
International Journal of Solids and Structures 46 (2009) 3620–3632
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r
Wave propagation in transversely isotropic porous piezoelectric materials

Anil K. Vashishth *, Vishakha Gupta
Department of Mathematics, Kurukshetra University, Kurukshetra 136 119, India
a r t i c l e i n f o

Article history:
Received 26 September 2008
Received in revised form 2 May 2009
Available online 18 June 2009

Keywords:
Anisotropic
Attenuation
Piezoelectric
Phase velocity
Slowness curve
Wave propagation
0020-7683/$ - see front matter � 2009 Published by
doi:10.1016/j.ijsolstr.2009.06.011

* Corresponding author.
E-mail address: anil_vashishth@yahoo.co.in (A.K. V
a b s t r a c t

Wave propagation in porous piezoelectric material (PPM), having crystal symmetry 6 mm, is studied ana-
lytically. Christoffel equation is derived for the propagation of plane harmonic waves in such a medium.
The roots of this equation give four complex wave velocities which can propagate in such materials. The
phase velocities of propagation and the attenuation quality factors of all these waves are described in
terms of complex wave velocities. Phase velocities and attenuation of the waves in PPM depend on the
phase direction. Numerical results are computed for the PPM BaTiO3. The variation of phase velocity
and attenuation quality factor with phase direction, porosity and the wave frequency is studied. The
effects of anisotropy and piezoelectric coupling are also studied. The phase velocities of two quasi dila-
tational waves and one quasi shear waves get affected due to piezoelectric coupling while that of type
2 quasi shear wave remain unaffected. The phase velocities of all the four waves show non-dispersive
behavior after certain critical high frequency. The phase velocity of all waves decreases with porosity
while attenuation of respective waves increases with porosity of the medium. The characteristic curves,
including slowness curves, velocity curves, and the attenuation curves, are also studied in this paper.

� 2009 Published by Elsevier Ltd.
1. Introduction

Piezoelectric materials have been extensively used as transduc-
ers and sensors due to their intrinsic direct and converse piezoelec-
tric effects that take place between electric fields and mechanical
deformation. The coupling nature of piezoelectric materials has
widespread applications in many branches of science and technol-
ogy such as electronics, infranics, navigation, mechatronics, and
micro-system technology. Piezoelectric materials are acting as very
important functional components in sonar projectors, fluid moni-
tors, pulse generators and surface acoustic wave devices. In recent
years, piezoelectric materials have been integrated with the struc-
tural systems to form a class of smart structures and embedded as
layers or fibers into multifunctional composites. Advanced struc-
tures with intelligent self-monitoring and self-control capabilities
are increasing due to rapid development for smart space systems
and micro-electromechanical structures. Piezoelectric materials
having electromechanical coupling effects, have found extensive
applications in such smart devices. It is the importance of the phe-
nomena of piezoelectricity and hence of piezoelectric material that
since the first discovery by Pierre & Jacques Curie, a lot of work
have been done and is being done in different fields related to pie-
zoelectric materials, the survey of literature can be found in many
related texts and books, we mention a few: Auld, 1973; Ikeda,
1990; Uchino, 1997; Galassi et al., 2000; Arnau, 2004; Yang,
Elsevier Ltd.
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2005; Newnham, 2005; Katzir, 2006; Tichy et al., 2007; Arnau,
2008. A short survey of the piezoelectric wave propagation and res-
onance were described by Auld (1981).

Both, theoretical and experimental studies on wave propagation
in piezoelectric materials have attracted the attention of scientists
and engineers during last two decades. Some theoretical ones are
listed here. Nayfeh and Chien (1992) made a study on ultrasonic
wave interaction with fluid-loaded anisotropic piezoelectric
substrates and derived an analytical expression for reflection and
transmission coefficients for monoclinic materials. Dispersion
relations for propagation of shear waves in piezoelectric ‘‘Super
lattice-Substrate” structures were analyzed using a formulation
of periodic Hamiltonian system (Zinchuk and Podlipenets, 2000).
Zinchuk and Podlipenets (2001) obtained dispersion equations
for acousto-electric Rayleigh wave in a periodic layer piezoelectric
half-space in a study for the 6 mm crystal class. Recognizing the
importance of Green’s function in areas of applied mathematics
and mechanics, Green’s functions for transversely isotropic piezo-
electric multilayered half-spaces were obtained by Pan and Han
(2004, 2005). Li et al. (2006) presented the formulation of the local-
ization factor and localization length in the disordered periodic
layered piezoelectric structures by considering the wave propagat-
ing in directions normal and tangential to the layers.

The fact, that the piezoelectric composites are used in manufac-
turing of high-tech components such as ultrasonic transducers and
actuators, has shown a large volume of literature on wave propaga-
tion in layered piezoelectric composites (Bisegna and Luciano,
1996; Mesquida et al., 1998; Nayfeh et al., 1999; Mesquida et al.,
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2001; Qian et al., 2004a,b; Li and Wang, 2005). Recently, Wang and
Yuan (2007) investigated, theoretically and experimentally, the
propagation characteristics of Lamb waves in composites with
emphasis on group velocity and characteristic wave curves. Decou-
pling of symmetric and anti-symmetric wave modes, by imposing
boundary conditions on mid plane and top surface, for symmetric
laminates were shown in this paper. An analytical method for
wave propagation in piezoelectric cylindrical laminated shells un-
der the large deformation was presented by using Hamiltonian
principle (Dong and Wang, 2007). Recently Zakharenko (2007)
founds the new solutions for shear horizontal surface acoustic
waves in piezoelectric crystals of classes �43m and 23.

Despite the significant progress made in enhancing the coupling
characteristics between electrical and mechanical properties in
piezoelectric materials, monolithic piezoelectric materials gener-
ally exhibit limitation such as brittleness. Due to brittleness nature
of piezoelectric ceramics and possible defects of impurity, cavities,
microvoids, layer separations, inclusions and microcracks, failure
of devices take place easily under mechanical or electrical loading.
In order to overcome this limitation, material density is reduced
through the addition of controlled porosity and resulting porous
piezoelectric materials (PPM) are widely used for applications such
as low frequency hydrophones, miniature, accelerometers, vibra-
tory sensors and contact microphones. Due to lower acoustic
impedance, these materials can be used to improve mismatch of
acoustic impedances at the interfaces of medical ultrasonic
imaging devices or underwater sonar detectors (Arai et al., 1991;
Hayashi et al., 1991; Mizumura et al., 1991). Use of the piezoelec-
tric effect in porous piezoelectric ceramics offers an original meth-
od for studying the coupling between electrical, mechanical,
permeability, and of course piezoelectric properties of porous
systems.

Experimental studies related to properties of porous piezoelec-
tric materials and influence of porosity on its properties have been
made by different authors (Xia et al., 2003; Piazza et al., 2005;
Huang et al., 2006; Zeng et al., 2006a,b, 2007; Wang et al., 2008).
In a study on characterization and microstructure of porous lead
zirconate titanate (PZT) ceramics, Praveenkumar et al. (2005)
discussed the correlation of porosity with the properties and
microstructure. Studies on manufacturing of porous microstruc-
tures and the properties of such porous piezoelectric materials
were performed (Bowen et al., 2004; Zhang et al., 2007). Gupta
and Venkatesh (2006) developed a finite element model to study
the effect of porosity on the electromechanical response of piezo-
electric materials. A short term microdamage theory for porous
transversely isotropic piezoelectric materials was set forth by
Khoroshun and Dorodnykh (2003). The method of investigation
based on first order reversal curves (FORC) was proposed by Piazza
et al. (2006) for describing the role of porosity on the switching
properties on Nb-PZT ceramics with anisotropic porosity prepared
using lamellar graphite as pore-forming agent. There are some the-
oretical models (Hashimoto and Yamaguchi, 1986; Banno, 1989a,b;
Smith and Auld, 1990; Banno, 1993; Lacour et al., 1994; Gomez
et al., 1995; Gomez and Montero, 1996) which provides the elastic,
dielectric and piezoelectric coefficients of piezoelectric composites
as a function of porosity/(volume concentration) and of the con-
nectivity. Craciun et al. (1998) and Gomez et al. (2000) made an
experimental study on wave propagation in porous piezoceramics.

Although a lot of experimental work has been done on porous
piezoelectric ceramics, but work on theoretical studies of wave
propagation in such materials is rarely found. On the basis of Biot’s
theory and strain energy density function, the constitutive equa-
tions for PPM were derived (Vashishth and Gupta, 2009). In the
present paper, we study the wave propagation in a transversely
isotropic porous piezoelectric material. In the Section 2, the basic
equations of motion and constitutive equations for porous piezo-
electric material were first formulated and then Christoffel equa-
tion is derived by making use of those equations. The roots of
this equation give the different wave velocities which further de-
fine the phase velocity and attenuation quality factor of waves
propagating in medium. The numerical computations of the ana-
lytical solutions, derived in the Section 2, were done and the re-
sults are discussed in the Section 3. In this section, the effects of
wave frequency, porosity of the material, piezoelectric interaction
and the anisotropy on the phase velocities and attenuation quality
factors of four waves are studied. Slowness surfaces and velocity
surfaces of these waves are also analyzed in the present paper.

2. Basic equations and their solutions

The equations of motion for a fluid-saturated porous piezoelec-
tric medium, in the absence of body forces, are

rij;j ¼ q11
ij

€uj þ q12
ij

€U�j þ bijð _uj � _U�j Þ;
r�;i ¼ q12

ij
€uj þ q22

ij
€U�j � bijð _uj � _U�j Þ;

Di;i ¼ 0;
D�i;i ¼ 0;

ði; j ¼ 1;2;3Þ: ð1Þ

where rij=r� are the stress components acting on solid/fluid phase
of porous aggregate. The quantities with superscript (*) are associ-
ated to the fluid phase of the porous bulk material. ui=U�i are the
components of mechanical displacement for solid/fluid phase of
porous aggregate. q11ðq11

ij Þ; q12ðq12
ij Þ and q22ðq22

ij Þ are dynamical
coefficients which depend upon the porosity ðf Þ, density of porous
aggregate ðqÞ, pore fluid density ðqf Þ and the inertial coupling
parameters. The dissipation function bðbijÞ steers the effect of wave
frequency ðtÞ, fluid viscosity ðlÞ, solid-matrix permeability vðvijÞ
and the porosity.

In case of isotropic medium, bij ¼ bdij. The coefficient b (Biot,
1956) is related to Darcy’s coefficients of permeability v by

b ¼ lf 2

v : ð2Þ

This dissipation function bðbijÞ, for anisotropic porous medium, in
low frequency range can be written as

bij ¼ f 2l½vij�
�1
: ð3Þ

For high frequency range, a boundary layer develops and viscous
forces are then confined to this layer and the micro-velocity field
in the major portion of the fluid is determined by potential flow
(Biot, 1962). The friction force of the fluid on the solid becomes
out of phase with relative rate of flow and exhibits a frequency
dependence represented by a complex quantity FðjÞ. The complex
viscosity function FðjÞ may be defined by considering oscillatory
flow through a slit or a circular pipe and is given by

FðjÞ ¼ 1
3

ffiffi
i
p

j tanh
ffiffi
i
p

j
� �

1� tanh
ffiffi
i
p

j
� �

=
ffiffi
i
p

j
� � ;

and j ¼
ffiffiffiffiffiffiffi
6p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v0tqf =lf
q

:

ð4Þ

where v0 is the norm of the permeability matrix. However, Johnson
et al. (1987) presented a viscosity correction factor which describes
the transition behavior from viscosity dominates flow in the low
frequency range towards inertial dominated flow at the HFR.

The electric enthalpy density function ðW�Þ for porous piezo-
electric material is defined as

W� ¼ 1
2
½rijeij þ r�e� � EiDi � E�i D�i �; ð5Þ

where eij=e� are strain tensor components for solid/fluid phase,
respectively. Ei=E�i and Di=D�i are electric field and electric
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displacement components for solid/fluid phase of porous bulk
material, respectively.

This enthalpy density function W� is a quadratic function of
eij; e�; Ei and E�i .
W� ¼ 1
2

cijkleijekl þ
1
2

Re�e� þmijeije� � ekijEkeij � fkijE
�
keij � ~fiEie�

� e�i E�i e
� � 1

2
nijEiEj �

1
2

n�ijE
�
i E�j � AijEiE

�
j ; ð6Þ
where coefficients cijkl=ekij; fkij=mij; nij; n
�
ij;Aij=e�i ;~fi and R are tensors

of order 4/3/2/1 and zero, respectively.
It is known from the definition of the electric enthalpy density

function that
@W
@eij
¼ rij;

@W
@e�
¼ r�; @W

@Ei
¼ �Di;

@W
@E�i
¼ �D�i : ð7Þ

Eqs. (6) and (7) leads to

rij ¼ cijklekl þmije� � ekijEk � fkijE
�
k;

r� ¼ mijeij þ Re� � ~fkEk � e�kE�k;

Di ¼ eiklekl þ ~fie� þ nilEl þ AilE
�
l ;

D�i ¼ fiklekl þ e�i e
� þ AilEl þ n�ilE

�
l :

ð8Þ
These are constitutive equations for anisotropic porous piezoelec-
tric materials. cijkl are elastic stiffness constants. The elastic constant
R measures the pressure to be exerted on fluid to push its unit vol-
ume into the porous matrix. ekij=e�i ; nij=n

�
ij are piezoelectric and

dielectric constants for solid/fluid phase, respectively. mij; fkij;~fi; Aij

are the parameters which take into account the elastic; piezoelec-
tric; dielectric coupling between the two phases of the porous
aggregate. Further,
eij ¼
1
2
ðui;j þ uj;iÞ; e� ¼ U�k;k; Ei ¼ �/;i; E�i ¼ �/�;i; ð9Þ
where / and /� are electric potential functions for solid and fluid
phase of the porous aggregate.

The constitutive equations for transversely isotropic porous pie-
zoelectric materials can be written as follows:
r1

r2

r3

r4

r5

r6

r�

D1

D2

D3

D�1
D�2
D�3

2
666666666666666666666666664

3
777777777777777777777777775

¼

c11 c12 c13 0 0 0 m11 0 0
c12 c11 c13 0 0 0 m11 0 0
c13 c13 c33 0 0 0 m33 0 0
0 0 0 c44 0 0 0 0 �e15

0 0 0 0 c44 0 0 �e15 0
0 0 0 0 0 ðc11 � c12Þ=2 0 0 0

m11 m11 m33 0 0 0 R 0 0
0 0 0 0 e15 0 0 n11 0
0 0 0 e15 0 0 0 0 n11

e31 e31 e33 0 0 0 ~f3 0 0
0 0 0 0 f15 0 0 A11 0
0 0 0 f15 0 0 0 0 A11

f31 f31 f33 0 0 0 e�3 0 0

2
666666666666666666666666664
To find the harmonic solution of (1) for the propagation of plane
waves, let us assume that

uj ¼ Bj expðixðpkxk � tÞÞ;
U�j ¼ Fj expðixðpkxk � tÞÞ;
/ ¼ G expðixðpkxk � tÞÞ;
/� ¼ H expðixðpkxk � tÞÞ;

ð11Þ

where pk are the components of slowness vector ðpÞ and i2 ¼ �1.
These can be written as pk ¼ nk=v in term of phase velocity ðvÞ.
The vector n ¼ n1 n2 n3½ � defines the phase direction of wave
propagating in a medium. x is the circular frequency of waves.
The direction of phase propagation (nÞ can be written as

n1 ¼ sin h cos u; n2 ¼ sin h sinu; n3 ¼ cos h; ð12Þ

where h is the angle made by direction of propagation with the axis
of symmetry and u is the azimuthal angle.

Making use of Eqs. (8)–(11) in Eq. (1), we obtain a system of
equations in unknowns Bj; Fj ðj ¼ 1;2;3Þ; G and H. This system
can be reduced into a system which can be written as

A1Bþ A2F ¼ 0;
A3Bþ A4F ¼ 0;

ð13Þ

where B ¼
B1

B2

B3

2
4

3
5; F ¼

F1

F2

F3

2
4

3
5.

The system (13) can be expressed as

WB ¼ 0; ð14Þ

where

W ¼ A1 � A2A�1
4 A3: ð15Þ

The matrices A1; A2; A3; A4 and W and other expressions in these
are given in Appendix A.

For simplification, we can write

W ¼ Bhþ Cþ D
x
; ð16Þ

where h ¼ R=ðqv2Þ.
B; C; D and x are given in Appendix B.
The system (14) has a non-trivial solution if

detðWÞ ¼ 0: ð17Þ
�e31 0 0 �f31

�e31 0 0 �f31

�e33 0 0 �f33

0 0 �f15 0
0 �f15 0 0
0 0 0 0
�~f3 0 0 �e�3

0 A11 0 0
0 0 A11 0

n33 0 0 A33

0 n�11 0 0
0 0 n�11 0

A33 0 0 n�33

3
777777777777777777777777775

e1

e2

e3

2e4

2e5

2e6

e�

E1

E2

E3

E�1
E�2
E�3

2
666666666666666666666666664

3
777777777777777777777777775

ð10Þ



Table 2
Elastic constants, piezoelectric constants and dielectric constants of BaTiO3 crystal
with epoxy.

f15 ¼ f31 ¼ f33 ¼ e�3 ¼ 0; n�11 ¼ 0:038; n�33 ¼ 0:049; A11 ¼ 0:018; A33 ¼ 0:015
Rest of the values are same as in Table 1

Table 3
Non-dimensional dynamical coefficients, permeability tensor and other parameters.

Dynamical coefficients
(non-dimensional)

Permeability tensor
(m2)

Parameters

½q11�11 ¼ 0:66 v11 ¼ 1� 10�10 q ðkg=m3Þ ¼ 5700
½q11�33 ¼ 0:68 v33 ¼ 0:8� 10�10 qf ðkg=m3Þ ¼ 1000
½q12�11 ¼ �0:15 l ðN s=m2Þ ¼ 1� 10�3

½q12�33 ¼ �0:13 t ðHzÞ ¼ 50 in LFR
½q22�11 ¼ 0:64 t ðHzÞ ¼ 10; 000 in HFR
½q22�33 ¼ 0:66 h ¼ 30�

u ¼ 60�

f ¼ 0:2
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This leads to

ðc1T1Þh4 þ ðc2T1 þ c1T2Þh3 þ ðc2T2 þ c1T3 þ T5Þh2

þ ðc2T3 þ c1T4 þ T6Þhþ c2T4 þ T7 ¼ 0; ð18Þ

where c1 and c2 are given in Appendix B and the coefficients
T1; T2; T3; T4; T5; T6; T7 are given in Appendix C.

On solving Eq. (18), we obtain four complex roots
hj ðj ¼ 1;2;3;4Þ. Corresponding to these four complex roots, we
get four complex wave velocities Vj of four waves. The phase veloc-
ity and attenuation quality factor for these waves are defined to be

v j ¼ ððVjÞ2R þ ðVjÞ2I Þ=ðVjÞR;
Q�1

j ¼ �2ðVjÞI=ðVjÞR;

where

Vj ¼ ðVjÞR þ iðVjÞI ðj ¼ 1;2;3;4Þ: ð19Þ

Thus we obtain four plane harmonic waves propagating along a
given phase direction in transversely isotropic (6 mm) porous pie-
zoelectric material. The wave with largest phase velocity is termed
as stiffened quasi P1 wave and the wave with smallest phase veloc-
ity is termed as stiffened quasi P2 wave. The other two waves are
termed as stiffened quasi S1 and quasi S2 waves. The phase velocity
of S2 wave is not affected by piezoelectric effect while that of S1

wave get affected. Due to this reason S1 and S2 waves may be
termed as piezoelectric stiffened shear wave and quasi shear wave.

Corresponding to the each value hj, the solution of homoge-
neous system (14) defines the polarization vector of the corre-
sponding wave. The skewing angle (angle of deviation) of
normalized polarization direction ðB̂jÞ corresponding to jth wave
from the direction of propagation (n) is defined as

cj ¼ cos�1ðB̂j � nÞ ðj ¼ 1;2;3;4Þ: ð20Þ

Here j ¼ 1, 2, 3 and 4 corresponds to P1; P2; S1 and S2 wave.

3. Numerical results and discussion

In the previous section, a general mathematical model for wave
propagation in fluid saturated porous piezoelectric materials was
presented. The analytical expressions of phase velocity of propaga-
tion and attenuation quality factor of stiffened quasi P1; P2 and
S1; S2 waves, derived in that section, are computed numerically
for a particular model. For the purpose of numerical computation
we consider a porous piezoelectric material as transversely isotro-
pic (6 mm) BaTiO3 crystal. Following Rasolofasaon and Zinszner
(2002), Gupta and Venkatesh (2006) and Hsu and Wu (2008), the
elastic, piezoelectric and dielectric constants are given in Tables
1 and 2 and the dynamical coefficients and other parameters, used
in the study, are given in Table 3. We have used the data given in
Tables 1 and 3 for the purpose of numerical computation unless
mentioned specifically.
Table 1
Elastic constants, piezoelectric constants and dielectric constants of BaTiO3 crystal.

Elastic constants
(GPa)

Piezoelectric constants
(C/m2)

Dielectric constants
(nC/Vm)

c11 ¼ 150:4 e15 ¼ 11:4 n11 ¼ 10:8
c12 ¼ 65:63 e31 ¼ �4:32 n33 ¼ 13:1
c13 ¼ 65:94 e33 ¼ 17:4 n�11 ¼ 11:8
c33 ¼ 145:5 f15 ¼ 4:56 n�33 ¼ 13:9
c44 ¼ 43:86 f31 ¼ �1:728 A11 ¼ 12:8
m11 ¼ 8:8 f33 ¼ 6:96 A33 ¼ 15:1
m33 ¼ 5:2 e�3 ¼ �3:6
R ¼ 20 ~f3 ¼ �7:5
3.1. Evolution of phase velocity and attenuation quality factors with
frequency and porosity

In this section, the effects of frequency and porosity on the
phase velocities and attenuation quality factors of waves propagat-
ing in the medium are discussed. The values of dielectric and pie-
zoelectric constants, etc. are taken zeros, as shown in Table 4, in
the non-piezoelectric case.

The numerical computation has been done for the following
three data sets:

Set 1 = The values of the elastic, piezoelectric, dielectric and
dynamic coefficients as given in Tables 1 and 3 for PPM; repre-
sented by dotted curves.
Set 2 = The values of the elastic and dynamic coefficients as
given in Tables 4 and 3 for non-piezoelectric porous materials;
represented by solid curves.
Set 3 = The values of the elastic, piezoelectric, dielectric and
dynamic coefficients as given in Tables 2 and 3 for PPM; repre-
sented by dashed curves.

The dependence of phase velocities of P1 wave ðv1Þ, P2 wave
ðv2Þ, S1 wave ðv3Þ and S2 wave ðv4Þ on frequency is described in
Fig. 1. In this figure and in Figs. 2–4, the results for the data given
in Set 1 and Set 3 are represented by dotted and dashed curves,
respectively, with scale of y-axis as shown on the left side and
those corresponding to the data given in Set 2 are represented by
solid curves with scale of y-axis as shown on the right side of the
respective graph. The results are computed both for low and high
frequency waves. It is a known fact that in low frequency range
(LFR), the pore fluid viscosity dominates while inertial terms dom-
inate in the high frequency range (HFR). It is observed that wave
velocities increase in LFR but decrease with increase of frequency
in HFR. The phase velocity of respective waves in HFR is greater
than that in LFR. It can be seen from Fig. 1(b) that after fre-
quency = 0.5 MHz, the phase velocity of all the waves become al-
most constant, i.e. waves with negligible dispersion. Comparison
of dashed and solid curves reveals that, in low as well as high fre-
quency range, the phase velocities of quasi P1; P2 and S1 waves get
Table 4
Elastic coefficients for non-piezoelectric porous material.

e15 ¼ e31 ¼ e33 ¼ f15 ¼ f31 ¼ f33 ¼ e�3 ¼ ~f3 ¼ n11 ¼ n33 ¼ n�11 ¼ n�33 ¼ A11 ¼ A33 ¼ 0
Rest of the values are same as in Table 1



Fig. 1. Variation of phase velocity with frequency. (a) Low frequency range (LFR); (b) high frequency range (HFR): (i) P1 wave, (ii) P2 wave, (iii) S1 wave, (iv) S2 wave; Set 1
(dotted curve, left scale), Set 3 (dashed curve, left scale), Set 2 (solid curve, right scale), here h ¼ 30�;u ¼ 60� ; f ¼ 0:2.
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affected (increased) due to effect of piezoelectricity for artificially
polarized piezoelectric material BaTiO3 with epoxy. This observa-
tion agrees well with the earlier established results. However,
the phase velocities of quasi P1; P2 and S1 waves get decreased
due to piezoelectric interaction when data are taken according to
Table 1 (see dotted and solid curves). The choice of the piezoelec-
tric and dielectric constants for the fluid-phase of the porous piezo-
electric materials thus plays a significant role. The effect of
piezoelectricity on the phase velocity of S2 wave is null. The effect
Fig. 2. Variation of phase velocity with porosity. (a) Low frequency range; (b) high freque
scale), Set 3 (dashed curve, left scale), Set 2 (solid curve, right scale), here h ¼ 30� ;u ¼
of piezoelectric coupling in case of BaTiO3 is considerably high in
comparison to that observed in a Quartz crystal (Nayfeh and Chien,
1992).

Fig. 2(a) and (b) depicts the variation of phase velocity of
P1; P2; S1 and S2 waves with pore volume fraction in LFR and
HFR, respectively. It is observed that in LFR, the phase velocity of
all the waves decreases rapidly with porosity while it increases
monotonically with porosity in HFR. The decrease in phase velocity
with increase of porosity can be well described on the basis of
ncy range: (i) P1 wave, (ii) P2 wave, (iii) S1 wave, (iv) S2 wave; Set 1 (dotted curve, left
60�; t ¼ 50 Hz (LFR) and t ¼ 10; 000 Hz (HFR).



Fig. 3. Variation of attenuation quality factor with frequency. (a) Low frequency range; (b) high frequency range: (i) P1 wave, (ii) P2 wave, (iii) S1 wave, (iv) S2 wave; Set 1
(dotted curve, left scale), Set 3 (dashed curve, left scale), Set 2 (solid curve, right scale), here h ¼ 30�;u ¼ 60� ; f ¼ 0:2.
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percolation theory (Craciun et al., 1998). In percolation theory, a
geometric phase transition occurs in the percolation system when
the medium becomes disconnected due to progressive dilution,
similarly to what happens in magnetic systems when the magneti-
zation suddenly disappears at the critical temperature. Examina-
tion of Fig. 2(a) (i), (iii) and (iv) reveals that the velocities of
P1; S1 and S2 waves decrease slowly when the porosity is greater
than 50%. It is also observed that the behavior of variation of phase
Fig. 4. Variation of attenuation quality factor with porosity. (a) Low frequency range; (
(dotted curve, left scale), Set 3 (dashed curve, left scale), Set 2 (solid curve, right scale),
velocity with porosity does not change due to the effect of piezo-
electricity (see dotted, solid and dashed curves).

Next, we study the effects of frequency and the porosity on the
attenuation quality factor Q�1

j ; j ¼ 1;2;3;4. Here j ¼ 1 corresponds
to quasi P1 wave. Similarly indices 2, 3 and 4 correspond to quasi
P2; S1 and S2, waves, respectively. The attenuation is mainly con-
tributed by viscosity losses due to the friction at the solid–liquid
contact. The variation of attenuation quality factors with frequency
b) high frequency range: (i) P1 wave, (ii) P2 wave, (iii) S1 wave, (iv) S2 wave; Set 1
here h ¼ 30�;u ¼ 60� ; t ¼ 50 Hz (LFR) and t ¼ 10;000 Hz (HFR).



Table 5
Elastic constants, piezoelectric constants and dielectric coefficients for PPM.

c13 ¼ 80:94 GPa; c33 ¼ 105:5 GPa
Rest of the values are same as in Table 1
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is shown in Fig. 3(a) and (b) in LFR and HFR, respectively. It is ob-
served that attenuation quality factors 1=Q 1; 1=Q 3 and 1=Q4, cor-
responding to P1 wave, S1 wave and S2 waves, first increase with
frequency in LFR and attain respective local maxima at fre-
quency = 30 Hz and then these decrease. No specific reason is
found to explain this observation. Fig. 3(a) (ii) shows that the
attenuation quality factor corresponding to P2 wave decreases
monotonically with frequency in LFR. In case of HFR, it is observed
from Fig. 3(b) that the quality factors corresponding to all the four
waves decrease slowly and become constant after certain critical
high frequency. Comparison of solid and dashed curves shows that
the attenuation quality factor of P1 wave increases when piezoelec-
tric effects are included according to Table 2. The attenuation qual-
ity factors of other three waves remain almost unaffected due to
the effect of piezoelectric interaction. The piezoelectric interaction
does not affect, considerably, the attenuation of the waves in HFR.

The effect of porosity on attenuation quality factors is observed
in Fig. 4. In the case of LFR, the attenuations of P1; S1 and S2 waves
first increase and then decrease with porosity while that of P2 wave
increases with porosity (see Fig. 4(a) (ii)). The behavior of all
P1; P2; S1 and S2 waves with frequency and porosity is alike.
Fig. 4(b) shows that the attenuation of all the four waves increases
with porosity. It is observed the attenuation in the porous sample
with high porosity is almost five times higher than in dense sam-
ple, i.e. with low value of porosity. It may be due to scattering from
the geometric disorder in the sample rather than with sound
absorption mechanisms in the ceramics. Comparison of dotted
and solid curves reveals that, in LFR and in HFR as well, the atten-
uation of P1 wave decreases when piezoelectric effects are included
while that of P2 wave increases slightly for the propagation direc-
tion ðh ¼ 30�;u ¼ 60�Þ. However, the attenuation of P1 wave in-
creases while that of P2 wave decreases slightly when data are
taken as shown in Table 2 (see dashed and solid curves). The effects
of piezoelectric interaction on the attenuation of S1 and S2 waves
are negligible for the permissible range of porosity.

3.2. Slowness curves, velocity curves and attenuation curves

In this section, the variation of slowness, phase velocity and the
attenuation of waves propagating in the medium with the direc-
tion of propagation ðhÞ are studied.

Fig. 5(a) and (b) shows the slowness curves of quasi P1; P2; S1

and S2 waves for the data given in Set 1 and Set 3, respectively.
Fig. 5. Slowness curves of P1; P2; S1 and S2 waves. (a
The innermost curve corresponds to quasi P1 wave and outermost
curve represents that of quasi P2 wave while other two curves cor-
respond to quasi S1 and quasi S2 waves. The fact that slowness
curves of S1 and S2 waves are not coinciding, reveals the effect of
anisotropy. The slowness curve corresponding to S2 wave is a circle
which signifies a case of partial factorization that decouples the
horizontally polarized quasi S2 wave. The other three modes are
coupled and polarized in the sagittal plane u ¼ 60�. Fig. 5(a) shows
that the two shear waves are degenerated along one unique prop-
agation direction ðh ¼ 0—180�Þ while these waves are degenerated
along three propagation directions, i.e. h ¼ 0—180�; h ¼ 30—210�

and h ¼ 150—330�, when data given in Set 3 is considered
(Fig. 5(b)). This is an important characteristic because in any linear
system, degenerate waves may be combined in any arbitrary man-
ner to produce a wide variety of polarization.

To study the effects of anisotropy, the constants c13 and c33, as
given in Table 5, are changed and Fig. 6 shows that the only slow-
ness curve corresponding to S2 wave remain circular while those of
other waves get deviated from their respective shape. The degree
of deviation depends on the anisotropy. It is observed that the
direction of degeneracy of S waves remain same in this case but
curve corresponding to S1 wave get bulges out which reveals that
anisotropy factor (i.e. ratio of square of velocity of two waves) is
greater than 1.

To study the effects of piezoelectric interaction on the wave
propagation, the piezoelectric constants are allowed to vary, as
specified in Tables 6 and 7. When the value of e15 is changed only
(Table 6) the slowness curves show a significant variation, as evi-
dent from Fig. 7. Next is the case when both e15 and e33 are chan-
ged, as mentioned in Table 7 and shown in Fig. 8. Comparison of
Fig. 8 with Figs. 7 and 5 shows that the variations in the value of
the piezoelectric constants affect the slowness of the waves quite
considerably. However, it is pertinent to mention here that these
observations are made in reference to the model considered here
and the particular values of the different coefficients therein.
) Set 1, (b) Set 3, here u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.



Fig. 6. Slowness curves of P1; P2; S1 and S2 waves corresponding for Table 5, here
u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.

Table 6
Elastic constants, piezoelectric constants and dielectric coefficients for PPM.

e15 ¼ 7:4 C=m2

Rest of the values are same as in Table 1

Table 7
Elastic constants, piezoelectric constants and dielectric coefficients for PPM.

e15 ¼ 7:4 C=m2; e33 ¼ 22:4 C=m2

Rest of the values are same as in Table 1

Fig. 7. Slowness curves of P1; P2; S1 and S2 waves corresponding for Table 6, here
u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.

Fig. 8. Slowness curves of P1; P2; S1 and S2 waves corresponding for Table 7, here
u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.

Table 8
Elastic constants, piezoelectric constants and dielectric coefficients for PPM.

n11 ¼ 3:8 nC=Vm; n33 ¼ 14:1 nC=Vm
Rest of the values are same as in Table 1

Fig. 9. Slowness curves of P1; P2; S1 and S2 waves corresponding for Table 8, here
u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.
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To observe the effect of dielectric constants on the slowness
curves, the numerical results, for the value of coefficients pre-
sented in Table 8, are shown in Fig. 9. With the variation of dielec-
tric constants, the P2 wave is affected more in comparison with
other waves. It may be an interesting feature for further investiga-
tion that even for anisotropic PPM, with low value of dielectric con-
stant n11, the second kind of P wave, i.e. P2 wave, has the tendency
of decoupling for all directions except the range
0� < h < 30�;330� < h < 360�.
The variation of polarization skewing angle of P1 wave ðc1Þ, P2

wave ðc2Þ, S1 wave ðc3Þ and S2 wave ðc4Þ with the propagation
direction ðhÞ in the sagittal plane u ¼ 60� is also studied and is
shown in Fig. 10. The results computed corresponding for the data
given in Set 1 and Set 3 are shown in Fig. 10(a) and (b), respec-
tively. The skewing angle associated with quasi-longitudinal waves
is smaller in comparison to quasi shear waves. It is also observed
that the smallest skewing angle is associated with fastest wave,
i.e. P1 wave. Fig. 10(a) shows that two directions for possible prop-
agation of pure modes can be identified corresponding to the qua-
si-longitudinal waves when data are taken as per Table 1. However,
four directions for possible propagation of pure modes can be iden-
tified, corresponding to quasi-longitudinal waves, when computa-
tion is done for the data Set 3 (Fig. 10(b)). It is also observed that S2

wave is polarized orthogonal to all direction of propagation in the



Fig. 10. Polarization skewing angle curves of P1; P2; S1 and S2 waves for propagation in the plane u ¼ 60� . (a) Set 1, (b) Set 3; (i) P1 wave, (ii) P2 wave, (iii) S1 wave, (iv) S2

wave, here t ¼ 50 Hz; f ¼ 0:2.
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sagittal plane u ¼ 60� which signifies the existence of pure mode
for all propagation direction in x1–x3 plane.

Fig. 11(a) and (b) depicts the variation of angle between the
polarization direction of different pair of waves with the propaga-
tion direction ðhÞ in the plane u ¼ 60� for the data given in Set 1
and Set 3, respectively. The angle between the polarization direc-
tion of ith and jth wave is denoted by hij. Here j ¼ 1 corresponds
to P1 wave. Similarly j ¼ 2, 3 and 4 corresponds to P2; S1 and S2

wave. It is observed that for the propagation in x1–x3 plane, S2

wave is decoupled in all the directions from other three waves,
i.e. P1; P2 and S1 waves and polarized orthogonal to the plane con-
taining the polarization vectors of these three waves.

To study the dependence of phase velocity on the propagation
direction ðhÞ, which holds for anisotropic materials, the velocity
curves of quasi P1; P2; S1 and S2 waves in the plane u ¼ 60� and
in LFR are shown in Fig. 12. The results have also been calculated
by varying azimuthal angle u but it has been found that wave
velocities do not vary with u, as expected in case of transverse iso-
tropic material. This is one of the checks imposed for the verifica-
Fig. 11. Variation of angle ðhijÞ between the polarization vectors with direction of p
t ¼ 50 Hz; f ¼ 0:2.
tion of numerical computation of the results. The phase velocity of
P1 wave is affected by variation in h only by a very small amount
but anisotropy effects on the velocity of P2 and S1 wave is notice-
able. The phase velocity of S2 wave is independent on phase direc-
tion effectively, as expected. Comparison between the dotted, solid
and dashed curves presents the effects of piezoelectric–elastic
interaction in anisotropic porous materials. The phase velocities
of P1; P2 and S1 waves get affected due to piezoelectric interaction
but that of S2 wave remain almost unaffected (see solid, dotted and
dashed curves). Comparison of the solid curves with the dotted and
the dashed curves reveals that the three curves in case of P1 and P2

waves coincide in the region where 60� 6 h 6 120� and
240� 6 h 6 300�. For S1 wave, these curves coincide along the
phase directions h ¼ 0—180� implying that the phase velocity of
S1 wave is affected most by piezoelectric interaction in the range
30� < h < 150� and its symmetric counterpart. It is a noticeable
fact that the phase velocity of S2 wave remains unaltered in these
cases. The behavior of variation of phase velocity of respective
waves with h in case of HFR is found not much different from
ropagation ðhÞ for propagation in the plane u ¼ 60� . (a) Set 1, (b) Set 3, here



Fig. 12. Velocity curves of quasi P1; P2; S1 and S2 waves. (i) P1 wave, (ii) P2 wave,
(iii) S1 wave, (iv) S2 wave, here u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.

Fig. 13. Velocity curves of quasi P1; P2; S1 and S2 waves. (i) P1 wave, (ii) P2 wave,
(iii) S1 wave, (iv) S2 wave, here u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.
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LFR with the only exception of increase in the velocities of respec-
tive waves in case of HFR.

To study the effects of anisotropy, the variation of phase veloc-
ities of four different waves with h is considered for the following
data sets:

Set4 = The values of the elastic and dynamic coefficients as
given in Table 9 for isotropic, non-piezoelectric porous mate-
rial; represented by solid curves.
Set5 = The values of the elastic, piezoelectric, dielectric and
dynamic coefficients as given in Tables 5 and 3 for PPM; repre-
sented by dashed curves.

Comparison of dashed curve (Fig. 13) with the dotted curve re-
veals that the variation in the value of elastic constants c13 and c33

does not affect the velocity of S2 wave. It is observed that the veloc-
ity of S1 wave is maximum along the direction h ¼ 0—180�, i.e.
along the axis of symmetry. The velocity curve of the P1 wave for
the above mentioned variation in constants depicts that significant
changes occur for the range 0� 6 h 6 30� and 330� 6 h 6 360�. Sim-
ilarly P2 wave changes its behavior in the region 30� 6 h 6 60� and
its symmetric counterparts in other three quadrants. The solid
curve shows the velocity curves of respective waves for the case
of non-piezoelectric isotropic porous material. In this case, the
velocity curve of S1 and S2 waves coincides, as expected. It is no-
ticed that the phase velocities of P1; P2 and S1 waves decreases
when piezoelectric effect or anisotropic effect or both are included.
It is observed that the phase velocity of P1 and P2 waves remain
unaffected along the direction h ¼ 90—270� in all the three dis-
cussed cases while that of S1 wave remain same along the direc-
tionh ¼ 0—180�. The graphs shown in this figure have been
computed in LFR. However, results have also been computed for
HFR but found not to be significantly different from the present
ones, so we omit the repetitions.
Table 9
Elastic and dynamic coefficients for isotropic non-piezoelectric porous material.

c13 ¼ c12; c33 ¼ c11; c66 ¼ c44; m33 ¼ m11

½q11�33 ¼ ½q11 �11; ½q12�33 ¼ ½q12�11; ½q22�33 ¼ ½q22�11
v33 ¼ v11
Rest of the values are same as given in Tables 4 and 3.
The dependence of attenuation quality factors of all the four
waves on the phase direction and piezoelectric interaction in the
LFR is depicted in Fig. 14. The solid curve depicts the variation of
attenuation quality factor with phase direction when piezoelectric
interaction is absent. The dotted and dashed curves show the var-
iation of attenuation quality factors with the phase direction corre-
sponding to the data given in Set 1 and Set 3, respectively. The
attenuation of S1 is affected most in the region h ¼ 10—70� and
its symmetric counterparts. The effect of piezoelectric interaction
on the attenuation of S2 is null. Comparison of dotted curve with
the dashed and the solid curve reveals that the change in the
behavior of attenuation curves of P1 and P2 wave is maximum
along the direction h ¼ 0—180� and is nil along the direction
h ¼ 90—270�.

To see the effects of anisotropy on the attenuation, the elastic
constants c13 and c33 are changed, as prescribed in Set 5. The cor-
responding attenuation curves (dashed curve) for all the four
waves are shown in Fig. 15. Comparison between the dashed and
dotted curves clearly depicts the effects of the anisotropy. Due to
change in above mentioned elastic constants, the attenuation of
P1=P2 wave is minimum/maximum along the direction
Fig. 14. Attenuation curves of quasi P1; P2; S1 and S2 waves. (i) P1 wave, (ii) P2

wave, (iii) S1 wave, (iv) S2 wave, here u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.



Fig. 15. Attenuation curves of quasi P1; P2; S1 and S2 waves. (i) P1 wave, (ii) P2

wave, (iii) S1 wave, (iv) S2 wave, here u ¼ 60�; t ¼ 50 Hz; f ¼ 0:2.
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h ¼ 0—180� while that of S1 wave is maximum along the directions
h ¼ 45�; 135�; 225� and 315�. The attenuation curve of S1 wave
shows interesting behavior in the region where 0� 6 h 6 30� and
330� 6 h 6 360�and corresponding other symmetric half. The
anisotropy has no effects on the attenuation of S2 wave. The results
are also computed for the case of HFR but there is not a significant
change in the behavior of variation of attenuation quality factor
with h, with the exception of decrease in the value of the attenua-
tion in case of HFR.

4. Conclusion

In the present paper, wave propagation in porous piezoelectric
material having 6 mm type symmetry is studied both analytically
and numerically. The constitutive equations and dynamical equa-
tions for PPM are formulated in the paper. The four complex roots
of the obtained Christoffel equation define the phase velocities of
propagation and the attenuation quality factors of four stiffened
quasi waves propagating in such a medium. The variation of phase
velocities and attenuation quality factors of these waves with fre-
quency, phase direction and the porosity is observed numerically
in a reference of porous piezoelectric crystal BaTiO3. The phase
velocities of all the four waves increase with frequency in LFR
but decrease in HFR. The phase velocities of all the four waves de-
crease with porosity in LFR which can be explained on the basis of
percolation theory. The electric–elastic interaction does not affect
the behavior of phase velocities with porosity. The variation pat-
tern of attenuation quality factors and phase velocities with fre-
quency is alike. The attenuation in the porous sample with high
porosity is almost five times higher than in dense sample (with
low value of porosity). It may be due to the scattering from the
geometric disorder in the sample rather than with sound absorp-
tion mechanism in the ceramics. The characteristic curves includ-
ing slowness curves, velocity curves, and the attenuation curves
are also obtained for all the four waves. The slowness curve corre-
sponding to S2 wave is a perfect circle which signifies a case of
decoupling of horizontally polarized S2 wave. The other three
modes are coupled and polarized in the sagittal plane. The shapes
of characteristic curves of all the waves except S2 wave get devi-
ated with change in elastic constantsc13 and c33. With the variation
of dielectric constants, the P2 wave is affected more in comparison
to other waves. It may be an interesting feature for further inves-
tigation that even for anisotropic PPM, with low value of dielectric
constant, the second kind of P wave, i.e. P2, has the tendency of
decoupling for all direction except a particular range. The anisot-
ropy effects on the velocity of S1 wave are noticeable in comparison
to P1 and P2 waves. The phase velocity of S2 wave is independent of
phase direction.
Appendix A

A1 ¼ K1h� �q11; A2 ¼ K2h� �q12;

A3 ¼ K3h� �q12; A4 ¼ k4nTnh� �q22;

�q11 ¼ q11 þ ði=xÞb; �q22 ¼ q22 þ ði=xÞb;
�q12 ¼ q12 � ði=xÞb;
h ¼ R=ðqv2Þ;
K1 ¼ Pþ eT � rþ fT � b�; K2 ¼MnT nþ eT � tþ fT � z;

K3 ¼ nT nMþ ðn0ÞT � rþ ðn�ÞT � b�;

k4 ¼ 1þ ~f3n3½e�3n3=a� n�ð~f3n3 � e�3n3n=aÞ=ða2 � nn�Þ�
þ e�3n3að~f3n3 � e�3n3n=aÞ=ða2 � nn�Þ;

e ¼ e1 e2 e3½ �; f ¼ f1 f2 f3½ �;
n0 ¼ n01 n02 n03½ �; n� ¼ n�1 n�2 n�3½ �;
n ¼ n1 n2 n3½ �; r ¼ r1 r2 r3½ �;
b� ¼ b�1 b�2 b�3

� �
; t ¼ t1 t2 t3½ �;

z ¼ z1 z2 z3½ �; M ¼ ½mij�3�3; P ¼ ½Pij�3�3:

ðA:1Þ

where superscript T denotes the transpose of vector/matrix.

e1 ¼ ðe15 þ e31Þn1n3;

e2 ¼ ðe15 þ e31Þn1n3;

e3 ¼ e15n2
1 þ e15n2

2 þ e33n2
3;

f1 ¼ ðf15 þ f31Þn1n3;

f2 ¼ ðf15 þ f31Þn1n3;

f3 ¼ f15n2
1 þ f15n2

2 þ f33n2
3;

n0k ¼ ~f3n3nk;

n�k ¼ e�3n3nk;

n ¼ n11n2
1 þ n11n2

2 þ n33n2
3;

n� ¼ n�11n2
1 þ n�11n2

2 þ n�33n2
3;

a ¼ A11n2
1 þ A11n2

2 þ A33n2
3;

r ¼ 1
a

f� n�

a2 � nn�
e� n

a
f

� �
;

b� ¼ a
a2 � nn�

e� n
a

f

� �
;

t ¼ 1
a

n� � n�

a2 � nn�
n0 � n

a
n�

� �
;

z ¼ a
a2 � nn�

n0 � n
a

n�
� �

;

P11 ¼ c11n2
1 þ c66n2

2 þ c44n2
3;

P12 ¼ c12n1n2 þ c66n1n2;

P13 ¼ c13n1n3 þ c55n1n3;

P22 ¼ c66n2
1 þ c22n2

2 þ c44n2
3;

P23 ¼ c44n2n3 þ c23n2n3;

P33 ¼ c66n2
1 þ c44n2

2 þ c33n2
3;

cij ¼ cij=R; eij ¼ eij=R; fij ¼ fij=R; mij ¼ mij=R;

nij ¼ nij=R; n�ij ¼ n�ij=R; Aij ¼ Aij=R;

e�k ¼ e�k=R; ~fk ¼ ~fk=R; bij ¼ bij=q;
q11 ¼ q11=q; q12 ¼ q12=q; q22 ¼ q22=q:

ðA:2Þ
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Appendix B

x ¼ c1hþ c2;

B ¼ K1 �
X2

c1
;

C ¼ ��q11 � X3 �
c2

c1
X2

� �	
c1;

D ¼ �X4 þ X3 �
c2

c1
X2

� �
c2

c1
;

ðB:1Þ

where

X2 ¼ �K2F�q12 þ K2GK3 � �q12FK3;

X3 ¼ �K2G�q12 þ �q12F�q12 � �q12GK3;

X4 ¼ �q12G�q12;

c1 ¼ k4n2
1d1 þ k4n2

2d4 þ k4n2
3d6;

c2 ¼ �½�q22�11d4;

G ¼
d1 0 0
0 d4 0
0 0 d6

2
64

3
75;

d1 ¼ ½�q22�11½�q22�33;

d4 ¼ ½�q22�11½�q22�33;

d6 ¼ ½�q22�11½�q22�11;

½F�11 ¼ ð�½�q22�33n2
2 � ½�q22�11n2

3Þk4

½F�12 ¼ ½�q22�33n1n2k4

½F�13 ¼ ½�q22�11n1n3k4

½F�22 ¼ ð�½�q22�11n2
3 � ½�q22�33n2

1Þk4;

½F�23 ¼ ½�q22�11n2n3k4;

½F�33 ¼ ð�½�q22�11n2
1 � ½�q22�11n2

2Þk4:

ðB:2Þ
Appendix C

T1 ¼ B11y1 þ B12y6 þ B13y11;

T2 ¼ C11y1 þ C12y6 þ C13y11 þ B11y2 þ B12y7 þ B13y12;

T3 ¼ C11y2 þ C12y7 þ C13y12 þ B11y4 þ B12y9 þ B13y14;

T4 ¼ C11y4 þ C12y9 þ C13y14;

T5 ¼ D11y1 þ D12y6 þ D13y11 þ B11y3 þ B12y8 þ B13y13;

T6 ¼ D11y2 þ D12y7 þ D13y12 þ C11y3 þ C12y8

þ C13y13 þ B11y5 þ B12y10 þ B13y15;

T7 ¼ D11y4 þ D12y9 þ D13y14 þ C11y5 þ C12y10 þ C13y15;

ðC:1Þ

where
y1 ¼ B22B33 � B23B32;

y2 ¼ B22C33 þ C22B33 � B23C32 � C23B32;

y3 ¼ B22D33 þ D22B33 � B23D32 � D23B32;

y4 ¼ C22C33 � C23C32;

y5 ¼ C22D33 þ D22C33 � C23D32 � D23C32;

y6 ¼ B31B23 � B21B33;

y7 ¼ B31C23 þ C31B23 � B21C33 � C21B33;

y8 ¼ B21D33 þ D21B33 � B23D31 � D23B31;

y9 ¼ C21C33 � C23C31;

y10 ¼ C21D33 þ D21C33 � C23D31 � D23C31;

y11 ¼ B21B32 � B31B22;

y12 ¼ B21C32 þ C21B32 � B31C22 � C31B22;

y13 ¼ B21D32 þ D21B32 � B31D22 � D31B22;

y14 ¼ C21C32 � C22C31;

y15 ¼ C21D32 þ D21C32 � C22D31 � D22C31:

ðC:2Þ
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