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The interfacial fracture of adhesively bonded structures is a critical issue for the extensive applications to
a variety of modern industries. In the recent two decades, cohesive zone models (CZMs) have been receiv-
ing intensive attentions for fracture problems of adhesively bonded joints. Numerous global tests have
been conducted to measure the interfacial toughness of adhesive joints. Limited local tests have also been
conducted to determine the interface traction-separation laws in adhesive joints. However, very few
studies focused on the local test of effects of adhesive thickness on the interfacial traction-separation
laws. Interfacial toughness and interfacial strength, as two critical parameters in an interfacial trac-
tion-separation law, have important effect on the fracture behaviors of bonded joints. In this work, the
global and local tests are employed to investigate the effect of adhesive thickness on interfacial energy
release rate, interfacial strength, and shapes of the interfacial traction-separation laws. Basically, the
measured laws in this work reflect the equivalent and lumped interfacial fracture behaviors which
include the cohesive fracture, damage and plasticity. The experimentally determined interfacial trac-
tion-separation laws may provide valuable baseline data for the parameter calibrations in numerical
models. The current experimental results may also facilitate the understanding of adhesive thickness-
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dependent interface fracture of bonded joints.
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1. Introduction

Adhesive bonding technology is being used in a variety of mod-
ern industries, including the automotive, aerospace, maritime, con-
struction, defense etc. Many components and structures, from
microchips to ships and large aircrafts are made of materials ar-
ranged in layers through adhesive bonding. However, early or even
some current design approaches (critical stress method) for pre-
dicting the failure of adhesively bonded materials are still some-
what empirical. In order to improve prediction ability of these
traditional approaches, the interfacial fracture mechanics was
introduced for joined substrates which may be identified by the pi-
lot work of Williams (1959) half century ago. In the following three
decades, numerous studies had been contributed to failure prob-
lems of bonded joints (Hutchinson and Evans, 2000). During this
stage, most efforts were focused on the classical linear elastic frac-
ture mechanics (LEFM). The advantage of LEFM lies in the obvious
simplicity and decent accuracy, especially for relatively brittle
materials and interfaces. Within the framework of LEFM, the re-
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mote loadings can be correlated to the critical conditions (crack
growth) by a local parameter: stress intensity factor (SIF) or a glo-
bal parameter: strain energy release rate (ERR). Despite the huge
success of LEFM, some limitations have been identified due to
the fundamental assumption of LEFM which requires small-scale
yielding beyond the crack tip. Specifically, with the increased use
of modern toughened adhesives, the plastic zones associated with
cohesive fracture along the adhesive interlayer, in many cases,
could be comparable to or even larger than the thickness of the
adherends.

Motivated by this limitation of LEFM, a number of efforts have
been made along the direction of nonlinear fracture mechanics
(NLEM). In the late 1950s and early 1960s, on one hand, Barenblatt
(1959), Dugdale (1960) independently proposed the concept of
cohesive zone. In their idea, the stresses across a potential crack
path were bounded, and a localized traction-separation law may
be able to describe the fracture behaviors within the cohesive pro-
cessing zone ahead of the apparent crack tip. The stresses vary with
the relative surface separations according to the assumed interface
law during the fracture process. On the other hand, in the late
1960s, Rice (1968) proposed a path independent integral method
to calculate the energy release rate (ERR), which is referred to as
the well-known J-integral. For a monotonically loaded process,
large-scale bulk inelasticities and nonlinear interfacial cohesive
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separations might be considered by the J-integral method. Encour-
aged by these two achievements, intensive studies have been con-
ducted to investigate the nonlinear fracture behaviors of
adhesively bonded joints for the past three decades. Specially,
1990s might be the most rapidly developing period of CZMs. The
realistic demands for nonlinear simulation become urgent due to
the wide applications of modern toughened adhesive. With such
a situation, the classical LEFM, which is basically a single-parame-
ter method, may have difficulties of meeting the increased de-
mands in the accurate fracture simulations and predictions.
Instead of the single-parameter model in LEFM, it has been re-
ported that two or even three parameters were needed in CZMs
for the sake of accurate modeling. For instance, these parameters
could be chosen as the fracture toughness, the cohesive strength
Omax and/or the characteristic length at which the cohesive trac-
tions vanish (Wei and Hutchinson, 1998; Williams and Hadavinia,
2002; Ouyang and Li, 2009a).

Various cohesive zone models (cohesive laws) were proposed to
model the fracture process (Hillerborg et al., 1976; Rose et al.,
1983; Needleman, 1987; Tvergaard, 1990; Xu and Needleman,
1993; Camacho and Ortiz, 1996). The main difference between
these models lies in the shape of the traction-displacement re-
sponse, and the parameters used to describe that shape. All of them
start from the assumption that one or more interfaces can be de-
fined, where crack propagation is allowed by the introduction of
a possible discontinuity in the displacement field. One feature of
CZMs is that they can be conveniently incorporated in the tradi-
tional finite element analysis (FEA) to model the fracture behaviors
in various materials and structures, including adhesive joints (Hil-
lerborg et al., 1976; Needleman, 1987; Tvergaard, 1990; Tvergaard
and Hutchinson, 1992; Xu and Needleman, 1993; Corigliano, 1993;
Camacho and Ortiz, 1996; Chowdhury and Narasimhan, 2000;
Yang et al., 2001a,b; Alfano and Crisfield, 2001;Andruet et al.,
2001; Pardoen et al.,, 2005; Hogberg, 2006; Salomonsson and
Andersson, 2008; Parrinello et al., 2009; Yan and Shang, 2009;
Moura et al., 2009). It is worth noting that CZMs can be also incor-
porated in analytical models to derive the theoretical solutions for
some types of specimens or structures with relatively simple
geometries (Klarbring, 1991; Williams and Hadavinia, 2002; Black-
man et al., 2003; Pan and Leung, 2007; Ouyang and Li, 2009a,b,c,d;
Lorenzis and Zavarise, 2009; Nguyen and Levy, 2009).

There are several CZMs based methods for numerically simulat-
ing interfacial fracture problems of adhesive joints. A simple meth-
od is that the entire adhesive layer is modeled by a row of interface
elements which are characterized by the traction-separation laws
during the FEA implementation. This method usually treats the
adhesive interlayer as an entirety, and the thin adhesive layer is re-
placed by a series of interface elements. Note that most analytical
solutions share the same methodology. The global behaviors of
adherends are correlated through the inserted interface elements.
The geometry of the adhesive interlayer may be modeled by a sur-
face. The applicability of this method is obvious for most practical
adhesive joints because of the very thin adhesive layer. Due to its
obvious simplicity, this method has been widely used in the frac-
ture simulation of adhesive joints. Previous practices indicated that
this model could offer a decent simulation when properly cali-
brated interfacial laws were provided. Although few computational
resources were required, some limitations existed with this meth-
od: first, clear physical meanings were lost to some extent. This
was because physical cohesive separations were usually accompa-
nied with elastoplastic behaviors across the adhesive interlayer,
even for relatively brittle adhesives. In other words, “cohesive law-
s” should be considered as equivalent interfacial traction-separa-
tion laws across the entire interlayer. Meanwhile, interfacial laws
became dependent on the geometries, such as thickness of the
adherend and adhesive. Because they could affect the size of plastic

zone and the magnitude of plastic strain, they changed the equiv-
alent interfacial traction-separation laws.

Motivated by this limitation, another category of CZM based
numerical methods was proposed to address this issue for the
adhesively bonded joints. Instead of idealizing the entire thin inter-
layer as an interface, the adhesive layer was modeled as an ela-
stoplatic continuum (Tvergaard and Hutchinson, 1996; Wei and
Hutchinson, 1998; Madhusudhana and Narasimhan, 2002; Par-
doen et al., 2005). In this method, “intrinsic cohesive laws” were
embedded, while plastic dissipations were considered by bulk ele-
ment of adhesive continuum. In these “CZM + elastioplastic contin-
uum” models, terminologies of “intrinsic fracture energy” and
“intrinsic cohesive strength” were used. They may be proposed
to conceptually distinguish “work of separation” I'y from the plas-
tic energy I',. According to their reported results, the fracture en-
ergy was usually several or dozens of times of the “intrinsic
fracture energy”. Therefore, the authors speculated that the mod-
eled “intrinsic fracture energy” may not necessarily be the true
cohesive energy of polymeric materials at molecular level, since
the true intrinsic fracture energy at molecular level should be at
least magnified by several hundreds or thousands times in order
to match the global toughness. Realistically, FEM fracture simula-
tions usually should be phenomenological model based, rather
than the truly physical models, unless molecular dynamics (MD)
models are considered. Even for MD models, most of them are phe-
nomenological models (based on intermolecular potentials).
Therefore, it seems to us that the terms “intrinsic energy” and
“intrinsic strength” may be considered as some kinds of modeling
parameters for the phenomenological models. Although the mod-
eling scales in “CZM + elastoplastic continuum” models were still
much larger than the size required by real physical models by at
least two or three orders of magnitude, they were much smaller
than that in the simple models discussed in the last paragraph. Ef-
fects of external and internal constraints on adhesive layer’s plastic
dissipations may be considered by this method. Of course more
parameters and computations are needed with this method.

Although these two kinds of CZM based methods show consid-
erable difference, parameters in both methods need calibrations by
test data. Importantly, due to the effects of adhesive thickness on
plastic dissipations, calibrations are highly preferred to be con-
ducted with different thicknesses of adhesive layer. There might
be two means for the parameter characterizations: global method
and local method. For the global method, one may compare mea-
sured global loadings, deflections and toughnesses to those by
numerical models embedded with the parameters to be calibrated,
at different adhesive thicknesses. The global behaviors of bonded
joints have been widely tested with different adhesive thicknesses
(Kinloch and Shaw, 1981; Chai, 1988; Chai, 1995; Ikeda et al.,
2000; Kafkalidis et al.,, 2000; Yan et al., 2001; Madhusudhana
and Narasimhan, 2002; Lee et al., 2004; Pardoen et al., 2005), to
name a few. Their study clearly showed that the fracture energy
varies with the thickness of the adhesive layer. On the contrary,
fewer attentions have been paid to the local test on the interfacial
traction-separation laws across the interlayer. However, this is also
a quite important issue. First, it may provide direct thickness-
dependent equivalent interfacial laws for simple models. Mean-
while, it can cross-calibrate the parameters required by the
“CZM + elastoplastic continuum” model. One may argue that global
tests are sufficiently good to calibrate the parameters. We believe
that the local separation between the two adherends may be even
a more direct, rigorous and reliable means to calibrate the param-
eters in a numerical model. Several local experimental tests have
been conducted on the local interfacial traction-separation laws
for bonded joints. For instance, Serensen (2002), Andersson and
Stigh (2004) experimentally determined the interfacial traction-
separation laws of bonded joint under Mode-I loadings. Leffler
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et al. (2007) experimentally obtained the interfacial traction-sepa-
ration law of bonded joint under Mode-II loadings. Recently, inter-
facial traction-separation laws were also tested under mixed mode
loadings (Hogberg et al., 2007). Most recently, Liechti and his co-
workers (2009) conducted a local fracture test to extract the load-
ing rate-dependent traction-separation laws.

These recent efforts on the local test of interfacial traction-sep-
aration laws across the adhesive interlayer provided valuable
information. Most of them were conducted with a fixed thickness
of adhesive layer (Serensen (2002) tested two thicknesses). As dis-
cussed before, in order to more efficiently calibrate the parameters,
the local traction-separation laws tests may be desired with differ-
ent adhesive thicknesses. However, very few tests have been con-
ducted on the thickness-dependent local interfacial traction-
separation laws. Among the very few local tests regarding the ef-
fects of the adhesive thickness, Kafkalidis et al. (2000) investigated
the interfacial fracture by considering three different thicknesses
of the adhesive layer. The purpose of the present work is thus to
conduct a systematic study and obtain an entire picture about
the effects of the adhesive thickness. Not only its effects on the
fracture energy, but also its effects on the local interfacial trac-
tion-separation laws are investigated. To this end, six typical adhe-
sive thicknesses (varies from 0.09 to 1.0 mm) are investigated. In
order to reduce the workload, the thickness of the adherend (steel)
remains identical in this work. Note that the steel adherend thick-
ness is designed to be relatively thick to prevent from any plastic
deformation. Thus, all the nonlinear behaviors are limited in the
adhesive interlayer. For the cases that plastic deformations are in-
volved in the adherends, one may refer to the studies by Yang and
Thouless as well as their co-workers (Yang et al., 2001a,b). Both lo-
cal and global test are conducted simultaneously. With these test
results, the dependency of the interface strength and the shape
of the constitutive laws on adhesive thickness can be revealed.
The current test results may provide valuable test data for the re-
search communities and facilitate the characterization of the
parameters required by both of the two CZM based numerical
methods discussed before.

2. Theoretical background

Consider a typical double cantilever beam (DCB) specimen as
shown in Fig. 1. It is assumed that the adherends are linearly elastic
during the entire fracture test process. Strictly, the adhesive mate-
rial must be nonlinearly elastic during the test. However, for a
monotonic loading process (no unloading occurs), the cohesive
separation as well as plastic dissipation in the adhesive layer might
still be considered by the well-known path independent integral or
J-integral as follow (Rice, 1968):

]:.A (Wdy—TZ—ids), (1)

where W(x,y) is the strain energy density; x and y are the coordinate
directions, T=n- ¢ is the traction vector; n is the normal to the
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Fig. 1. Schematic of DCB test specimen.

curve or path I', ¢ is the Cauchy stress, and u is the displacement
vector.

With the J-integral theory, based on the concept of energetic
force and classical beam theory, Andersson and Stigh (2004) de-
rived a brief expression of J-integral for the DCB specimen as
follow:

_ (Pa)’
J= D
It is worth noting that the shear effects may become significant
for the energy release rate when there is a large-scale fracture zone
for conditions such as laminated composite joints. However, for
the bonded steel joint with a slender configuration, our prelimin-
ary test results showed that the effect of shear deformation was
very small (less than 2%). Therefore, the classical beam theory is
adopted as shown in Eq. (2).
The interface normal stress can be simply expressed by

J0o)

a(9) =85 3)

+P-0y=P-0p. (2)

where ] is the energy release rate of the DCB specimen during crack
initiation process, P is the global peel load at the loadline, D is the
adherend’s bending stiffness, 0y and 0p are the relative rotation be-
tween the upper and lower adherends at the crack tip and at the
loadline, respectively; and ¢ is the crack tip opening or separation.

With Egs.(2)and (3), one can see that the energy release rateJ can
be experimentally determined as the function of the crack tip sepa-
ration ¢ if the adhrends’ loadline rotation 0p and the global peel load
P are simultaneously recorded as the function of § during the frac-
ture test. It is important to note that the interfacial normal separa-
tion § represents the opening between the bottom fiber of the
upper adherend and the top fiber of the lower adherend. Once the
experimental relationship between J(§) and & are obtained, the
equivalent interface normal traction ¢(d) can be determined as a
function of 4. In other words, the interface constitutive law can be
experimentally obtained. It is noted that this interface constitutive
relationship is the equivalent interface cohesive law, not necessarily
the intrinsic cohesive law. This is because in addition to the intrinsic
cohesive separation, possible plastic deformations in the adhesive
layer contribute to the entire normal separation between the two
adherends during the fracture test. Of course, with the decrease of
the adhesive thickness, it is expected that this equivalent interface
cohesive law will finally approach the intrinsic cohesive law.

A typical nonlinear equivalent cohesive law is shown in Fig. 2.
For most CZMs in the literature, the traction-separation laws are
such that with increasing interfacial separation, the traction across
the interface reaches a maximum, then decreases and eventually
vanishes. This typical nonlinear separation-traction law has three
segments: (a) elastic stage when the normal interfacial separation
& < 6 Bog. The normal interfacial stress ¢ increases with separation
until the maximum interfacial stress oyax (interfacial strength) is
reached; (b) softening stage when 6 Bog < 6 < 6Bg. The normal
traction o decreases with separation é; and (c) complete debond-
ing stage. There is no interfacial stress when é > 6 Bg. By conduct-
ing the fracture tests of DCB specimens with different adhesive
thicknesses, the effects of adhesive layer on the constitutive laws,
such as the interfacial strength, shape of the interfacial traction-
separation law, and fracture energy can be revealed.

3. Specimen preparation and experiment set-up
3.1. Raw materials

The adhesive, LOCTITE Hysol 9460, is a modified, thixotropic,
and two-component epoxy adhesive. This material has high peel
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Fig. 2. A typical nonlinear interfacial traction-separation law.

strength, good impact resistant, good fatigue resistant, and is good
for bonding metal or dissimilar substrates. The mix ratio of resin
and hardener is 1:1 by weight. According to the manufacturer,
the tensile strength and elongation is 30.3 MPa and 3.5%, respec-
tively. General purpose 1018 low carbon steel plates with yield
strength of 372.3 MPa were used to fabricate the 6.35 mm thick,
25.4 mm wide and 254 mm long adherends of DCB specimens after
the cutting, milling, sanding, drilling, and polishing processes.

3.2. Fabrication of double cantilever beam (DCB) specimen

There are two different methods to manufacture the DCBs. One
is that the adherends are cut before the adhesive curing processes.
The other one is that the two adherends with adhesive experience
the curing processes and then are cut to small DCB specimens. The
major problem of this method is that during the milling and cut-
ting processes, the adhesive layer could be damaged by metal
chips. Therefore, this study cut the adherends before bonding them
with adhesive. After cutting, a hole (11.11 mm in diameter), which
was 50.8 mm from one end of the adherend, was drilled coaxially
in the upper and lower adherends and coaxially machined threads
inside the hole to apply the peel load using our specially designed
loading fixture as will be discussed later. Once the surface of the
adherends was cleaned by using acetone, the adherends were
ready for preparing the DCB specimens. The thickness of the adh-
erends was measured before the adhesive was applied and com-
pared with the thickness of the specimen after curing. In order to
obtain different and desirable thickness of the adhesive layer, six
different thickness feeler gage inserts were inserted in between

the two adherends as shown in Fig. 3. The feeler gages can also
control the edge of the adhesive and help in keeping the adherends
parallel. It is also noted that the surface of the feeler gauges was
sprayed with a super-thin layer of mold release agent so that the
feeler gauges could be easily removed after the curing. The actual
average adhesive thicknesses of the six groups of specimens were
0.09, 0.2, 0.4, 0.6, 0.8, and 1.0 mm, respectively.

A very thin mylar tape with thickness of 0.035 mm was care-
fully inserted from the edge of the adhesive layer by 2 mm at the
middle height of the adhesive layer immediately after the applica-
tion of the adhesive layer to create a sharp initial crack. Since the
distance between the loadline and the edge of the adhesive layer
was 50 mm, the total initial crack length “a” was 52 mm, as sche-
matically shown in Fig. 4. After the adhesive was applied, a steel
pin with the same diameter as the threaded hole was inserted into
the hole to hold the adherends in place. The prepared specimens
were then pressed by the same weights and cured for 24 h at room
temperature. The specimens were further put into an oven at
141 °C for 1 h for post-curing. After that, they were cooled down
to room temperature before test.

3.3. Fabrication of self-aligned ball pin

In order to maintain coaxial peel force during the testing, two
self-aligned, free-rotating ball pins were designed and fabricated
using tool-grade steel, as schematically shown in Fig. 5. One end
of the ball pin with threads was mated with the prefabricated
threads within the holes in the DCB specimen, and the other end
was connected with the MTS machine. The ball pin had an ability

50.8 mm \

a=52 mm

Fig. 3. DCB specimen bonded with polished/cleaned adherends and uniform thickness of adhesive layer through standard feeler gauge.
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Steel adherend

Adhesive layer

A mylar crack starter with
thickness of 0.035 mm

Fig. 4. microscope image shows the inserted 0.035 mm thick mylar sheet located at the middle plane of the adhesive layer.
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Fig. 5. Schematic of self-aligned free-rotating ball joint.

to rotate 360° in the XZ plane and 30° to —30° in the XY and YZ
planes.

3.4. Instrumentation and tensile test

The MTS 810 machine was used to conduct the peel test and
collect the loading force data “P” and the displacement “Delta” of
the DCB specimens at the loading point. The fracture test was con-
ducted under the displacement controlled mode. The loading rate
was set as 1 um/s and the data collecting frequency was 1 Hz. In
order to measure the rotating angle “0” of the adherends during
the peel test, two digital inclinometers and sensors were attached
at the free end of the adherends to collect the data during the test,
as shown in Fig. 6. The accuracy of the inclinometer is 0.01°, the
test range is from —70° to 70°, and the data acquisition frequency
is 1 Hz. Sony XCD-CR90 High resolution CCD camera with a resolu-

— Inclinometer

CCD
Camera

Fig. 6. DCB specimen attached with inclinometer during the peel test.

tion of 3.7 x 3.7 um/pixel was used in this experiment. The posi-
tion of the camera was adjusted to be perpendicular to the side
of the DCB specimen and the deformation images of the DCB spec-
imen during the test was shot, with focus on the adhesive layer, as
shown in Fig. 6. The camera shooting rate was 1 Hz. The collected
images were input to an image processing toolkit, ImageJ, to post-
analyze the recorded images and thus obtained the local separa-
tion of the crack tip “5".

4. Test results and discussions
4.1. Global test results

The loading rate (at loading point) was equal to 1 pm/s. The pre-
liminary studies showed that this rate could lead to a very stable
descending branch when the crack was propagated, and it could
be safely treated as a quasistatic loading condition. In the current
study, a total of six groups of specimens which were numbered
from group 1 to group 6 for the average adhesive thicknesses of
0.09, 0.2, 04, 0.6, 0.8, and 1 mm, respectively, were prepared and
tested. Each group had 5 effective specimens, and a total of 30
effective specimens experienced the double cantilever beam
(DCB) test by using the MTS 810 machine. The geometric parame-
ters of each specimen are given in Table 1. Based on the analytical
results of Ouyang and Li (2009a), with the current geometric con-
figuration and the experimental data, it was found that all adher-
ends (tool-grade steel) remained linear elastic during the entire
test process without any plastic deformation. This indicates that
all energy dissipations were contributed by cohesive fracture and
plastic dissipations in the adhesive layer. A typical force vs. dis-
placement curve (a specimen in group 2 with an adhesive thick-
ness of 0.2 mm) at the loading point is shown in 7. The force
linearly increases until the local damage occurs. The load nonlin-
early increases until the crack initiation process is completed. After
that, the crack tip starts propagating. A continuous drop in the peel

Table 1
Geometry of specimens.
Group Average adhesive Length  Height Width Initial crack
number thickness (mm) (mm) (mm) (mm) length (mm)
1 0.09 25410 6.35 25.41 52.12
2 0.2 25411 635 25.44 52.22
3 0.4 254.09 6.34 25.42 52.18
4 0.6 254.08 6.35 25.39 52.44
5 0.8 25410 6.36 25.46 52.37
6 1.0 254.08 6.35 25.37 52.11
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Fig. 7. A typical relationship between loadline displacements A and loadline peel force P for Group 2 (h, = 0.2 mm).

force is seen as the crack continuously propagates until the crack
reaches the DCB specimen'’s end.

Although there was no SEM, AFM or spectroscopy (XPS) exami-
nation of the morphology of the fractured surfaces, with the help of
high resolution microscope, it was found that the failure mode was
cohesive fracture for all cases. Even for the thinnest adhesive layer
of 90 um, an extremely thin adhesive layer was remained on the
surfaces of the two separated adherends. It was thus believed that
even for the thinnest layers, failure mode was still in the form of
cohesive fracture instead of adhesive failure. This failure mode
may be because the careful surface cleaning and treatment were
conducted during the specimen preparation associated with the
good bonding between the adhesive and adherends.

The data of the rotation angle at the loading point were col-
lected by the inclinometer. A typical experimental curve between
the rotation angle 0p at the loadline and the displacement A at
the loadline (a specimen in group 2 with thickness of 0.2 mm) is
shown in Fig. 8. With Eq. (2), the experimental energy release rate
J is determined by combining the measured 6p and P (or combining
Figs. 7 and 8). A typical relationship (a specimen in group 2 with

1.2

0.8

LI N S S e B e e |

I

0.6

O0p (degree)

LI B B B B B B R B B e |

thickness of 0.2 mm) between global energy release rate J and
loadline displacement A is given in Fig. 9. In a real test, we found
that it was fairly difficult to exactly define when the initial crack
tip was propagated. Therefore, a characteristic strain energy re-
lease rate Jo was defined which represented the J value when the
maximum peel force P was reached. Note that with the growth
of the crack, the global strain energy release rate keeps increasing
as shown in Fig. 9 (J — A curve). This implies that the plastic dissi-
pations beyond the crack tip must keep increasing during this sta-
ble growth process. However, the increase rate of | becomes slower
and slower as the crack grows, which seems nearly stable even by
the end of the test. Therefore, an approximate asymptote is added
in Fig. 9 to estimate the interfacial toughness of the bonded joints.
And this estimated asymptotic value is denoted by Jc or fracture
energy.

4.2. Local test results

In this study, crack tip local deformations along the entire adhe-
sive layer were recorded using the high resolution CCD camera. It

[
o
h

Fig. 8. A typical relationship between loadline displacements A and loadline rotation of adherend 65 for Group 2 (h, = 0.2 mm).



G. Ji et al. / International Journal of Solids and Structures 47 (2010) 2445-2458 2451

800

700

600

J (N/m)
-
=

300

200

100

M mmim e imim e e i mim i m i — -

bt

A (mm)

Fig. 9. A typical relationship between loadline displacements A and energy release rate J for Group 2 (h, = 0.2 mm).

was also observed that a whitening zone appeared near the initial
crack tip and was becoming more visible as the load was increased,
as shown in Fig. 10. It was believed that the whitening zone con-
sisted of numerous microcracks. When a lot of micro cracks were
merged together and formed a macro crack, the initial crack started
to propagate with the continuously increasing load. Digital images
of the displacement field at the initial crack tip region were taken
by the high resolution CCD camera. The value of the crack tip sep-
aration § was measured as the relative normal displacement be-
tween the two adherends at the location of initial crack tip
through the recorded digital images. Fig. 11 gives a typical rela-
tionship between the loadline displacement A (global displace-
ment) and the local crack tip opening 5. By combining Figs. 9 and

11, a typical experimental ] — § curve was obtained as shown in
Fig. 12 (a specimen in group 2 with thickness of 0.2 mm). Based
on Eq. (3), the experimental J — 6 curves were used to determine
the equivalent interfacial traction-separation laws or ¢ = () at
different adhesive thicknesses.

4.3. Effects of the thickness of the adhesive layer

With the global test results of different groups, the average
maximum peel loads P, of the five specimens in each group (with
error bar) are plotted as a function of the adhesive thicknesses
(0.09, 0.2, 0.4, 0.6, 0.8, and 1.0 mm) in Fig. 13. It can be observed
that the average peak load is increased from 578.8 N (Group 1)

Fig. 10. Local plastic deformation as shown by the whitening region.
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Fig. 11. A typical relationship between loadline displacements A and local crack tip separation ¢ for Group 2 (h, = 0.2 mm).

to 791.12 N (Group 6) when the thickness of the adhesive layer in-
creases (from 0.09 to 1.0 mm). These critical loads correspond to
the characteristic energy release rate Jo. The average estimated
fracture energy Jc (by the approximate asymptotes) and the aver-
age characteristic Jo (at the maximum peel load) of the five speci-
mens in each group (with error bar) are plotted as a function of the
adhesive thickness in Fig. 14. One may see that the fracture energy
Jc at the thickness of 0.09 mm is increased by approximately 160%
when the adhesive thickness becomes 1.0 mm. The significant in-
crease of Jo and Jc are responsible for the increased load capacity
when the adhesive thickness becomes thicker. Meanwhile, with
Fig. 14, one may see that when the adhesive thickness is thin, Jo
and Jc are relatively close to each other. On the other hand, when
it is relatively thick, Jo and Jc are relatively departed from each
other. Thus, we denote the difference between Jy and J- by A
J=Jc—Jo. Let’s consider a parameter ¢, which represents the ratio

of the average AJ over the pertinent average J, of the five speci-
mens in each group. This ratio ¢ is then plotted as a function of
the adhesive thickness in Fig. 15. Obviously, the ratio ¢ represents
the relative increase in J to its initial value of Jy as J value becomes a
nearly stable value (J¢). Thus, Fig. 15 actually reflects the effects of
adhesive thickness on the contributions by geometry a/h to the in-
crease of plastic dissipations as crack grows.

After data collecting and curve-fitting process of the experimen-
tal J — o curves, by applying Eq. (3), one can see that the interfacial
traction-separation laws were determined by numerically differen-
tiating the experimental | — ¢ curves. The cohesive law was calcu-
lated for each specimen. The typical equivalent cohesive law of
each group is given in Fig. 16 at different adhesive thicknesses.
From Fig. 16, one can see that three major effects of the adhesive
thickness. First, the local characteristic separation (o) correspond-
ing to the interfacial strength o,.x decreases with the decrease of

800 g J=-6:1055%+ 0.00065° - 0.0235*+ 0.2765°+ 1.12736° - 3.31050
r R2=10.996
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Fig. 12. A typical relationship between energy release rate J and local crack tip separation é for Group 2 (h, = 0.2 mm).
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Fig. 13. The average maximum peel load P at different adhesive thicknesses h,.

the adhesive thickness. Second, the interfacial strength increases
with the decrease of the adhesive thickness. Finally, the total area
under the 6 — ¢ curve, which represents the strain energy release
rate at crack propagation, increases with the increase of the adhe-
sive thickness. The complete thirty interfacial traction-separation
laws (six groups at various adhesive thicknesses) are given in
Fig. 17. One may see that the five specimens in each group (each
adhesive thickness) present fairly consistent results.

The average interfacial strength o,ax of the six groups (with er-
ror bar) is plotted as a function of the adhesive thickness in Fig. 18.
According to the manufacturer, the tensile strength of the bulk
adhesive material is approximately 30.3 MPa (its yield strength is
slightly lower than its tensile strength). One can see that the inter-
facial strength is 88 MPa at the thickness of 0.09 mm, which is
approximately 3 times as large as the yield strength of the bulk
adhesive material. The authors expect that with further decrease
of the adhesive thickness, the measured equivalent interfacial

1400

1200
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800

600

Jo & Jo (N/m)

400

200

strengths should keep increasing. On the contrary, with the in-
crease of adhesive thickness, the measured interfacial strengths
asymptotically approach a constant value. This asymptote seems
being the yield strength of bulk adhesive material. Another phe-
nomenon is that the equivalent interfacial strength seems increas-
ing dramatically when the adhesive thickness was thinner than a
certain value (such as 0.2 mm).

One may notice the turning point of the global loadline dis-
placement in Fig. 7, which corresponds to the maximum load P,,.
For the sake of clarity, we denote it as A,. In Fig. 8, A corresponds
to the turning point in loadline relative rotation 0p. The same Ag
also corresponds to the turning point in the energy release rate
in Fig. 9. All the above correspondences are regarding the global
behaviors. In Fig. 11, the global loadline displacement A is corre-
lated to the local crack tip opening §. Note that in Fig. 11, Aq is still
corresponding to a turning point of the local opening, which is de-
noted by Jo. According to this 5q in Fig. 11 (60 ~ 22 pum for the spec-

—2— Je
—G—J()

0.09 0.2

0.4

0.6 0.8

o

h, (mm)

Fig. 14. The estimated fracture energy Jc and the characteristic energy release rate Jo (corresponding to P..) with different adhesive thicknesses h,.
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Fig. 15. The ratio of AJ(AJ =]Jc — Jo) over Jo as a function of the adhesive thickness h,.

imen with an adhesive thickness of 0.2 mm), one may find a corre-
sponding J, in Fig. 12. Furthermore, one can see that this J, corre-
sponds to a certain interfacial stress which is not zero in Fig. 16. In
other words, when the maximum peel load P, is reached, the crack
tip opening ¢ is still smaller than its final separation . Our exper-
imental observation regarding this phenomenon is thus consistent
to the previous theoretical prediction (Ouyang and Li, 2009a).

5. Discussions and conclusions

Firstly, the global behaviors were investigated with different
adhesive thicknesses in this experimental work. Due to the wide
uses of modern toughened adhesives, the nonlinear zone beyond

the crack tip usually may be comparable to the thickness of the
bonded substrates. Instead of the linear elastic fracture mechanics

100
90

30 N
70
60

c (MPa)
!_’.
(—]

(LEFM), the nonlinear fracture mechanics (NLLFM) was applied to
consider the effects of root rotation which was caused by the rela-
tively long plastic zone beyond the crack tip. As observed in the
experiment, significant whitening and micro-cracking occurred be-
fore the crack tip propagated. Since the crack length during its
growth was not recorded, R-curve was not available in this work.
In order to examine the efficiency of the classical LEFM, the initial
crack length ap=52 mm and the corresponding maximum peel
load P (see Fig. 13) were used to calculate energy release rate.
According to the classical LEFM (without root rotation corrections),
the strain energy release rate (ERR) at the maximum load P, may
be calculated by the first term (Pa)?/D in Eq. (2) by ignoring the
second term POy. The energy release rate at the maximum load
P.; was also calculated by the NLFM according to the entire Eq.
(2). The calculated values of o are listed in Table 2 at various adhe-

Group 1 h,=0.09mm
Group 2 h,=0.2mm
Group 3 h,=0.4mm
Group 4 h,=0.6mm
Group 5 h,=0.8mm
Group 6 h,=1.0mm
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Fig. 16. Typical shape of the equivalent interfacial traction-separation laws with different thicknesses of adhesive layer.
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Fig. 17. The shapes of all equivalent interfacial traction-separation laws with different thicknesses of adhesive layer: (a) adhesive thickness h, = 0.09 mm; (b) adhesive
thickness h, = 0.2 mm; (c) adhesive thickness h, = 0.4 mm; (d) adhesive thickness h, = 0.6 mm; (e) adhesive thickness h, = 0.8 mm; (f) adhesive thickness h, = 1.0 mm.

sive thicknesses. Note that ap/h ~ 8.2, which can be considered as a
slender “cantilever beam”. Even for such a case, the root rotation
effects are significant due to cohesive fracture and plastic deforma-
tion beyond the crack tip. For instance, the LEFM prediction devi-
ates nearly 70% from the NLFM prediction with the typical
moderate thickness h, = 0.4 mm. It is worth noting, the deviations
should be even slightly larger with the growth of crack, since the
tests showed that the J values kept increasing with crack growth
due to increased plastic dissipations. The ratio of the calculated Jo
values by NLFM over that by LEFM was denoted by # and plotted
as a function of the adhesive thickness in Fig. 19. One can see that
the huge difference between the LEFM and NLFM at various adhe-
sive thicknesses.

Meanwhile, the local behaviors were studied with different
adhesive thicknesses. An accurately calibrated numerical model
should not only be able to predict the global displacement, but also
predict the local separation 6. Based on the correspondence in
Figs. 9 and 11, one can further find the correspondence between
é and Jo as shown in Fig. 12. Since the Jo — é curves simultaneously

include the information of global rotation, global force and local
separation, it is even stricter than Fig. 11 for parameter calibra-
tions. In a numerical simulation, it is not difficult to find the global
peel force, loadline rotation, and local crack tip opening between
the two adherends. In other words, with the output of a FEM mod-
eling (embedded with the parameters to be calibrated), one may
obtain the numerical Jo — § curves. The differentiation of these
curves gives the equivalent interfacial traction-separation laws.
By repeating this process at different adhesive thickness, one
may have a series of thickness dependent interfacial traction-sep-
aration laws. Finally, one may compare these numerical laws to the
experimentally measured laws (see Fig. 17) at various adhesive
thicknesses. The authors believe that this proposed method should
be able to give accurately calibrated parameters for a numerical
model. Compared to the traditional global calibration method, this
method may offer much more direct and reliable results. Note that
in a real test, it is very difficult to measure the local full field stress
or strain distributions in the thin interlayer even with the photo-
elasticity technique due to the significant plastic deformations.
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Fig. 18. The effect of the adhesive thickness on the interfacial strength omax.

Comparisons of the calculated energy release rate J, corresponding to the maximum peel load P.. by NLFM and classical LEFM (without root rotation corrections), respectively.

Average adhesive thickness h, (mm)

Adherend thickness h (mm)

Initial crack length ao (mm)

LEFM Jo (N/m)

Nonlinear Jo (N/m)

Ratio of Jo(N/L)

0.09 6.35 52.12 0.335 0.48 143.2%
0.2 6.35 52.22 0.406 0.56 137.9%
04 6.34 52.18 0.450 0.76 168.6%
0.6 6.35 52.44 0.501 0.90 179.6%
0.8 6.36 52.37 0.574 1.04 181.2%
1.0 6.35 52.11 0.597 1.12 187.6%
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Fig. 19. The ratio of the calculated J, by NLFM over that by LEFM as a function of the adhesive thickness h,.

Our method may possess the potential to be considered as a feasi-
ble option.

Finally, it is noted that the measured cohesive law (g — §) in
Figs. 16 and 17 is based on the indirect method (by taking deriva-

tive of the experimental J — § curve in Fig. 12). One may ask the er-
ror transferred by differential. Unfortunately, without the true J — ¢
curve or the direct experimental data of cohesive law (¢ — 6 curve),
it is extremely difficult to define and calculate the actual error of
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the cohesive law in Figs. 16 and 17. The curve-fitting equation and
its R value of the experimental | — ¢ data are given in Fig. 12 to de-
fine the error of J. It is seen that the error of the curve-fitting is
quite small. Further work is required to explore the direct mea-
surement of ¢ — §, which remains a challenge for the interfacial
fracture problem.

In summary, the plastic dissipations in modern toughened
adhesive interlayer are quite common. Due to these realistic de-
mands, the thicknesses of the adhesive layer play an important role
(although they are still relatively thin). CZMs based numerical and
analytical models may offer a powerful means to consider the sig-
nificant nonlinear fracture behaviors of modern adhesively bonded
joints. However, the parameters in these models need careful cal-
ibrations by experimental data in order to accurately simulate
the failure process. Specially, the tests are highly preferred to be
conducted with various typical adhesive thicknesses, so that the
numerical and analytical models can be calibrated with different
adhesive thicknesses. The local cohesive separation and plastic
deformation across the adhesive layer is very complex. Thus, it is
possible that the integrated behavior of cohesive separations and
plastic deformations across the interlayer may have largely identi-
cal global responses even though their local behaviors are com-
pletely different. Therefore, the cross-calibrations by local and
global test may possess a huge potential for the accurate parameter
characterizations. Compared to the widely investigated global
behaviors, fewer attentions have been paid to the local test (6 —J
curves and interfacial traction-separation laws). Among the limited
local tests, most of them were conducted with a fixed adhesive
thickness. Motivated by such a situation, this work presented the
global and local tests of the interfacial fracture with various typical
adhesive thicknesses. Our test results may provide valuable data
regarding the effects of the adhesive thickness for the research
communities, and offer useful references for the future numerical
and analytical models.
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