
w1
1Eðx; tÞ ¼ l1EðtÞ

Z x

�l
V 1ðn; tÞdnþ d1EðtÞry1ðx; tÞ þ

1

D1EðtÞ

Z x

0

Z x

0

M1ðn; tÞdndn0 ð30Þ

w1
2Eðx; tÞ ¼ l2EðtÞ

Z x

�l
V 2ðn; tÞdn� d2EðtÞry1ðx; tÞ þ

1

D2EðtÞ

Z x

0

Z x

0

M2ðn; tÞdndn0 ð31Þ

w2
2Eðx; tÞ ¼ l2EðtÞ

Z x

�l
V 2ðn; tÞdnþ d2EðtÞry2ðx; tÞ þ

1

D2EðtÞ

Z x

0

Z x

0

M2ðn; tÞdndn0 ð32Þ

w2
3Eðx; tÞ ¼ l3EðtÞ

Z x

�l
V 3ðn; tÞdn� d3EðtÞry2ðx; tÞ þ

1

D3EðtÞ

Z x

0

Z x

0

M3ðn; tÞdndn0 ð33Þ
where ljE(t) and djE(t) are the transverse and through-thickness compliances, respectively, of the jth layer
against elastic deformations as defined in Ghorbani and Spelt (2005) for both plane stress and plane strain
conditions. In Eqs. (30)–(33), the first terms are transverse elastic deflections caused by transverse shear loads,
the second terms are the local elastic displacement due to the peel stresses, and the third terms are the elastic
flexural deformations.

Similarly, the rate of interfacial creep deflections in Eq. (29) can be defined as
_w1
1Cðx; tÞ ¼ l1CðtÞ

Z x

�l
V 1ðn; tÞdnþ d1CðtÞry1ðx; tÞ þ

1

D1CðtÞ

Z x

0

Z x

0

M1ðn; tÞdndn0 ð34Þ

_w1
2Cðx; tÞ ¼ l2CðtÞ

Z x

�l
V 2ðn; tÞdn� d2CðtÞry1ðx; tÞ þ

1

D2CðtÞ

Z x

0

Z x

0

M2ðn; tÞdndn0 ð35Þ
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_w2
2Cðx; tÞ ¼ l2CðtÞ

Z x

�l
V 2ðn; tÞdnþ d2CðtÞry2ðx; tÞ þ

1

D2CðtÞ

Z x

0

Z x

0

M2ðn; tÞdndn0 ð36Þ

_w2
3Cðx; tÞ ¼ l3CðtÞ

Z x

�l
V 3ðn; tÞdn� d3CðtÞry2ðx; tÞ þ

1

D3CðtÞ

Z x

0

Z x

0

M3ðn; tÞdndn0 ð37Þ
where ljC(t) and djC(t) are the transverse and the through-thickness compliances, respectively, of the jth layer
against creep deformations. These compliances are derived in Appendix B for both plane stress and plane
strain conditions. In Eqs. (34)–(37), the first terms are transverse creep deflections caused by Vj(x, t), the sec-
ond terms are local creep displacement due to the peel stresses, and the third terms are the creep flexural
deformations.

Substituting for the bending moments, using compatibility of the vertical deflections at each interface (i.e.
w1

1ðx; tÞ ¼ w1
2ðx; tÞ and w2

2ðx; tÞ ¼ w2
3ðx; tÞ), and differentiating twice leads to the following system of coupled

time-dependent integro-differential equations:
k8EðtÞT 1ðx; tÞ � k9EðtÞT 3ðx; tÞ þ D1EðtÞV 01ðx; tÞ þ D2EðtÞV 03ðx; tÞ � D3EðtÞV 0001 ðx; tÞ � D6EðtÞ
Z x

�l
V 1ðn; tÞdn

� D7EðtÞ
Z x

�l
V 3ðn; tÞdnþ

Z t

0

�
k8CðsÞT 1ðx; sÞ � k9CðsÞT 3ðx; sÞ þ D1CðsÞV 01ðx; sÞ þ D2CðsÞV 03ðx; sÞ

� D3CðsÞV 0001 ðx; sÞ � D6CðsÞ
Z x

�l
V 1ðn; sÞdn� D7CðsÞ

Z x

�l
V 3ðn; sÞdn

�
ds ¼ 0 ð38Þ

k9EðtÞT 1ðx; tÞ � k10EðtÞT 3ðx; tÞ þ D2EðtÞV 01ðx; tÞ þ D4EðtÞV 03ðx; tÞ � D5EðtÞV 0003 ðx; tÞ � D7EðtÞ
Z x

�l
V 1ðn; tÞdn

� D8EðtÞ
Z x

�l
V 3ðn; tÞdnþ

Z t

0

�
k9CðsÞT 1ðx; sÞ � k10CðsÞT 3ðx; sÞ þ D2CðsÞV 01ðx; sÞ þ D4CðsÞV 03ðx; sÞ

� D5CðsÞV 0003 ðx; sÞ � D7CðsÞ
Z x

�l
V 1ðn; sÞdn� D8CðsÞ

Z x

�l
V 3ðn; sÞdn

�
ds ¼ 0 ð39Þ
where the elastic stiffnesses D1E–D8E are given in Ghorbani and Spelt (2005). The creep compliances D1C–D 8C

are exactly the same as the corresponding elastic compliances except that Ej(t) is replaced by bj(t) and mj by 0.5.
Note that ry1(x, t) and ry2(x, t) in Eqs. (34)–(37) were replaced by �V 01ðx; tÞ and V 03ðx; tÞ, respectively. Note also
that the assembly is not constrained in y-direction and neighboring layers at each interface experience the same
thermal expansion. Therefore, the thermal expansion terms would have canceled each other in the compati-
bility requirements had they been taken into account in Eq. (29). Finally, another differentiation of Eqs.
(38) and (39) gives:
k8EðtÞsxy1ðx; tÞ þ k9EðtÞsxy2ðx; tÞ þ D3EðtÞ
d4

dx4
� D1EðtÞ

d2

dx2
þ D6EðtÞ

� �
V 1ðx; tÞ

þ �D2EðtÞ
d2

dx2
þ D7EðtÞ

� �
V 3ðx; tÞ þ

Z t

0

(
k8CðsÞsxy1ðx; sÞ þ k9CðsÞsxy2ðx; sÞ

þ D3CðsÞ
d4

dx4
� D1CðsÞ

d2

dx2
þ D6CðsÞ

� �
V 1ðx; sÞ þ �D2CðsÞ

d2

dx2
þ D7CðsÞ

� �
V 3ðx; sÞ

)
ds ¼ 0 ð40Þ

k9EðtÞsxy1ðx; tÞ þ k10EðtÞsxy2ðx; tÞ þ �D2EðtÞ
d2

dx2
þ D7EðtÞ

� �
V 1ðx; tÞ

þ D5EðtÞ
d4

dx4
� D4EðtÞ

d2

dx2
þ D8EðtÞ

� �
V 3ðx; tÞ þ

Z t

0

(
k9CðsÞsxy1ðx; sÞ þ k10CðsÞsxy2ðx; sÞ

þ �D2CðsÞ
d2

dx2
þ D7CðsÞ

� �
V 1ðx; sÞ þ D5CðsÞ

d4

dx4
� D4CðsÞ

d2

dx2
þ D8CðsÞ

� �
V 3ðx; sÞ

)
ds ¼ 0 ð41Þ
From Eqs. (27), (28), (40) and (41), it is evident that the loading history will affect the accumulated creep
deformations and the current interfacial stresses and strains.



7432 H.R. Ghorbani, J.K. Spelt / International Journal of Solids and Structures 43 (2006) 7424–7449
3.5. Boundary conditions

The governing equations (27), (28), (40) and (41) represent a boundary value problem (BVP) with respect to
x and an initial value problem with respect to time. Consequently, 16 BVP and four initial values are needed.
The following eight BVP conditions are evident:
sxy1ð�l; tÞ ¼ sxy2ð�l; tÞ ¼ V 1ð�l; tÞ ¼ V 3ð�l; tÞ ¼ 0 ð42Þ
Additionally, it is assumed that the assembly is free of residual stresses at the onset of loading, i.e. t = 0, so
that the following four initial values are applicable:
sxy1ðx; 0Þ ¼ sxy2ðx; 0Þ ¼ V 1ðx; 0Þ ¼ V 3ðx; 0Þ ¼ 0 ð43Þ
Recalling Eq. (15), the remaining eight BVP conditions can also be obtained from Eqs. (25), (26), (38) and
(39):
� k3EðtÞs0xy1ð�l; tÞ þ k6EðtÞs000xy1ð�l; tÞ �
Z t

0

k3CðsÞs0xy1ð�l; sÞds ¼ ½a�1ðtÞ � a�2ðtÞ�DhðtÞ ð44Þ

� k5EðtÞs0xy2ð�l; tÞ þ k7EðtÞs000xy2ð�l; tÞ �
Z t

0

k5CðsÞs0xy2ð�l; sÞds ¼ ½a�2ðtÞ � a�3ðtÞ�DhðtÞ ð45Þ

D1EðtÞV 01ð�l; tÞ þ D2EðtÞV 03ð�l; tÞ � D3EðtÞV 0001 ð�l; tÞ þ
Z t

0

½D1CðsÞV 01ð�l; sÞ þ D2CðsÞV 03ð�l; sÞ

� D3CðsÞV 0001 ð�l; sÞ�ds ¼ 0 ð46Þ

D2EðtÞV 01ð�l; tÞ þ D4EðtÞV 03ð�l; tÞ � D5EðtÞV 0003 ð�l; tÞ þ
Z t

0

½D2CðsÞV 01ð�l; sÞ þ D4CðsÞV 03ð�l; sÞ

� D5CðsÞV 03ð�l; sÞ�ds ¼ 0 ð47Þ
The last four boundary conditions suggest that the creep deformation may also affect the stress and strain dis-
tribution at the free edges of interfaces.

These 16 boundary and four initial conditions together with the Eqs. (27), (28), (40) and (41) define the
interfacial stresses in a trilayer assembly under time-dependent thermal loading with elasto-creep deformation.
Note that once the transverse shear forces are determined, peel stresses ry1(x, t) and ry2(x, t) can be calculated
from �V 01ðx; tÞ and V 03ðx; tÞ, respectively.

3.6. Other stress and strain components

Upon finding the interfacial shear and peel stress distributions in an incremental manner with respect to
time, as discussed in Section 4 below, the other components of stress and strain can be defined in the post-pro-
cessing step for each time interval.

First, the axial forces Tj(x, t) and bending moments Mj(x, t) can be determined using Eqs. (5)–(8) and (12)–
(14). The axial stresses rm

xjðx; tÞ in each layer at each interface for both plane stress and plane strain conditions
may then be approximated by
rm
xjðx; tÞ ¼

T jðx; tÞ
hj

� 6Mjðx; tÞ
h2

j

ð48Þ
where + and � signs refer to the lower and upper interfaces of each layer, respectively.
The total normal and shear strains at each interface may encompass thermal, elastic and instantaneous

creep components as
em
xjðx; tÞ ¼ eth

j ðtÞ þ em
xjEðx; tÞ þ em

xjCðx; tÞ ð49Þ

em
yjðx; tÞ ¼ eth

j ðtÞ þ em
yjEðx; tÞ þ em

yjCðx; tÞ ð50Þ
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em
zjðx; tÞ ¼ eth

j ðtÞ þ em
zjEðx; tÞ þ em

zjCðx; tÞ ð51Þ
em

xyjðx; tÞ ¼ em
xyjEðx; tÞ þ em

xyjCðx; tÞ ð52Þ
where the thermal strain is equal to aj(t)Dh(t), elastic strains can be found through Hook’s law, and the creep
strains can be obtained by integration of the creep law in Eqs. (1)–(4). However, the elastic and creep strain
components under plane strain conditions require identification of the out-of-plane stresses rm

zjðx; tÞ. In order
to define these stresses one must realize that even though the total strain in the z-direction is zero under plane
strain conditions, its thermal, elastic, and creep components do exist. In other words, the component strains in
Eq. (51) interact with each other so that the total z-strain vanishes. Substituting for the strain components in
Eq. (51), and setting the total z-strain to be zero yields the following supplementary equation which defines the
rm

zjðx; tÞ:
ajðtÞDhðtÞ þ 1

EjðtÞ
rm

zjðx; tÞ � mjðrm
xjðx; tÞ þ rymðx; tÞÞ

h i

þ
Z t

0

1

bjðsÞ
rm

zjðx; sÞ � 0:5ðrm
xjðx; sÞ þ rymðx; sÞÞ

h i
ds ¼ 0 ð53Þ
Having specified the stress components, interfacial von Mises stresses Sm
j ðx; tÞ may be defined as
Sm
j ðx; tÞ ¼ f½rm

xjðx; tÞ � rymðx; tÞ�2 þ ½rm
xjðx; tÞ � rm

zjðx; tÞ�
2 þ ½rymðx; tÞ � rm

zjðx; tÞ�
2 þ 6sxymðx; tÞ2g0:5

=
ffiffiffi
2
p

ð54Þ
Note that the rm
zjðx; tÞ are zero under the plane stress condition. The von Mises elastic strains are related to the

von Mises stress through
em
jVMEðx; tÞ ¼

Sm
j ðx; tÞ
EjðtÞ

ð55Þ
Such a relationship, however, does not exist between the von Mises stress and von Mises creep strain. The
latter may be computed as (ANSYS 8.0, 2003)
em
jVMCðx; tÞ ¼

2

3
0:5½ðem

IjCðx; tÞ � em
IIjCðx; tÞÞ

2 þ ðem
IjCðx; tÞ � em

IIIjCðx; tÞÞ
2 þ ðem

IIjCðx; tÞ � em
IIIjCðx; tÞÞ

2�
n o0:5

ð56Þ
where em
IjCðx; tÞ, em

IIjCðx; tÞ, and em
IIIjCðx; tÞ are the principal creep strains. Since the out-of-plane shear creep

strains are neglected, the principal creep strains may be determined as
em
IjCðx; tÞ ¼ em

zjCðx; tÞ ð57Þ
em

IIjCðx; tÞ; em
IIIjCðx; tÞ ¼ 0:5½ðem

xjCðx; tÞ þ em
yjCðx; tÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðem

xjCðx; tÞ þ em
yjCðx; tÞÞ

2 � 4ðem
xjCðx; tÞem

yjCðx; tÞ � 0:25ðem
xyjCðx; tÞÞ

2Þ
q

� ð58Þ
It is noted that the creep strains in Eq. (49)–(52) and (56) are all instantaneous values since the stress com-
ponents can be either positive or negative. In order to reflect the irreversible damage accumulation due to
creep deformation, the ‘‘accumulated creep strain’’, em

jACðx; tÞ, is defined as
em
jACðx; tÞ ¼

Z t

0

Sm
j ðx; sÞ
bjðsÞ

ds ð59Þ
This creep strain is particularly useful in cyclic applications with load reversal since it always increases,
regardless of whether the load is increasing or decreasing. The accumulated creep strain in ANYSYS 8.0
(2003) is called the ‘‘equivalent creep strain’’ and is the same as that in Eq. (59).

3.7. Creep strain energy density

Creep strain energy density at the interfacial points can be found as (ANSYS 8.0, 2003)
W m
jCðx; tÞ ¼

Z em
jAC
ðx;tÞ

0

Sm
j ðx; tÞdem

jACðx; tÞ ð60Þ
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Note that von Mises creep strain (Eq. (56)) was not used in Eq. (60) as it may decrease during the stress rever-
sal in cyclic applications (Fig. 6), resulting negative creep strain energy density which is unrealistic since the
creep strain energy always increases (i.e. non-recoverable energy). For monotonic loading conditions, how-
ever, use of von Mises and accumulated creep strains results in the same predictions for creep strain energy
density. The accumulated strain energy density (or strain energy dissipation) may be used as a measure of
creep damage evolution and increases monotonically during thermal cycling.

4. Solution method

A closed-form solution for Eqs. (27), (28), (40)–(47), if available, would lead to non-linear (eigenvalue)
expressions that would have to be solved numerically. The usual procedure involves parameterization of
the differential equations followed by an appropriate shooting or relaxation technique or a combination of
both. To account for the time-dependent nature of the partial differential equations, Dirichlet’s series expan-
sion (e.g. Bruno et al., 1999) or Hermite polynomials may be required.

A more straightforward and flexible approach is to use a first-order finite difference procedure in which the
interfacial regions are discretized into n divisions (n even) such that i = 1 on the left side and i = n on the
right (Ghorbani and Spelt, 2005). The first four derivatives of sxym(x, t) with respect to x are then approxi-
mated by
i 6
n
2

: sðrÞxymði; sÞ ¼
sðr�1Þ

xym ðiþ 1; sÞ � sðr�1Þ
xym ði; sÞ

pr
ð61Þ

i P
n
2

: sðrÞxymði; sÞ ¼
sðr�1Þ

xym ði; sÞ � sðr�1Þ
xym ði� 1; sÞ

pr
ð62Þ
where the order of the derivative is r = 1–4, and p = L/n is the pitch between the interfacial divisions. Similar
expressions can be written for the derivatives of Vj(x, t).

The time is also divided into t one-second increments (t being an integer) such that s = 0 for time zero and
s = t for the end of loading. The time integrals can then be expanded into two terms; a summation represent-
ing the sum of the previous values of time-related creep parameters (i.e. displacements and their derivatives,
strain, and strain energy) and a current value. For example,
Z t

0

k2CðsÞsxy1ðx; sÞds ¼ k2CðtÞsxy1ðx; tÞ þ
Xt�1

s¼0

k2CðsÞsxy1ðx; sÞ ð63Þ
Note that the initial values (s = 0) of forces, stresses, strains, and strain energies are zero; therefore, the sum-
mation of these parameters is effective from s = 1.

Using the above definitions, the governing differential equations and the relevant boundary conditions may
be discretized. At each time increment, first the time-dependent thermomechanical parameters (i.e. bj(s) Ej(s),
and stiffnesses) are evaluated. Then the system of linear equations is solved for the current values of sxy1(i, s),
sxy1(i, s), V1(i, s), and V3(i, s). Forces, moments, and their derivatives as well as other components of stress and
strain, and creep strain energy density may then be computed as a post-processing step for this increment of
load (time). The current values of creep strain and creep strain energy density will then be added to the pre-
viously accumulated ones serving as the new accumulated values for the next time increment.

5. Model evaluation

5.1. Test cases

For illustrative purposes, numerical results are presented for four microelectronic trilayers given in Table 1.
In all examples, a resistor component (silicon chip) is attached to a printed circuit board substrate (FR-4
glass–fiber reinforced epoxy laminate) using either a tin–lead (SnPb) or lead-free solder (tin–silver–copper,
SAC). It is assumed that the elastic modulus of the solder is temperature dependent and that only the solder
layer undergoes creep deformation. In general, solders experience large creep deformation due to their
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relatively low melting point. In order to assess accuracy and generality of the present model, aspect ratio, sol-
der properties, and the creep constitutive law of the solder layer are varied among these four trilayer examples.

Examples 1 and 2 are relatively short trilayers and differ only in the choice of the creep model for lead-free
solder: the second uses the Garofalo hyperbolic sign steady-state creep model (Qi et al., 2004; ANSYS 8.0,
2003) and the first employs a linear viscous creep model (i.e. Norton–Arrhenius creep law in ANSYS with unit
power for stress) based on a linear regression of the Garofalo model from 0 to 57 MPa. The third example is
similar to the first, but with the eutectic SnPb solder as the interlayer, modeled with the Garofalo creep law.
The fourth example is the same as the second, but with a smaller aspect ratio (i.e. a relatively long trilayer).

The governing equations in the present model were solved for the interfacial shear stresses and transverse
shear forces under plane strain condition along the x–y plane of symmetry at z = 0 (Fig. 1) using the Compaq
Visual FORTRAN 6.6 (2000) International Mathematical and Statistical Library (IMSL) subroutine
DLSARG. This subroutine solves a real system of linear equations with double precision iterative refinement.
It was found that the number of elements (n) should be greater than 100 for the short trilayers and 400 for the
long trilayer in order to attain solutions that are relatively independent of n.

The predictions of the present model were compared with those of two finite element models built in
ANSYS 8.0 (2003): one for the short trilayers of Examples 1–3 and the other for the long trilayer in Example
4. The assemblies were meshed using PLANE183 elements having 8 nodes and 16 degrees of freedom, and
symmetry boundary conditions were applied to the left end of the models. For both models, progressive refine-
ments in mesh densities were examined for the lower and upper interfaces. Regardless of the element size or
shape, all of these FE models displayed a stress distribution in the interfacial region near the free ends of inter-
faces (jxjP 0.8l for short trilayer and jxjP 0.9l for long trilayer) that was highly sensitive to the mesh density.
Away from these end regions, the FE stress distribution was insensitive to mesh density. This behavior of the
FE model is similar to that reported by many researchers; e.g. Glaser (1990), Basaran and Zhao (2001), and
Ghorbani and Spelt (2005).

The interfacial FE stresses were obtained from the element results; not the nodal results which are the aver-
age of the stresses in the adjacent layers wherever there is a material discontinuity. This is because the shear
and peel stresses are the same for adjacent materials across each interface (Fig. 1), whereas the interfacial axial,
out-of-plane, and von Mises stresses are discontinuous from one layer to the other, depending strongly on the
materials bonding the interface (Eqs. (48), (53), (59)).

A uniform cyclic temperature change (Fig. 2) with 5 min lower and upper dwells at zero and 100 �C, respec-
tively, and with identical heating and cooling phases of 95 �C/min was applied to the four examples. The
Fig. 2. Thermal cycling profile used in all examples. Path A–B–C–D–E represents one cycle. Thermal load defined relative to the stress-
free temperature of 25 �C.
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actual thermal cycling load was 25 �C less than the air temperature as the assemblies were assumed to be
stress-free at room temperature.

The present model was executed with n = 200 (3.8 lm) and n = 500 (7.6 lm) for short and long trilayers,
respectively. The FE model for the short trilayer had 3328 elements (i.e. element size of 8.3 · 8.3 lm near
the free ends) while that for the long trilayer of Example 4 had 6357 elements (i.e. element size of
13.8 · 13.2 lm near the free ends).

5.2. Choice of shear stiffness parameter

As mentioned above in the context of Eqs. (17)–(20), the present model can satisfy the zero shear stress
condition at the free ends of the trilayer by incorporating the second derivative of shear stress in the horizontal
displacement at interfacial points (Ghorbani and Spelt, 2005). With the shear stiffness parameter
dj 6 h2

j=1000p2, the maximum shear stresses lie in the immediate vicinity of the free edges (x = ±l). As dj

approaches zero, the location of the maximum shear stresses moves closer to the ends; however, the other
stress components do not change.

Using the present elasto-creep analytical model, it was noticed for all four examples with dj ¼ h2
j=1000p2

that during the first heating phase (from time zero to the point A in Fig. 2) the shear stress distributions in
the short and long trilayers were qualitatively the same as those observed in the elastic analysis of Ghorbani
and Spelt (2005). In the early stage of the first dwell, however, the relatively large strains produced by creep
caused the location of the interfacial shear stress maxima to shift toward the free ends of the trilayer. After
only a few seconds of dwell at the high temperature, the shear stress distribution approximated that for
dj = 0, reaching a finite maxima as seen in Fig. 3a.

This gradual movement of the shear stress peak toward the free ends, while other stress components were
left intact, ultimately resulted in a mathematical instability in the numerical solution; i.e. the number of
assigned divisions (n) could not be made large enough to capture the steepening shear stress gradient at the
free ends required to meet the zero shear stress boundary condition. A similar situation was observed by
Lee and Kim (2004) in the viscoelastic analysis of interfacial stresses between a viscoelastic thin film and
an elastic substrate.

The shear parameters dj are therefore suggested to be effectively zero for inelastic analyses. Although this
simplification results in violation of the zero shear stress boundary conditions, the predictions are believed to
be accurate except in the vanishingly small distance from x = ±l (Ghorbani and Spelt, 2005). This is confirmed
by the experimental evidence of Mirman (1991), Wang and Lin (2003), and Wen and Basaran (2004), none of
whom could capture the zero shear stress or very steep shear stress gradient close to the free ends of interfaces.
Fig. 3a. Stress distribution at upper interface in short SAC solder joint of Example 1 (linear creep model) at 3625 s (i.e. end of lower dwell
in fifth cycle).



Fig. 3b. Interfacial von Mises stresses in short SAC solder joint of Example 1 (linear creep model) at times A, C, D, and E in Fig. 2.
Dashed lines are those of the lower interface and solid lines are those of the upper interface.
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Therefore, the shear stress maxima must indeed be extremely close to the free edges, particularly with creep
deformation. Note that the simplifying assumption of dj = 0 does not alter any compatibility requirements
or other boundary conditions, and that all stress components except for the von Mises stress are unchanged.
In particular, it does not produce any stress singularity as is the case for elasticity solutions with dj = 0 (Yin,
1991; Ghorbani and Spelt, 2005).

5.3. Adaptation of non-linear creep model

The linear creep model of Example 1 contains a creep viscosity that is constant over the trilayer, being only
a function of temperature (Eqs. (1)–(4) and Table 1) and, therefore, independent of stress.

The non-linear creep model (Eq. (5) and Table 1) contains a creep viscosity that is a function of both temper-
ature and stress, and hence varies along the trilayer. An exact solution would make the present model formu-
lation enormously complicated since the creep viscosity could no longer be treated as a constant in
differentiations with respect to x in Sections 3.3 and 3.4 above. In order to avoid such complications, the von
Mises stress of the interfacial point for which the results are to be retrieved is used to define the uniform creep
viscosity for the entire trilayer at each time interval (temperature). It was hypothesized that this approximation
would produce acceptably small errors because the von Mises stress distribution throughout the layers was
found to be relatively constant away from the free ends (Fig. 3b). Close to the ends, where the von Mises stress
increases, the approximation will conservatively overestimate the amount of creep over the entire trilayer. The
validity of this approximate treatment of non-linear creep will become evident in the results of Examples 2–4.

6. Results and discussion

Figs. 3a and 3b show the typical time-dependent distribution of interfacial stresses in Example 1 predicted
by the present elasto-creep model (with dj = 0). Fig. 3a illustrates the distribution of stress components across
the upper interface at the end of lower dwell of fifth thermal cycle. Fig. 3b depicts the variation of von Mises
stresses along both the upper and lower interfaces at different stages of the first thermal cycle.

Figs. 3a and 3b illustrate certain common features of interfacial stresses at both the upper and lower inter-
faces of the solder layer for all four examples:

(1) Higher stresses and strains are predicted at the upper interface than at the lower interface (Fig. 3b). This
is related to the greater CTE and rigidity mismatch between the solder and the silicon chip component at
the upper interface than that between the solder and the FR-4 substrate at the lower interface.
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(2) The out-of-plane stresses have symmetric distributions and usually have the largest magnitude among
the stress components (Fig. 3a).

(3) Axial stresses have symmetric distributions and are zero at the free ends. Near the middle of the assem-
bly, they are usually larger in magnitude than either the shear or peel stresses (Fig. 3a), particularly for
the elongated trilayer in Example 4.

(4) Shear stresses have antisymmetric distributions, are zero at x = 0 and often maximum at the free edges
(Fig. 3a). A gradual increase in the shear stress from the middle to the free ends is typical for short
assemblies (Examples 1–3), whereas a sharp increase close to the free ends is typical in the elongated tri-
layer (Example 4). Note that the magnitude of the shear stress at each interface is the slope of the axial
stress curve.

(5) Peel stresses have symmetric distributions and are minimum in the middle of the assembly and usually
maximum at the free edges (Fig. 3a). Close to the free ends, peel stresses show both negative and positive
signs in order to be self-equilibrating over each half of the interface. The magnitude of peel stresses at the
free ends is often greater than that of the shear stresses. The peel stress at each interface is equal to the
slope of the transverse shear force distribution, which is antisymmetric.

6) The von Mises stresses have symmetric distributions and are relatively constant along the interfaces
except very near the free ends where they usually reach their maximum (Figs. 3a and 3b). However,
for short periods of time during the early stages of thermal dwells, particularly the upper dwell, the loca-
tion of the maximum of von Mises stress may move to the middle of the assembly. This is because stress
components have different relaxation rates. It is anticipated that cracks initiating at the ends of the joint
and propagate relatively quickly due to the fairly constant magnitude of the Von-Mises stress along the
interface.

These observations were supported by the results of the FE models along each interface away from the free
ends. As mentioned above, the magnitudes of the FE stresses were, however, uncertain very close to the free
ends due to the stress singularity (Ghorbani and Spelt, 2005). Consequently, the FE results violated the stress
boundary conditions (i.e. zero shear and axial stresses at the free ends) and the peel stresses were not self-
equilibrating.

Fig. 4 shows the stresses predicted by both the FE and present models at an interfacial point close to the
end of the upper interface (node 179 at x � 0.8l in Figs. 3a and 3b) in the lead-free solder layer of Example 1
during the first thermal cycle. This node was selected because it was approximately the closest node to the end
of upper interface in Examples 1–3 that was not affected by the stress singularity in the FE model (i.e. it was
Fig. 4. Stresses at node 179 of upper interface in short SAC solder joint of Example 1 (linear creep model). Dashed lines are FE results and
solid lines are those of the present model.
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fairly insensitive to mesh density). Figs. 5 and 6 show the corresponding elastic and creep strains. It can be
seen that the predictions of the present model closely match those of the FE model. These stresses and strains
can be explained for each phase of the thermal cycle of Fig. 2 as follows:

Heating (0 6 t < 49 s)

From time 0–25 s, when the temperature is below 65 �C, all stresses increase in magnitude almost linearly
with the changing temperature (Fig. 4) since the creep is relatively small (Figs. 5 and 6). From 25 s to point A,
however, the stresses decrease while the temperature is still increasing (Fig. 4), because the increasing solder
creep strains (Fig. 6) cause stress relaxation thereby reducing elastic deformation across the interlayer (i.e.
decreasing the elastic strains, Fig. 5).
Fig. 5. Elastic strains at node 179 of upper interface in short SAC solder joint of Example 1 (linear creep model). Dashed lines are FE
results and solid lines are those of the present model.

Fig. 6. Creep strains at node179 of upper interface in short SAC solder joint of Example 1 (linear creep model). Dashed lines are FE
results and solid lines are those of the present model.
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Upper dwell (50 6 t < 349 s)

From A to B, when the temperature is held constant at 100 �C, stress relaxation causes the von Mises stress
to decrease (Fig. 4). As expected, elastic strains also decrease and follow the same trend as the stresses (Fig. 5),
whereas creep strains initially continue to increase at a high rate (Fig. 6) at this elevated temperature. Shortly
beyond point A, however, the rate of creep deformation slows and stops altogether as the stresses fully relax.

Cooling (350 6 t < 413 s)

From B to C, the stresses and elastic strains increase in magnitude as the cooling phase begins, reaching
their maximum at the onset of the lower dwell at point C (Figs. 4 and 5). Note that, at room temperature
(25 �C), the permanent creep deformation creates a residual von Mises stress of approximately 35 MPa
(Fig. 4). The accumulated creep strain continues to increase as the stresses rise from zero, but more slowly
than during the heating phase (Fig. 6), because the creep rigidity increases as the temperature decreases. Note
also that the instantaneous creep strains decrease during the cooling phase due to the reversal in the sign of the
stresses (Fig. 6).

Lower dwell (414 6 t < 713 s)

Quasi-linear stress relaxation, and hence elastic strain reduction, is evident during the lower dwell from C to
D; however, full stress relaxation does not occur at this low temperature because creep is less activated than
that of the upper dwell (Fig. 4).

Second heating (714 6 t < 777 s)

During the second and subsequent heating phases (D–E), the von Mises stress decreases non-monotonically
(Fig. 4). This trend is due to the competing effects of stress reversal and stress relaxation. The local minimum
in the von Mises stress between D and E (Fig. 4) corresponds to a reversal in the sign of the stress components
a few seconds after the temperature passes room temperature, i.e. at 41 �C. Concurrently, from D to this point,
the creep strains continue declining (Fig. 6). As the temperature increases beyond 41 �C, the stress components
continue to increase in the negative direction, and the von Mises stress approaches a local maximum at 65 �C.
As the temperature rises further, the stresses fall as creep deformation increases (Fig. 6). It is noted that the
residual von Mises stress at 25 �C is dependent on the immediate thermal history, being approximately
16 MPa during the heating phase and about 35 MPa during cooling.

These patterns of stress and strain oscillation were repeated during subsequent cycles indicating a rapid sta-
bilization of the deformation response.

Figs. 5 and 6 show that the shear stress was not necessarily the largest stress component close to the free
ends, but the elastic and creep shear strain components were the largest in these regions. Away from the free
ends, the shear component of elastic and creep strain decreased to zero in the middle of the assembly. Axial,
peel, and out-of-plane strains were not as predictable as the shear strains because they are related to more than
one stress component. In general, the out-of-plane elastic strains were among the largest elastic strains along
the length of an assembly, but they were among the smallest creep strain components (Figs. 5 and 6). Axial
and peel strains (both elastic and creep) were larger than the shear strains close to the middle of assembly and
were moderately large elsewhere.

Figs. 7 and 8 show the interfacial von Mises stress and the accumulated strain (Eq. (59)) at node 179 on the
upper interface for Examples 2 and 3 (short trilayer with SAC and SnPb solders, respectively). The two models
follow very similar trends. During the upper and lower dwell periods (A–B and C–D) the FE model predicts a
von Mises stress that is approximately 10% larger than that for the present model.

Comparing Figs. 7 and 4 illustrates the differences between the non-linear and linear creep laws for the same
trilayer assembly. For instance, stress relaxation in the SAC solder of Example 2 with non-linear creep behav-
ior occurs at a higher temperature (76 �C) than that of Example 1 with linear creep behavior (65 �C), thereby
producing lower creep strains (Fig. 8) and larger stresses (Figs. 4 and 7) under the same thermal cycling load.



Fig. 7. Von Mises stresses at node 179 of the upper interface in Examples 2 and 3 comparing two types of solder in a short assembly (non-
linear creep model). Dashed lines are FE results and solid lines are those of the present model.

Fig. 8. Accumulated creep strains (Eq. (59)) at node 179 of the upper interface in Examples 2 and 3 comparing two types of solder in a
short assembly. Dashed lines are FE results and solid lines are those of the present model.
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In addition, stress relaxation during the dwell times follows a curve with the non-linear creep model
(Fig. 7) and a quasi-linear trend with the linear model (Fig. 4). Finally, the linear creep model leads to the
complete relaxation of stress during the high temperature dwell while this does not occur with the non-linear
model.

Fig. 9a and b shows the von Mises stress versus the von Mises creep strain for node 179 of the upper inter-
face of trilayers in Examples 1–3 during the first few thermal cycles. It is seen that the deformation-controlled
stresses and strains in the isotropic elasto-linear creep material of Example 1 rapidly shakedowns (Fig. 9a)
under thermal cycling conditions in the absence of plastic deformation so that the curves superimpose very
closely. This behavior is consistent with the predictions of Eslami and Mahbadi (2001). Note that a ratcheting
in the stress–strain hysteresis would be seen had the von Mises stress been plotted versus the accumulated
creep strain. The results for the SAC and SnPb solders of Examples 2 (Fig. 9a) and 3 (Fig. 9b) with the
non-linear creep model show a slightly slower stabilization than seen with the linear creep model of



Fig. 9. Von Mises stress as a function of von Mises creep strain predicted by the present model at node 179 of the upper interface in the
short solder joint of: (a) Examples 1 (shakedown under viscous creep; the 5 curves overlap) and 2 (ratcheting under nonlinear creep), (b)
Example 3 (ratcheting under nonlinear creep).
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Fig. 9a. As expected from its greater tendency to creep, the size of the hysteresis loop with the SnPb solder is
appreciably larger than that of the SAC solder modeled with either the linear or non-linear creep laws.

In general, the FE results were very similar with those shown in Fig. 9a and b and other interfacial nodes
away from the free ends. At the end regions, however, the FE results were quantitatively uncertain because of
their mesh sensitivity, but they qualitatively indicated the same trend as that of the present model.

The stabilized ranges per thermal cycle of the interfacial von Mises stress, accumulated creep strain, and
strain energy dissipation per cycle (area enclosed by the von Mises stress–creep strain hysteresis loop) are given
in Table 2 for nodes 179 (x � 0.8l) and 200 (right free end, x = l) of both interfaces in Examples 1–3. These
quantities are frequently used as measures of damage per cycle in thermal fatigue life models. As expected, the
FE and present model both predict a higher cyclic range of stress, creep strain, and strain energy dissipation
for node 179 at the upper interface than at the lower interface. In addition, the present model predicts that
each of these cyclic ranges is maximum at the free ends of both interfaces, suggesting that this would be
the site of crack initiation. As before, the predictions of the FE model were uncertain because of the mesh
sensitivity at the free ends.



Table 2
Cyclic range of interfacial von Mises stress (DS), accumulated creep strain (DeAC), and creep strain energy (DWC) in Examples 1–4 as
predicted by the present model (PM) and FEA

Example L (mm) n Node x/l m DS (MPa) DeAC · 103 DWC (MPa) · 102

PM FEA % Deviation PM FEA % Deviation PM FEA % Deviation

1 0.76 200 179 0.8 1 49.0 42.6 15.0 3.1 2.9 6.9 4.8 3.7 29.7
2 57.1 62.7 8.9 4.2 4.7 10.6 7.4 9.4 21.3

200 1.0 1 52.5 3.6 5.3
2 71.5 6.2 13.2

2 0.76 200 179 0.8 1 60.9 54.9 �10.9 2.1 1.6 31.2 7.2 5.0 44.0
2 61.4 64.4 4.7 2.9 3.9 25.6 10.3 14.7 29.9

200 1.0 1 59.0 2.2 7.4
2 66.2 4.8 18.7

3 0.76 200 179 0.8 1 39.7 40.5 2.0 3.0 3.0 0.0 6.3 6.2 1.6
2 43.1 46.9 8.1 6.7 10.5 36.2 15.9 26.8 40.7

200 1.0 1 39.7 3.4 7.2
2 45.6 11.4 29.0

4 3.8 500 475 0.9 1 52.9 51.2 �3.3 2.0 2.1 4.8 6.4 6.3 1.6
2 57.3 59.8 4.2 3.4 3.9 12.8 11.2 13.5 17.0

500 1.0 1 55.0 3.0 8.4
2 60.7 8.9 32.8

m = 1 is the lower interface of the middle layer, m = 2 is the upper interface.
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In general, the present model predictions for these stabilized ranges agree well with the FE results at node
179 (Table 2). The strain energy dissipation per cycle showed a larger discrepancy because it is sensitive to
differences in either the von Mises stress or the accumulated creep strain.

Fig. 10 shows the interfacial von Mises stress and accumulated creep strain at node 475 (x � 0.9l) on the
upper interface of the elongated trilayer of Example 4. This was the closest node to the free end of the upper
interface that was not affected by the stress singularity in the FE model. The predictions of the two models are
quite close, and are very similar to those seen in Fig. 7 for Example 2 (same solder but short trilayer). It is
interesting to note that the stress singularity region in the long trilayer is limited to a smaller percentage of
interfacial length (	10%) than in short trilayers (	20%) because of the differences in the interfacial shear
and peel stress distributions (Ghorbani and Spelt, 2005). In other words, interfacial shear and peel stresses
are zero for the majority of the interfacial length in long trilayers and rise sharply close to the free ends.
Fig. 10. Von Mises stress and accumulated creep strain at node 475 of the upper interface in the long assembly of Example 4 (SAC solder,
non-linear creep model). Dashed lines are the FE results and solid lines are those of the present model.
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Table 2 gives the stabilized ranges of the interfacial von Mises stress, accumulated creep strain, and the strain
energy dissipation per cycle at nodes 475 and 500 (right free end) of both interfaces in Example 4. Generally, the
present model predictions for these cyclic parameters agree well with those of the FEA at node 475 of both
interfaces. Once again, the upper interface is more critical than the lower interface, and dissipates 1.8 times
more creep strain energy per cycle than that of the same corner in the short trilayer of Example 2. This implies
that more elongated assemblies will tend to increase the creep damage at the relevant free ends. As before, FE
predictions were inconsistent at the free end of the trilayer because of the high degree of mesh sensitivity.

7. Conclusions

A semi-analytical 2D model has been developed for elasto-creep interfacial stresses and strains in trilayer
assemblies of arbitrary aspect ratio under both constant and time varying thermal loads. The model works
under both the plane stress and the plane strain conditions, can accommodate both linear (viscous) and
non-linear creep constitutive laws in any of the layers, and satisfies compatibility, equilibrium, and force
and stress boundary requirements. The model captures the very large shear stress gradients near the free ends
in the vicinity of the maximum shear stress. It was seen that creep accumulation does not affect the magnitude
of the shear stress maxima, but shifts its location progressively closer to the free ends. Consequently, it was
assumed that, under creep conditions, the maximum interfacial shear stress occurs at the free ends rather than
in their immediate vicinity.

Comparisons with finite element (FE) models for four examples representative of solder joints show similar
trends, both qualitatively and quantitatively, away from the free ends. At the free ends however, FE model
results were sensitive to the mesh density and failed to satisfy the equilibrium and boundary requirements
due to the stress singularity. Nevertheless, at the free ends the FE results were qualitatively the same as those
of the present model.

Under the same thermal cycling load, it was found that a linear (viscous) creep constitutive law for the sol-
der causes less creep accumulation, much higher stress relaxation, less creep damage, and faster cyclic stabil-
ization and shakedown than the non-linear creep law. The trilayer aspect ratio affects the magnitude and
distribution of interfacial stresses as well as the extent of creep damage, particularly at the free ends.

The model can be extended to include external loads and other boundary conditions representative of sol-
der or adhesive joints in larger structures.
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Appendix A. Creep compliance of a shear loaded strip

A.1. Plane stress condition

Fig. A1 shows a rectangular body of thickness h and length L = 2l subjected to a uniformly distributed
shear stress, s(x). It is assumed that the boundaries are restrained against any vertical creep displacement
(i.e. no bending), supplying pure horizontal deformation to the borders.
Fig. A1. Two-dimensional rectangular body subject to antisymmetric shear stress on top.
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The stress field in this body is characterized upon finding the Airy stress function, U(x,y), from the follow-
ing bi-harmonic differential equation.
r4U ¼ 0 ðA:1Þ

under the boundary conditions of
sxyðx; 0Þ ¼ 0; sxyðx; hÞ ¼ sðxÞ ¼
X1

k¼1;3;5;...

ckak sin akx ðA:2Þ

wCð�l; yÞ ¼ wCðx; 0Þ ¼ wCðx; hÞ ¼ 0 ðA:3Þ
where ak ¼ kp
2l and ck ¼ 2

ak l

R l
0
sðxÞ sin akxdx. As seen in Ghorbani and Spelt (2005), the following Fourier solu-

tion to Eq. (A.1) may be sought:
Uðx; yÞ ¼
X1

k¼1;3;5;...

ck½ðAk þ BkyÞ cosh aky þ ðCk þ DkyÞ sinh aky� cos akx ðA:4Þ
where Ak, Bk, Ck, and Dk are integration constant. The stresses may then be defined as
rxðx; yÞ ¼
o

2U
oy2

; ryðx; yÞ ¼
o

2U
ox2

; sxyðx; yÞ ¼ �
o

2U
oxoy

ðA:5Þ
Applying the stress boundary conditions in Eq. (A.2), we find:
Bk þ akCk ¼ 0 ðA:6Þ
ukDk cosh uk þ ðakAk þ ukBk þ DkÞ sinh uk ¼ 0 ðA:7Þ
where uk = akh. Assuming linear creep and plane stress, the creep strain rates can be related to the stresses as
follows (Eqs. (1)–(4)):
_exðx; yÞ ¼
o _uC

ox
¼ 1

b
ðrx � 0:5ryÞ ðA:8Þ

_eyðx; yÞ ¼
o _wC

oy
¼ 1

b
ðry � 0:5rxÞ ðA:9Þ

_exyðx; yÞ ¼
o _uC

oy
þ o _wC

ox
¼ 3

b
sxy ðA:10Þ
Integrating Eqs. (A.8) and (A.9) with respect to x and y, respectively, yields:
_uCðx; yÞ ¼
1

2

1

b

X1
k¼1;3;5;...

ck ½3akðAk þ BkyÞ þ 4Dk� cosh aky þ ½4Bk þ 3akðCk þ DkyÞ� sinh akyð Þ sin akxþ f1ðyÞ

ðA:11Þ

_wCðx; yÞ ¼
1

2

1

b

X1
k¼1;3;5;...

ckð½Bk � 3akðCk þ DkyÞ� cosh aky þ ½�3akðAk þ BkyÞ þ Dk� sinh akyÞ cos akxþ f2ðxÞ

ðA:12Þ
where f1 and f2 are as yet unknown functions of y only and x only, respectively. Substituting these values of _uC

and _wC in Eq. (A.10) we find:
f 01ðyÞ þ f 02ðxÞ ¼ 0 ðA:13Þ

As well, f2(x) must be zero since wC(±l,y) and accordingly its time rate are zero under constant load (Eq.
(A.3)). From Eq. (A.13), the fact that horizontal creep displacements are unrestrained, and that the applied
shear load is self-equilibrating (i.e. the closed integral of the given load from �l to l is always zero), it can
be established that f1(y) must be constant and equal to zero too. Finally, the last two boundary requirements
in Eq. (A.3) yield:
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Bk þ 3akCk ¼ 0 ðA:14Þ
ðakAk þ ukBkÞ ¼ ðuk � 1ÞDk coth uk ðA:15Þ
Eqs. (A.6), (A.7), (A.14) and (A.15) determine the constants of integration as
Ak ¼
1� 3uk coth uk

4ak sinh uk
; Bk ¼ Ck ¼ 0; Dk ¼

3

4

1

sinh uk
ðA:16Þ
Substituting these values into Eq. (A.11), the rate of longitudinal creep displacement at top of this rectangular
body, _uCðx; hÞ, is derived as
_uCðx; hÞ ¼
3

8

1

b

X1
k¼1;3;5;...

ck½ð5� 3uk coth ukÞ coth uk þ 3uk� sin akx ðA:17Þ
Alternatively, _uCðx; hÞ may be approximated by
_uCðx; hÞ ¼ �
3

4

1

bh

Z x

0

T ðnÞdnþ gCsðxÞ ðA:18Þ
Considering the series expansion of cothuk, i.e. 1
uk
þ uk

3
� u3

k
45
þ o½uk�4, it is clear that the axial creep compliance

kC ¼ 3
4

1
bh was chosen to cancel out the term 1

uk
in Eq. (A.17). Substituting s(x) in Eq. (A.18) from Eq. (A.2),

comparing the resultant expression with Eq. (A.17), and limiting the analysis to the first term, we find
gC ¼
3

8p
ð5� 3�u coth �uÞ coth �uþ 3�u� 2

�u

� �
L
b

ðA:19Þ
where �u ¼ ph=L. In the case of relatively small and large aspect ratios, coth �u approaches 1
�uþ �u

3
and unity,

respectively, and Eq. (A.19) may be therefore simplified to
gC ¼
h
b
ðh=L 6 0:2Þ ðA:20Þ

gC ¼
15

8p
L
b
ðh=L P 0:7Þ ðA:21Þ
Finally, the total accumulated creep deformation at interfacial points in horizontal direction under the time-
independent stress s(x) can be defined as
uCðx; h; tÞ ¼
Z t

0

_uCðx; hÞdt ¼ � 3

4

1

bh

Z x

0

T ðnÞdnþ gCsðxÞ
� �

t ðA:22Þ
Note that creep deformation is zero at time zero. In case of time-dependent loading, i.e. when s(x) and b, and
hence T(x) and gC, are a function of time, Eq. (A.22) will be as follows:
uCðx; h; tÞ ¼
Z t

0

� 3

4

1

bðsÞh

Z x

0

T ðn; sÞdnþ gCðsÞsðx; sÞ
� �

ds ðA:23Þ
This expression was used in Eqs. (21)–(24).

A.2. Plane strain condition

Under plane strain condition, normal creep strain rates are as follows (Eqs. (1)–(4)):
_exðx; yÞ ¼
o _uC

ox
¼ 3

4

1

b
ðrx � ryÞ ðA:24Þ

_eyðx; yÞ ¼
o _wC

oy
¼ 3

4

1

b
ðry � rxÞ ðA:25Þ
and the shear strain rate will remain unchanged (Eq. (A.10)). Following the same procedure as that described
for the plane stress condition above, we find the rate of longitudinal creep displacement at top of the rectan-
gular body, _uCðx; hÞ, as follows:
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_uCðx; hÞ ¼
3

2

1

b

X1
k¼1;3;5;...

ck½ð1� uk coth ukÞ coth uk þ uk� sin akx ðA:26Þ
Substituting for cothuk with its series expansion in Eq. (A.26), it can be seen that _uCðx; hÞ does not contain the
term 1

uk
, consequently kC = 0. The alternative solution in Eq. (A.18) is therefore simplified to
_uCðx; hÞ ¼ gCsðxÞ ðA:27Þ

In other words, under plane strain condition and without any bending, the horizontal creep strain rate is in
linear proportion to the interfacial shear stress only. Substituting s(x) in Eq. (A.27) from Eq. (A.2), comparing
the resultant expression with Eq. (A.26), and limiting the analysis to the first term, we find
gC ¼
3

2p
½ð1� �u coth �uÞ coth �uþ �u� L

b
ðA:28Þ
which in the case of relatively small and large aspect ratios becomes simplified to
gC ¼
h
b
ðh=L 6 0:2Þ ðA:29Þ

gC ¼
3

4p
L
b
ðh=L P 0:7Þ ðA:30Þ
Comparing compliances obtained for both plane stress and plane strain conditions, it is evident that for
elongated strips the shear creep compliance gC is insensitive to plane stress and plane strain conditions,
whereas kC shows a strong sensitivity. The total horizontal creep accumulated at interfacial points can also
be defined as
uCðx; h; tÞ ¼ gCsðxÞt ðA:31Þ

In the case of time-dependent loading, Eq. (A.31) will be as follows:
uCðx; h; tÞ ¼
Z t

0

gCðsÞsðn; sÞds ðA:32Þ
Appendix B. Creep compliance of a compressed strip

B.1. Plane stress condition

The through-thickness linear creep compliance of a 2D rectangular body (Fig. A1) can be obtained in the
similar manner as its shear compliance. It is assumed that the body is subjected to a self-equilibrating pressure,
p(x), on top and the boundaries are constrained against any horizontal movements (i.e. no bending). In other
words,
ryðx; 0Þ ¼ 0; ryðx; hÞ ¼ pðxÞ ¼
X1

k

ckak cos akx ðB:1Þ

uCð�l; yÞ ¼ uCðx; 0Þ ¼ uCðx; hÞ ¼ 0 ðB:2Þ
where ak ¼ kp
l and ck ¼ 2

ak l

R l
0

pðxÞ cos akxdx. As seen in Ghorbani and Spelt (2005), a Fourier solution for the
bi-harmonic Eq. (A.1) may be sought as follows:
Uðx; yÞ ¼
X1

k

ck½ðAk þ BkyÞ cosh aky þ ðCk þ DkyÞ sinh aky� cos akx ðB:3Þ
Following the same procedure as that described in Appendix A, the rate of vertical creep deformation at the
top of the strip, _wCðx; hÞ, may be determined as follows:
_wCðx; hÞ ¼
3

8

1

b

X1
k

ck½ð5þ 3wk coth wkÞ coth wk � 3wk� cos akx ðB:4Þ



7448 H.R. Ghorbani, J.K. Spelt / International Journal of Solids and Structures 43 (2006) 7424–7449
where wk = akh. Alternatively, _wCðx; hÞ (in the absence of bending) can be described by
_wCðx; hÞ ¼ �
3

bh

Z x

�l
V ðnÞdnþ dCpðxÞ ðB:5Þ
Note again that the choice of shear compliance lC ¼ 3
bh was made to cancel out the 1

wk
term in the expanded

form of Eq. (B.4). Differentiating Eqs. (B.4) and (B.5), comparing them, and limiting the analysis to the first
term, it is found that
dC ¼
3

16p
ð5þ 3�w coth �wÞ coth �w� 3�w� 8

�w

� �
L
b

ðB:6Þ
where �w ¼ ph=l. In the case of small and large aspect ratios, Eq. (B.12) may be simplified to
dC ¼
1

4

h
b
ðh=l 6 0:2Þ ðB:7Þ

dC ¼
15

16p
L
b
ðh=l P 0:7Þ ðB:8Þ
The total vertical creep deformation accumulated at interfacial points can therefore be defined as
wCðx; h; tÞ ¼
Z t

0

_wCðx; hÞdt ¼ dCpðxÞ � 3

bh

Z x

�l
V ðnÞdn

� �
t ðB:9Þ
In the case of variable loading and material parameters, however, Eq. (B.10) will be as follows:
wCðx; h; tÞ ¼
Z t

0

� 3

bðsÞh

Z x

�l
V ðn; sÞdnþ dCðsÞpðx; sÞ

� �
ds ðB:10Þ
This expression was used in Eqs. (34)–(37).

B.2. Plane strain condition

Employing the same method as the plane stress condition, _wCðx; hÞ under plane strain conditions may be
defined as
_wCðx; hÞ ¼
3

2

1

b

X1
k

ck½ð1þ wk coth wkÞ coth wk � wk� cos akx ðB:11Þ
Consequently, lC remains unchanged ( 3
hb) and dC will be defined as
dC ¼
3

4p
ð1þ �w coth �wÞ coth �w� �w� 2

�w

� �
L
b

ðB:12Þ
which in the case of small and large aspect ratios becomes simplified to
dC ffi 0 ðh=l 6 0:2Þ ðB:13Þ

dC ¼
3

4p
L
b
ðh=l P 0:7Þ ðB:14Þ
Comparing the plane stress and plane strain compliances, it is evident that dC is sensitive to these conditions
and transverse shear compliance lC is not sensitive at all. Total vertical creep deformation accumulated at
interfacial points can also be calculated from Eqs. (B.9) and (B.10) for constant and time-dependent loading,
respectively.
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