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The stress singularity that occurs at a vertex in a joint with a slanted side surface is investigated. The
orders of stress singularity at a vertex and at a point on stress singularity lines for various material prop-
erties are determined using eigenanalysis. The stress distribution on an interface and the intensity of
stress singularity at the vertex are investigated using BEM. It is shown that the order of stress singularity
at the vertex in the joints can be reduced by slanting a side surface so as to decrease the angle between
the interface and the side surface. The results of BEM analysis reveal that the distribution of stress on the
interface is influenced by the slanted side surface. Finally, the 3D intensities of the singularity for stress
components which are continuous at the interface are newly defined and determined for various material
combinations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, bonded dissimilar materials and composite
materials have been widely used in many industrial products. With
the increasing use of such materials, the demand for strength eval-
uation has also increased. Electronic device packagings have sev-
eral types of joint structures consisting of metal, ceramic, and
polymer. When two materials are joined, a free-edge stress singu-
larity usually develops at the intersection of the interface and the
free surface. Previous studies (Bogy, 1971; Inoue et al., 1995; Yang
and Munz, 1995) have revealed that stress singularities occur near
the cross point of the free surface and the interface, thereby reduc-
ing the reliability of the joints. Therefore, several theoretical and
experimental studies on the reduction of the stress singularity
have been carried out (Koguchi et al., 1994). Most of these studies
focused on two-dimensional stress singularities (Bogy, 1971; Bogy
and Wang, 1971; Hein and Erdogan, 1971; Cook and Erdogan,
1972; Theocaris, 1974; Fenner, 1976; Dempsey and Sinclair, 1979).

Several studies have investigated the stress singularity field in
3D elastic materials. Yamada and Okumura (1981) developed a fi-
nite element analysis for solving an eigenvalue equation to deter-
mine directly the order of stress singularity and the angular
variation of the stress and displacement fields. Then, Pageau
et al. (1995) adapted the eigenanalysis based on a finite element
to analyze the in-plane deformation of wedges and junctions of
anisotropic materials. The stress and displacement fields were ob-
ll rights reserved.
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tained from eigenformulation for real and complex orders of stress
singularity. Pageau and Biggers (1995), Pageau et al. (1996) applied
this method to analyze joints having fully bonded multi-material
junctions intersecting a free edge, and they determined the order
of stress singularity and the angular variation of the displacement
and stress fields around singular points in a plane intersecting a
wedge front in 3D anisotropic material structures. Koguchi
(1996), Koguchi and Muramoto (2000), Prukvilailert and Koguchi
(2005) examined the order of stress singularity not only at a vertex
but also along the stress singularity line between two isotropic
materials in joints using eigenanalysis. The stress distributions
around the vertex were determined using a boundary element
method (BEM). Koguchi (2006) determined the intensity of singu-
larity by fitting the stress profile obtained from BEM analysis with
a least squares method. Dimitrov et al. (2001, 2002) presented a 3D
eigenanalysis using the Arnoldi method, which, unlike the conven-
tional determinant method, requires only a small-banded matrix.
Constabel et al. (2001) proposed a method to compute their singu-
larity exponents and the associated angular singular functions.
Their method was particularly useful with anisotropic materials
and allowed to follow the dependency of singularity exponents
along a curved edge. Lee and Im (2003) used a two-state M-integral
to compute the near-tip stress intensities around 3D wedges and
used an eigenanalysis to determine eigenvalues and eigenvectors.
Apel et al. (2008) determined the edge singularity using a 3D Wil-
liams’ expansion. The edge stress intensity factors along the reen-
trant wedge front were determined using a quasi-dual function
method. Yosibash et al. (2008) and Omer and Yosibash (2008) com-
puted the complex eigenfunction using a p-version finite element
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method and examined the edge stress intensity factors in the vicin-
ity of the edge in 3D anisotropic multi-material interfaces using a
quasi-dual function method.

In the present paper, the influence of the variation of the angle
between a side surface and an interface on the singular stress field
at a vertex in 3D joints as shown in Fig. 1 is investigated. From pre-
vious studies, the singular stress field at the vertex O in Fig. 1 can
be generally expressed as rij(r,h,/) = K1ijf1ij(h,/) r�k + K2ij f2ij(h,/),
where K1ij is intensity of singularity, f1ij(h,/) is an angular function
for stress rij, and r is a distance from the vertex. Here, h and / are
angular coordinates in spherical coordinate system with an origin
at the vertex as shown in Fig. 1. Intensity of the singularity at
the vertex is newly defined including the influence of stress singu-
larity lines on the side surfaces. The intensity of the singularity for
a silicon-resin joint is first determined using the results of eigen-
analysis and BEM, and the intensity of the singularity for joints
of various material combinations is next determined. A relation-
ship between the intensity of the singularity and a ratio of Young’s
modulus in joints of various material combinations for several dif-
ferent slant angle a will be demonstrated.
2. Method and model for analysis

2.1. Method for analysis

An eigenequation based on the finite element method (FEM)
developed by Pageau et al. (1996) was used to analyze a singular
stress state at the singular point in a 3D dissimilar material joint.
In the formulation of the FEM, a spherical coordinate system with
the origin at a stress singular point is introduced, and displace-
ments within a sphere of radius r0 in the stress singular field are
expressed using the characteristic root p, which is related to the or-
der of stress singularity. The surface of the sphere is divided by a
mesh, and the FEM formulation for the stored energy in the sphere
is derived. In the formulation, a stress free condition is applied. Fi-
nally, the following eigenequation is deduced, and the order of
stress singularity is determined:

p2½A� þ p½B� þ ½C�
� �

uf g ¼ 0; ð1Þ

where p represents the characteristic root, which is related to the
order of singularity, k, as k = 1 � p, [A], [B], and [C] are matrices
related to the material properties, and {u} represents the displace-
ment vector.
Fig. 1. Model for eigenanalysis.
The angular functions of the stress components are determined
using the displacements vector {u}.

The boundary integral equation in terms of displacement vector
uj and traction vector tj can be expressed as follows:

CijujðPÞ ¼
Z

A
Uij P;Qð ÞtjðQÞ � Tij P;Qð ÞujðQÞ
� �

dsðQÞ; ð2Þ

where P and Q are points on the boundary, Cij is a constant deter-
mined from the configuration of the boundary, and Uij and Tij are
the fundamental solutions for displacement and surface traction,
respectively. In the present analysis, Rongved’s fundamental solu-
tion for two-phase isotropic materials was used. Hence, mesh on
the interface is not needed for analysis, and so accurate stress dis-
tributions on the interface can be obtained.

2.2. Model for analysis

2.2.1. Model for eigenanalysis
The model used in the eigenanalysis is shown in Fig. 1. The

model is of a 3D joint with a slanted side surface in material 1.
Eigenanalysis is conducted for points as follows:

1. A point is located at the vertex. The slant angles of the side sur-
face are 30�, 45�, 60�, and 75�.

2. A point is located on the stress singularity line OA on the
slanted side surface. Eigenanalysis is performed for a model
with slant angles of 30�, 45�, 60�, and 75�.

3. A point is located on the stress singularity line OB on the flat
side. At this location, eigenanalysis can be performed only for
a slant angle of 90�.

The properties of the materials used in the eigenanalysis are
shown in Table 1.

The mesh division developed on the h � / plane is shown in
Fig. 2 (Pageau et al. (1996)). This mesh is h � / = 15� � 15� mesh
for the model with a slant angle of 75� at the vertex. The interface
of the joint is located at h = 90�. For different slant angles, the mesh
division was modified based on the angle of slanted side surface.

2.2.2. Model for BEM analysis
Fig. 3 represents a model for the 3D bonded structure used in

the BEM analysis. The dimensions of the model are 20 � 20
� 20 mm. Considering the symmetry of the bonded structure, the
model is a one-quarter section of the bonded structure, as indi-
cated by the bold line. The displacement in the z-direction on the
bottom of the model is fixed. A tensile stress of 1 MPa is applied
to the top of the model in the z-direction. The total numbers of ele-
ments and nodes are 2166 and 6500, respectively.

3. Results and discussion

3.1. Eigenanalysis

The order of a stress singularity, k, at the vertex and at a point
along the singularity line for slant angles of 30�, 45�, 60�, 75�,
and 90� was calculated. The values of k for various Young’s moduli
in material 2, i.e., E2, combined with the material properties of sil-
icon in material 1, E1, are shown in Fig. 4. The order of the stress
Table 1
Material properties used in the analysis.

Young’s modulus Poisson’s ratio
E (GPa) m

Silicon 166 0.26
Various material 2 � 10�2 � 29.72580 � 105 0.38



Fig. 3. Model for BEM analysis.

(a) At the vertex 

(b) At the slanted side surface (Line OA) 

(c) At the flat side surface (Line OB) 

Fig. 4. Relationship between the order of stress singularity and the Young’s
modulus ratio, E2/E1.

Fig. 2. Mesh division with a slanted side surface.
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singularity was found to be influenced by the slant angle, a. In the
range of E2/E1 < 1, a stress singularity exists for all slant angles. The
stress singularity exists for the range of E2/E1 > 1 at slant angles of
60� and 75�, but does not exist for slant angles of 30� and 45�. At a
point on the stress singularity line on the slanted side surface, the
stress singularity exists for all slant angles in the range of E2/E1 < 1
and exists only for the slant angle of 75� in the range of E2/E1 > 1.
The stress singularity exists for all different material combinations
at the point on the singularity line on the flat side surface, as
shown in Fig. 4(c). The subscripts of k in Fig. 4 refer to the vertex
at point O and lines OA and OB that are defined in Fig. 1.

The stress distribution at the vertex in a stress singular field will
be expressed for the spherical coordinate system, as follows:
rs
ij r; h;/ð Þ ¼ eK s

1ijf1ij h;/ð Þr�kvertex þ eK s
2ijf2ij h;/ð Þ; ð3Þ

where r is a distance from the vertex, eK s
kij (k = 1, 2) is the intensity of

singularity, and fkij (h,/) (k = 1, 2) are the angular functions for the
stress component, rij. Here, superscript s in rij and Kkij refers to the
spherical coordinate system.
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3.2. Angular functions

In this section, the characteristics of angular functions is inves-
tigated using a silicon-resin joint as an example. Material proper-
ties used in the analysis are shown in Table 2. The results of
eigenanalysis for several slant angles are shown in Table 3. Fig. 5
represents the distribution of angular functions for kvertex = 0.255
with respect to angle / on the interface in the joint with a slant an-
gle of 45�. The angular functions, f1hh, f1rh, and f1/h, correspond to
the stress components, rhh,rrh and r/h. In this figure, the angular
functions for f1hh and f1rh are asymmetric due to the slanted side
surface. The angular function cannot be normalized using the max-
imum value, because the value of the angular function increases as
/ approaches 0 and p/2, where the stress singularity lines exist.
Hence, f1hh and f1/h may have a singularity at / = 0 and p/2. The va-
lue of f1ij is normalized using the value at / = 44.25�, because the
extrema of the angular functions of f1hh and f1rh exists at this point.

Angular functions, f1ij, at the vertex may be characterized by the
distance from the stress singularity line (see Fig. 6). Here, a cylin-
drical coordinate system is taken along the stress singularity line.
Now, a point A on the line is taken as shown in Fig. 6(b). The stress
distribution in cross section APQ can be expressed using a power
law of the order of singularity for the stress singularity line as
follows:
Table 2
Material properties used in the analysis: silicon-resin joint.

Young’s modulus Poisson’s ratio
E (GPa) m

Material 1 Silicon 166 0.26
Material 2 Resin 2.74 0.38

Table 3
Order of stress singularity in a silicon-resin joint for several slanted side surfaces.

Slant angle The order of singularity

Vertex Slant side Flat side
kvertex klineA klineB

45 0.255 0.164 0.318
60 0.343 0.262 0.318
75 0.378 0.299 0.318

Fig. 5. Angular functions for kvertex = 0.255 at the vertex on the interface at slant
angle a = 45�.
rc
1ij rAP;Hð Þ ¼ H1ijr

�klineA
AP g1ij Hð Þ; ð4Þ

where g1ij (H) are the angular functions for the order of singularity,
klineA;rc

1ij is the stress for the cylindrical coordinate system, suffixes i
and j take R and H, where H is the angle between AP and AQ, and rAP

is the distance from point A to point P on the sphere. Here, the
sphere that is used in the formulation of the eigenequation is con-
sidered. First, rAP is expressed as in the angles h and /. The stress is

then normalized by dividing Eq. (4) by H1ij r̂
�klineA
AP , where

r̂APð¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 hm cos2 /m

q
= r0 am) represents the distance at

which the extremum of stress occurs. Here, hm and /m represent
the angles yielding the extremum stress. The normalized stresses
in the cylindrical coordinate system are represented by hc

ij, which
are transformed into the stresses in the spherical coordinate system
Fig. 6. (a) Spherical and cylindrical coordinate systems at the vertex and the stress
singularity line. (b) Relationship between distance rAP and angle /.



(a) Stress, σθθ

 (b) Stress, σrθ

(c) Stress, σφθ

Fig. 7. Distributions of stress with respect to distance r/Lon the interface for a slant
angle of 45�.
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using the formulation given in the Appendix. Here, the angular
functions in the spherical coordinate system, i.e., f1hh, f1rh, and f1/h,
on the interface (at h=p/2, H = 0) are expressed in terms of the nor-
malized stresses, hc

ij, in the cylindrical coordinate system (A6) as
follows:

f1hh ¼ hc
HH;

f1rh ¼ �hc
RH sin /� hc

xH cos /;

f1/h ¼ �hc
RH cos /þ hc

xH sin /;

ð5Þ

where hc
xH; hc

RH and hc
HH represent the normalized stress for rxH,

rRH and rHH, respectively. Substituting Eq. (4) into Eq. (5) yields:

f A
1hhð/Þ ¼ aklineA

m ðsin /Þ�klineA gA
1HHð0Þ=gA

1HHðHmÞ ¼ LA
1hhðsin /Þ�klineA ;

f A
1rhð/Þ ¼ �aklineA

m ðsin /Þ1�klineA gA
1RHð0Þ=gA

1RHðHmÞ

� aklineA
m ðsin /Þ�klineA cos /gA

1xHð0Þ=gA
1xHðHmÞ

¼ LA
1rhðsin /Þ�klineA cos /þ LA

2rhðsin /Þ1�klineA ; ð6Þ

f A
1/hð/Þ ¼ �aklineA

m ðsin /Þ�klineA cos / gA
1RHð0Þ=gA

1RH Hmð Þ

þ aklineA
m ðsin /Þ1�klineA gA

1xHð0Þ=gA
1xHðHmÞ

¼ LA
1/hðsin /Þ�klineA cos /þ LA

2/hðsin /Þ1�klineA ;

where superscript A in f A
1ij indicates that the angular function corre-

sponding to the stress singularity line OA. Coefficients,
�aklineA

m gA
1ijð0Þ=gA

1ijðHmÞ, (i, j = R,H,x), in the right side are replaced as
LA

kls, (k = 1,2; l,s = r,h,/) Eq. (6) reveals that f A
1hh; f

A
1rh, and f A

1/h have a
singularity for the stresses hhh, h/h, and hrh on the singularity line
as / approaches zero. The angular functions for the side of the stress
singularity line, OB, can be expressed in a similar manner to those
for the stress singularity line, OA.

Adding a constant term to the expressions and substituting the
angular functions f s

1ij into Eq. (3) yields:

rs
hh r;p=2;/ð Þ ¼ Ks

1hh

LA
1hh sin /ð Þ�klineA

LB
1hhðcos /Þ�klineB

( )
þ

L�A2hh

L�B2hh

( )" #
r�kvertex

þ Ks
2hhf2hh p=2;/ð Þ; ð7Þ

rs
rh r;p=2;/ð Þ ¼ Ks

1rh

LA
1rhðsin /Þ�klineA cos /þ LA

2rh sin /ð Þ1�klineA

LB
1rhðcos /Þ�klineB sin /þ LB

2rh cos /ð Þ1�klineB

( )"

þ
LA

3rh sin /þ LA
4rh cos /

LB
3rh cos /þ LB

4rh sin /

( )#
r�kvertex þ Ks

2rhf2rh p=2;/ð Þ

ð8Þ

rs
/h r;p=2;/ð Þ ¼ Ks

1/h

LA
1/hðsin/Þ�klineA cos/þ LA

2/hðsin/Þ1�klineA

LB
1/hðcos/Þ�klineB sin/þ LB

2/hðcos/Þ1�klineB

( )"

þ
LA

3/h sin/þ LA
4/h cos/

LB
3/h cos/þ LB

4/h sin/

( )#
r�kvertex þKs

2/hf2/h p=2;/ð Þ

ð9Þ

In Eqs. (7)–(9), the upper right-hand expression is the expression
for the stress singularity line, OA, and the lower right-hand expres-
sion is the expression for the stress singularity line, OB.

3.3. Boundary element analysis

The stress distributions in the stress singular field for the
bonded structures with side surfaces for several slant angles are
obtained using the boundary element method, and the intensities
of singularity in the r- and the /-directions will be determined
from the stress distributions. The results for silicon-resin joint
shown in Table 2 are mainly demonstrated. Finally, the intensities
of stress singularity at a 3D vertex for a various material combina-
tions are determined.
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3.3.1. Stress analysis in the r-direction
Figs. 7 and 8 demonstrate the distributions of stress compo-

nents, rhh, rrh, and r/h with respect to r/L (L = 10 mm) on the inter-
face in the joints for slant angles of 45� and 75�. The plots for
stresses rhh and rrh are parallel in both logarithmic graphs. The
dashed lines in Figs. 7 and 8 indicate the line for C(r/L)�kvextex,
 (a) Stress σθθ

(b) Stress σrθ

(c) Stress σφθ

Fig. 8. Distributions of stress with respect to distance r/L on the interface for a slant
angle of 75�.
where C is a constant from 0.35 to 1.8, kvertex represents the order
of singularity at the vertex obtained from the eigenanalysis. The
slope of the stress distributions is in good agreement with the re-
sults of the eigenanalysis shown in Table 3. This means that the
power law singularity governs the stress field near the vertex.

Kkij fkij (p/2,/ ) (k = 1, 2) in Eq. (3) are determined from the
stress distributions on the interface. Here, K1ij ¼ Lkvertex eK s

1ij and
(a) Slant angle: 45°

(b) Slant angle: 60°

(c) Slant angle: 75°

Fig. 9. Variation of K1ij f1ij (p/2,/ ) with respect to angle /.



(a) Slant angle: 45°

(b) Slant angle: 60°
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K2ij ¼ eK s
2ij. Fig. 9 shows the variation of K1ij f1ij (p/2,/) with respect

to the angle / in joints of slant angles 45�, 60�, and 75�. It is found
that K1ij f1ij (p/2,/ ) varies with angle / in a manner similar to the
angular functions shown in Fig. 5. The values of K1ij f1ij are shown in
Table 4, and K1ij at the extremum of K1ij f1ij is shown in Table 5.
Here, f1ij is set to be 1 at the extremum point.

3.3.2. Stress analysis in the /-direction
Fig. 10(a)–(c) show the distributions of normalized stresses

r�hh;r�rh, and r�/h at r=0.01 mm with respect to angle / for different
slant angles. In these figures, stresses rhh and rrh are normalized by
the values at / = p/4, and stress r/h is normalized by the value at
80�. These distributions are found to be similar to the angular func-
tion fij with respect to angle /, as shown in Fig. 5. Fig. 11 shows
both logarithmic plots of r�hh and angle / for a = 45�. The stresses
near / = 0 and p/2 are found to have singularities with respect to
angle /. The slope near / = 0 is approximately equal to the order
of stress singularity on the stress singularity line on the slanted
side surface, OA, and that near / = p/2 is in approximately agree-
ment with the order of stress singularity on the stress singularity
line on flat side surface, OB. Hence, these stress distributions are
approximated using Eq. (6), and the coefficients LA

kij and LB
kij are

determined using a least squares method. The values of the coeffi-
cient are shown in Table 6.

3.3.3. 3D intensity of stress singularity
The intensity of stress singularity at the vertex is defined as

K3D
1ij ¼ K1ijL

B
1ij from Eqs. (7)–(9). Here, the value of LB

1ij on side B is
chosen for estimating the intensity of singularity, because it is lar-
ger than that of LA

1ij on side A. It is found that this definition of K3D
1ij

includes the influence of the vertex in the r-direction and the sin-
gularity lines on the stress singularity in the / -direction. The val-
ues of K3D

1ij for silicon-resin joints are shown in Table 7. The analysis
revealed that K3D

1hh for rhh is the largest, and this stress component is
related to delamination of the interface.

Next, the intensities of the stress singularity for various Young’s
moduli of material 2 are investigated. Here, Young’s modulus of
material 1 is fixed as that of resin, and Young’s modulus of material
Table 4
Intensity of stress singularity K1ij f1ij for angle /.

/ (�) K1hh f1hh (MPa)
(at / = 45�)

K1rh f1rh (MPa)
(at / = 45�)

K1/h/1/h (MPa)
(at / = 77.5�)

10 0.813 0.192 0.234
20 0.779 0.244 0.139
30 0.757 0.263 0.071
40 0.753 0.284 0.006
45 0.776 0.288 �0.027
50 0.785 0.287 �0.061
60 0.827 0.281 �0.141
70 0.892 0.251 �0.222
77.5 0.992 0.217 �0.293
80 1.0535 0.204 �0.3327

Table 5
Value of K1ij at the extremum of K1ij f1ij.

Slant angle (�) K1hh (MPa)
(f1hh = 1 at
/ = 45�)

K1rh (MPa)
(f1rh = 1 at
/ = 45�)

K1/h (MPa)

45 0.776 0.288 �0.293 (f1/h = 1
at / = 77.5�)

60 0.561 0.222 �0.216 (f1/h = 1
at / = 77.5�)

75 0.508 0.210 �0.230 (f1/h = 1
at / = 80�)

(c) Slant angle: 75°

Fig. 10. Normalized stress distribution on the interface at r = 0.01 mm with respect
to angle /.
2 is varied as shown in Table 8. The 3D intensities of the singularity
K3D

1ij with respect to E2/E1 are shown in Fig. 12. The value of K3D
1hh was

larger that of K3D
1rh and K3D

1hh. The intensities of the singularity depend
on the existence of stress singularity, i.e., the order of the singular-
ity at the vertex is 0 < kvertex < 1, and the intensities vary with E2/E1

in a manner similar to the order of te singularity, as shown in
Fig. 13.
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Fig. 11. Logarithmic plots of normalized stress, rhh, with respect to /.

Table 6
Coefficients of angular function for the BEM results.

f BEM
qq f BEM

rq f BEM
/q

(a) Slant angle: 45�
LA

1qq
0.609 LA

1rq
�0.069 LA

1/q
0.414

LB
1qq

0.675 LB
1rq

�0.011 LB
1/q

0.897

LA;B
2qq

�0.407 LA
2rq

1.234 LA
2/q

0.442

LB
2rq

0.667 LB
2/q

�0.046

LA
3rq

�0.528

LB
3rq

�0.024

(b) Slant angle: 60�
LA

1qq
0.6578 LA

1rq
�0.017024 LA

1/q
0.4222

LB
1qq

0.6629 LB
1rq

�0.00765 LB
1/q

0.5243

LA;B
2qq

�0.4764 LA
2rq

1.0439 LA
2/q

0.3946

LB
2rq

0.8388 LB
2/q

0.2992

LA
3rq

�0.4034

LB
3rq

�0.2355

(c) Slant angle: 75�
LA

1qq
0.6559 LA

1rq
�0.0168 LA

1/q
0.3206

LB
1qq

0.6620 LB
1rq

�0.0232 LB
1/q

0.3618

LA;B
2qq

�0.4755 LA
2rq

0.7046 LA
2/q

0.5395

– – LB
2rq

0.5529 LB
2/q

0.5005

– – LA
3rq

�0.0208 – –

– – LB
3rq

0.0818 – –

Table 7
Intensity of 3D singularity.

Slant angle (�) K3D
hh ðMPaÞ K3D

rh ðMPaÞ K3D
/h ðMPaÞ

45 0.524 �0.003 �0.263
60 0.372 �0.0016 �0.113
75 0.336 �0.0049 �0.083

Table 8
Material properties used in the analysis for calculating the three-dimensional
intensity of stress singularity.

Young’s modulus Poisson’s ratio
E (GPa) m

Resin 2.74 0.38
Various materials 0.002 � 250 0.26

(a) Slant angle: 45°

(b) Slant angle: 60°

(c) Slant angle: 75°

Fig. 12. Relationship between K3D
1ij and the ratio E2/E1.
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When the order of the stress singularity is reduced, stress does
not increase as the distance from the vertex of the interface
decreases. Even if the angle of one side surface is varied, the stress
distribution will vary largely. This indicates that the reliability of



(a) At the vertex 

(b) At the slanted side surface (Line OA) 

(c) At the flat side surface (Line OB) 

Fig. 13. Relationship between the order of stress singularity and the ratio E2/E1.
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joints might be improved by changing the angle of one side surface
surrounding the vertex of the interface.
4. Conclusion

In the present paper, the intensity and order of a stress singular-
ity, which characterize a stress singular field at a vertex in 3D
joints with slanted side surfaces, were investigated using eigen-
analysis and boundary element analysis. In eigenanalysis, the or-
ders of the stress singularity at the vertex and at a point on the
stress singularity lines were determined, and angular functions
were obtained.

The order of the stress singularity was influenced by the slanted
side surface, which could reduce the region of the stress singularity
and extended the non-singularity region with respect to E2/E1. The
slanted side surface also influences the angular function, the value
of which on the slanted side surface (/ = 0) is lower than that on
the flat side surface (/ = 90�).

The results of the BEM analysis revealed that stress near the flat
side surface is larger than that near the slanted side surface. The 3D
intensities of the singularity were defined and determined using
the larger value in LA

1ij and LB
1ij. The value of K3D

1hh was larger than
the values of K3D

1rh and K3D
1/h on the flat side in the condition for

the analysis.
Acknowledgements

The present study is supported in part by a grant-in-aid for Sci-
entific Research (21360051B) from Japan Government. The authors
would like to express our gratitude to Mr. Y. Saito and Dr. T. Kurah-
ashi for their contributions in preparing the numerical data and for
their helpful discussions.
Appendix A

The formulation for coordinate transformation from a cylindri-
cal coordinate system to a spherical coordinate system is shown
below. Here, the stress components for the order of singularity in
the spherical and cylindrical coordinate systems are expressed as
follows:

ss ¼
rrr rr/ rrh

rr/ r// r/h

rrh r/h rhh

264
375; sc ¼

rxx rxR rxH

rxR rRR rRH

rxH rRH rHH

264
375; ðA1Þ

where the suffixes s and c indicate the spherical and cylindrical
coordinate systems, respectively. Here, it is supposed that an axis
of the cylindrical coordinate is directed along the x-axis in Fig. 6.
Then, the transform matrices from the spherical coordinate system
to the Cartesian coordinate system and from the cylindrical coordi-
nate system to the Cartesian coordinate system are as follows:

sX ¼
cos / sin h sin / sin h cos h

� sin / cos / 0
cos / cos h sin / cos h � sin h

264
375; ðA2Þ

cX ¼
1 0 0
0 cos H sin H

0 � sin H cos H

264
375: ðA3Þ

The stress components in the Cartesian coordinate system can be
expressed as

srec ¼ sX
�1ss

sX
T� ��1 ¼ cX

�1sc
cX

T� ��1
: ðA4Þ

The stress components in the spherical coordinate system are ex-
pressed in terms of the stress components in the cylindrical coordi-
nate system as follows:

ss ¼ sX � srec � sX
T ¼ sX � cX

�1sc
cX

T� ��1 � sX
T : ðA5Þ

The stresses on the interface are obtained by substituting H = 0 and
h = p/2:
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rs
hh ¼ rc

HH;

rs
rh ¼ �rc

xH cos /� rc
RH sin /;

rs
/h ¼ �rc

RH cos /þ rc
xH sin /;

rs
rr ¼ rc

xx cos2 /þ rc
RR sin2 /þ rc

xR sin 2/;

rs
r/ ¼ rc

xR cos2 /þ rc
RR � rc

xx

� �
cos / sin /� rc

xR sin2 /;

rs
// ¼ rc

RR cos2 /þ rc
xx sin2 /� rc

xR sin 2/:

ðA6Þ
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