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The transient response of a semi-infinite mode-III interfacial crack propagating between piezoelectric
(PE) and piezomagnetic (PM) half spaces is investigated in this paper. The integral transform method
together with the Wiener-Hopf and Cagniard-de Hoop techniques is used to solve the mixed boundary
value problem under consideration. The existence of generalized Maerfeld-Tournois interfacial wave is
discussed and the solutions of the coupled fields are derived for four different cases of bulk shear wave
velocity. The dynamic intensity factors of stress, electric displacement and magnetic induction as well as
energy release rate (ERR) are obtained in explicit forms. The numerical results of the universal functions
and dimensionless ERR for several different material combinations are presented and discussed in details.
It is found that the Bleustein-Gulyaev (generalized Maerfeld-Tournois) waves dominate the dynamic
characteristics of the interfacial crack propagation in PE-PM bi-material.
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1. Introduction

Composites consisting of a PE phase and a PM phase are a class
of newly emerging multifunctional materials which possess simul-
taneously PE, PM and magnetoelectric (ME) effects. Among these
effects, the coupling between electrical and magnetic fields is a
new product property that is absent in each constituent, and re-
sults from the mechanical interaction between PE and PM phases.
The early investigations on the magnetoelectric effect of PE-PM
composite materials (PPCMs) were carried out by van Suchtelen
(1972), van den Boomgaard et al. (1974) and van den Boomgaard
et al. (1976). Since then, especially in the past two decades, a great
deal of work has been devoted to the prediction and determination
of the ME effect in PPCMs with various microstructures both theo-
retically and experimentally. The comprehensive reviews of this
research topic have been given by Nan et al. (2008) and Priya
et al. (2007), respectively. Due to their ability of energy conversion
between electric and magnetic fields, PPCMs are potential candi-
dates for magnetic sensors, transducers and microwave devices,
such as resonators, electric field tunable filters, phase shifters
and delay lines.

With the rapid developments and potential applications of
PPCMs (also called magneto-electro-elastic (MEE) materials in
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mechanics community), their fracture mechanics has attracted
more and more attentions in recent years. This is because defects
such as cracks, cavities, inclusions and dislocations may exist or arise
in MEE materials during their manufacturing process or service and
can greatly affect the reliability and integrity of MEE devices and
structures. The static fracture problems of MEE materials have been
extensively studied and can found in the literature. As Nan et al.
(2008) have point out, MEE devices or structures are often subjected
to dynamic mechanical and electromagnetic loads in operation.
Therefore, it is worthwhile to analyze the dynamic fracture behav-
iors of MEE materials. To date, there were some investigations that
took into account the dynamic fracture problems of the MEE mate-
rials. These studies include the transient response of the cracked
solids under impact loads (Feng et al., 2005, 2009; Feng and Su,
2006, 2007; Feng and Liu, 2007; Li, 2005; Rangelov et al., 2011;
Wanget al.,2010; Yong and Zhou, 2007; Zhong et al., 2009), the elas-
tic wave scattering induced by cracks (Du et al., 2004; Feng et al.,
2006; Li and Lee, 2009; Rojas et al., 2010; Zhang, 2011; Zhou and
Wang, 2006, 2008) and the coupled fields produced by the moving
crack at a constant speed and with a fixed length (Hu and Li, 2005;
Hu et al., 2007; Zhong and Li, 2006; Tupholme, 2009).

Compared with the above-mentioned work, the exact analytical
solutions for transient crack propagation in MEE materials are rather
limited in the literature. Li and Mataga (1996) analyzed the transient
response of a semi-infinite anti-plane crack propagating in a hexag-
onal PE medium with two kinds of boundary conditions: the
conducting electrode type and a permeable vacuum free space, in
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which the electrostatic potential is nonzero. Ing and Ma (1996,
1997) solved the problem of transient response of a finite crack sub-
jected to dynamic anti-plane loading and an incident horizontally
polarized shear wave. To et al. (2006) researched transient response
of a mode-III interfacial crack propagating between two dissimilar
piezoelectric half spaces and showed that the existence of the Maer-
feld-Tournois (M-T) wave will increase the dynamic intensity fac-
tors and the dynamic free-energy release rate. Chen et al. (2008)
studied the dynamic fracture problem of an elastic-piezoelectric
bi-material containing a semi-infinite crack along the interface.
The transient stress fields and the dynamic stress intensity factor
are analyzed numerically. More recently, Chen (2009a) investigated
the dynamic crack extension of anisotropic MEE solids and derived
the dynamic energy release rate. Chen (2009b) further analyzed
the propagation of a Mode III crack in a transversely isotropic MEE
material. He numerically revealed the effects of magneto-electro-
mechanical coupling coefficient and crack propagation velocity
normalized dynamic stress intensity, normalized dynamic crack
opening displacement intensity factor and normalized dynamic
energy release rate.

In this paper, mode III interfacial crack propagating at a bi-
material consisting of a PE half-space and PM half-space are re-
searched. In Section 2, the constitutive equations and boundary
conditions are described. In Sections 3 and 4, the Laplace transform
technique in conjunction with the Wiener-Hopf and Cagniard-de
Hoop techniques is employed to obtain the exact full-field solu-
tions. To invest the crack tip field, in Section 5, the asymptotic
solutions in the vicinity of the crack tip are given, and then the dy-
namic intensity factors of the stress, electric displacement and
magnetic induction and the dynamic energy release rate are de-
rived in explicit expressions. In Section 6, the numerical examples
based on the analytical solutions are presented and discussed in
detail.

2. Problem statement

Consider a semi-infinite crack along the interface between PE
and PM half-spaces, as shown in Fig. 1. When time t < 0, the crack
is assumed to be in a state of static equilibrium. At t = 0", a pair of
concentrated longitudinal shear forces is applied on the surfaces of
the crack, and the crack is assumed to propagate at a constant
speed v. It was assumed the crack speed propagation is subsonic
in order to maintain elliptic differential equations. All conclusions
are therefore limited to subsonic crack propagation.

2.1. Governing equations
For the mode-Ill crack propagation problem, the anti-plane
elastic deformation and the in-plane electromagnetic fields are

coupled. Hence, the governing equations can be expressed as
follows (Soh and Liu, 2006):

X, Ay
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Fig. 1. A semi-infinite mode IIl interfacial propagating crack in a PE/PM bi-material.
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where the superscripts “e” and “m” denote the quantities in PE and
PM media. us and o33 are the mechanical displacement and stress, ¢
and Dy are the electric potential and electric displacement, s and By
are the magnetic potential and magnetic induction; C3, and Cj, are
the elastic constants in PE and PM media; e;5 and h5 are PE and PM
constants; &, and uf; are the dielectric permittivity and magnetic
permeability, respectively. The equations for functions with super-
script “e” are in the domain x, > 0, while the equations for functions
with superscripts “m” are in the domain x, < 0.

According to the usual quasi-static approximation, the equilib-
rium equations are
agy, 9di, L uy oD oD 0 OB BT

0X1 0Xo - oty ’ 0X1  OXp o 0X1 TXZ

=0 (i=e,m),
3)

where p' is the mass density and t is the time.
Introduce a pseudo-electric #° and a pseudo-magnetic potential
functions P™

h15

= —ug, Y=y ——ul (4)
en Uiy
We can derive the decoupled equations as follows:
2,8
6h2v2u§ _ 861'23 , qu)e -0 (5)
t
and
m2x72,,m 82 2 gym
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where &, = /c5,/p¢ and ¢% = /% /p™ are the velocities of the
bulk shear waves in a PE medium and a PM medium, ¢§, = c5,+
e2, /€5, and €, = c1, + h’, /i are constants with the PE and PM
effects, V2 = 9?/0x2 + °/0x% is the two-dimensional Laplacian
operator.

For crack propagation problems with a constant velocity
(Freund, 1990), it is usually convenient to introduce a moving
coordinate system:

X=X — Uty =X5,Z = X3. (7)

By making use of Eq. (7), the governing equations in the moving
coordinate system can be changed into:
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where /; = —(v/ci,)? i=em.

2.2. Boundary conditions

As is customary in linear transient crack growth problems
(Freund, 1972), the remote boundary conditions maybe taken as:
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P°(x,y,t) =0, y— 400,

us(x,y,t) = 0, (10)
q/m(xvyv t) = 07 Yy — —0o0.

uz'(x,y,t) = 0,

Here, the fundamental solution of transient crack propagation
under a pair of concentrated loads acting on the crack surface is

considered and the corresponding mechanical boundary
conditions are imposed

03,(%,0,t) = 03,(x,0,t) = —=6(X)H(t), X< ot, (11)
uj=ug, x>t (12)

where 6 is the Dirac delta function and H(t) is the Heaviside
function.

For PE/PM composite materials, the conversion of energy
between electric and magnetic fields is depended on the electro-
elastic fields in PE phase and the magnetoelastic fields in PM phase
(Bichurin et al., 2003; Nan et al., 2008; Priya et al., 2007). This
means that the magnetic field in PE phase and the electric field
in can be neglected. Therefore, the electric and magnetic potentials
on the interface and crack faces can be taken as zero, i.e.

¢E(X7 07 t) = 07
{ lpm(xv 07 t) = 07

—00 < X < +00, (13)
—00 < X < 400.

The above conditions have been adopted by Melkumyan and
Mai (2008) and Huang et al. (2009) for SH waves propagating in
PE-PM bi-materials, respectively.

The quiescent initial conditions are

u§(x,y,0) =uf(x,y,0) =0, u§(x,y,0)=uf(x,y,0)=0
d)e(xv_)/so) :O7 d).e(X,_%O):O (14)
l/’m(X7Y7O):07 lﬂm(X,y,O)ZO

where the dot over variable denotes material time derivative.

3. Solutions in the transformed domain
3.1. Laplace transform

The mixed initial boundary problem in the previous section will
be solved by using the standard procedure of Laplace transforms.
To suppress the time variable t, the one-sided Laplace transform
is applied:

fxy.p) = / " Fx,y.£) exp(—pbydt, (15)

fx,y,t)= f*(x,y,p) exp(pt)dp, (16)

27 Jy,
To suppress the spatial variable x, the two-sided Laplace trans-
form is imposed:

Feye = [ " F(x.y.p) exp(—pex)ds, (17)

fxy.p)= (&, p) exp(pex)de, (18)

2m B,y
where the inversion integration is surrounded by the usual Brom-
wich path.

Applying the transformations, the governing equations (8) and
(9) become:
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(& - P2 - &)™ (Ey.p) = 0.

Considering the boundary conditions at infinity, and the
solutions to Egs. (19) and (20) can be chosen as:

y<0. (20)
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where the coefficient functions a°(¢), «™(¢) and p(¢) are
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(&) = B"(6) = p&)2limy/ &2 — &, (25)
Here ¢ is introduced as an auxiliary perturbation parameter
(Li and Mataga, 1996), with the understanding that whenever ¢ is
present, the final expressions involved are always evaluated at
&=0 at the end of the manipulation.
Substitution of solutions (21) and (22) into the transformed
continuity condition equation (13) leads to

B*(¢) = Z;Ae(éh (26)
m, o h15 myy

B =——2A"(&). 27

3] T © (27)

Inserting Eqgs. (26) and (27) into the solutions in Egs. (21) and
(22) and then making use of the inverse transform (18), one gets

1 cartioo e/ ez P
U 0y.P) = 5 [ A xp(-p((ly - Ex)e
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7y7p - 27Tip8§1 /:f‘—ioo Q p p Cy C §7
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Cx+loc
us"(x,y,p) = ~2nip / &)exp(p(o™(&)y + &x))de,
e )
ms 15 m m
VD) = i /x A™(E) exp(p(p () + ).

S

3.2. Expanding the boundary conditions

Next task is to seek the solutions that satisfy the conditions (11)
and (12) in the transformed space by employing the Wiener-Hopf
decomposition method. It is necessary to expand the displacement
and stress boundary conditions over the full range of the x-axis. So
we introduce the following two unknown functions:

0 <0
Az (x,6) = { : XSS

= 30
u§(x,0,t) —uf'(x,0,t), x<0, (30)
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After suppressing both x and t:
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At the same time, substituting the solutions Eqs. (21) and (22)
with Egs. (26) and (27) into the transformed constitutive equa-
tions, one finds that

A =g OlE0p), A=~ proak (0P, (38)
where
BE(8) = Coyat(8) — keP(O)),  BE(&) = Clo™(8) — kn B(£)) (39)

can be considered as the B-G wave functions for the PE and PM
half spaces, respectively. k> and k’, are

kZ = €35/ (Ca8sy), ki = his/(Chypm), (40)

where ki is the electro-mechanical coupling coefficient in a PE
material and k2m the magneto-mechanical coupling coefficient in a
PM material.

3.3. The Wiener-Hopf solution

Substituting Eqs. (21) and (22) with Eq. (38) into Eq. (34), we
can obtain the standard Wiener-Hopf equation
1 j—
v(E—-1/v)
where K(&) = —Bg(&)BE (&)/Mr (&), Mr(&) = B&(¢) + BE (¢€). Mr(&) can
be considered as the generalized M-T wave function.
The key to solving Eq. (41) is to factorize K(¢) into sectionally

analytical functions in the left and right half complex planes. Here
define the B-G wave speeds for PE and PM half spaces as follows:

2.9+ K(AW_ () (41)

=1 -k2, cn=clmy/1-k). (42)

Following the arguments (Li and Mataga, 1996; To et al., 2006),
B:(¢) and BZ (&) can be decomposed into the following forms

o G =0+ 0@+ 0) =8 o e

B = T (T (6B
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where
Bis(v) = Chy (i — k),
T =exp{~1 [ tan EGm) L), i—em 45

E(n) = K :
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If the generalized M-T wave exXists, there is a real root ¢ to sat-
isfy the generalized M-T wave equation
M (&) =

Co408 (&) + Clot™ (&) — (T2 + Cke)B(E) = 0 (46)

When k, =0, Eq. (46) can retard to the problem of dynamic
interfacial crack propagation in elastic-piezoelectric bi-materials
(Chen et al., 2008).

Chen et al. (2008) also gave the discussion about the existence
of a real root in detail. Here, we follow the same procedure, and
some results are used. They are listed in Table 1.

Furthermore, we call the real root ¢ which satisfies Eq. (46) the
generalized M-T wave speed. If the generalized M-T wave does not
exist, there is no M T wave. When Eq. (46) has two distinct real
roots, —

¢ t+v

\/Bi —4A,Cy)

— (k, + K225, /)T — 4(Coa /T,

In Wthh

Ot = \/2A1/(—31 -

By = —2[1/c3 + (€5/T)* /CA1 + (€5 /Ty — (K + K2T54 /T
+A(C5, /) (/¢ +1/c2),

Cr = 1/c5 — 2(C5/Ch)* /C5h /€7 + (Coa/Caa)" /it
Four cases for the existence of generalized M-T wave will be

discussed as follows:
Case (1): ¢&, > c (The existence of generalized MT wave)
We introduce a new function S; (&) as follows:

Mr(&) 1

_ ¢ Bes(v) +Bgs(v)

S;(¢) = (47)

+¢

1
Cmt—v Cmt+V
The function Sj(¢) has the property that Sj(¢) — 1 as ¢ — oo,
and S"(é) has neither poles nor zeros in the &-plane by cuts along
— i < &< —gand ¢ < ¢ < . By using the general product fac-

torization method, Sj(¢) can be further decomposed as the product
of two regular functions S7_ (&) and Sj_(¢), where

C+Z)

" o 5111[19:” + f %
§.(8) = Q1L (9) (48)
G
in which
Table 1
Existence condition for the real roots.
Case Condition Existence
e < ci lm[MT(1/(c§h +v))] >0 and Im[Mr(1/(v —c))] > No
m[Mr(1/(c, + v))] <0 and Im[Mr(1/(v —c,))] < Yes
c& > c Im[Mr(1/(c}j + »))] > 0 and Im[Mr(1/(v — c}}))] > No
Im[Mr(1/(c}j + v))] < 0 and Im[Mr(1/(v — c}))] < Yes
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in which 3(Mr()) and R(Mr(n)) denote the imaginary part and
real part of Mr(n), respectively.
Then

re 2 m
. (Chake +Chy

—— e 12 L am 2
X exp 71/‘&* tan! | (fﬂ44ke +Cﬂkme)'7
T Je CRLo™ (1) + €440 (1)

Mr(¢) = (eré) <ﬁ >Q1+( 5)Qi_ (&) (Bgs(v) + Bs(v)).

(50)
Case (2): ¢, = c} (No generalized M-T surface wave)
We introduced a new function Q}(¢) as
: (51)

2 é): T : m .
,/%,,;—7v+f Csn;llﬂ—fBgs(y)+BGs(v)

The function Q;(¢) has the property that Q3(¢) — 1 as [¢] — oo,
and Qz( ¢) has neither poles nor zeros in the ¢-plane by cuts along
o< é<—gande< < fm -. By using the general product fac-

torlzatlon method, Q;(¢) can be further decomposed as the product
of two regular functions Q5, (¢) and Q;_(¢), where

e L (@ [S(Mr(Fn)] dn
Q&(@‘e"p{ w4
1 (o= (Chaks + Tk ) — C5q e"lz$—l—cﬁ dy
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1
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T Je Chao™(F17) + €408 (F1)

)Qi (&) (Bgs(v) + Bgs(v)). (53)

Compared with Eqgs. (50), M(¢) for cases (1) and (2) can be
written in a unified form, where

(& +c)(c+—y—§)
Jast+e

in which
Cint
cé{ "
Csh

Case (3): cg, < ¢ (The existence of generalized M-T wave)
We introduce a new function S;(¢) as follows:

Mz (&) =

-Q1. (HQ)_(9)(BGs(v) + Bgs(v)) - (54)

cm+1/ —¢

if the generalized MT wave exists,

. 55
otherwise. (33)

My (&) 1

= Beo(v) + Blo(v
—L L+ &y /me ¢ Bes(v) + Bgs(v)

5(8) =

(56)

The function S;(¢) has the property that S5(¢) — 1 as [&] — oo,
and 5*3(6) has neither poles nor zeros in the ¢-plane by cuts along
Cmt ;<i<-gande< i< by “} By using the general product fac-
torization method, S5(¢) can be further decomposed as the product
of two regular functions S;, (¢) and S;_(¢), where

" o lel?:l’ + 5 * P
53.(8) = T Q3.(9) (57)
¢ Fv + é
h
in which
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(38)
Then
17 + & ]+ £
Mr(¢) = (G o) (s >Q3+( Q3 (&)(Bgs(v) + Bis(v)).
1 f 6
IS 7v+ -\/cf +u
(39)
Case (4): c&, < ci (No generalized M-T surface wave)
We introduced a new function Q}(¢) as
‘) 1
Q49 (60)

,/Cenyr; Ceﬂ,fg Bgs(v) + Bes(v)

The function Q(¢) has the property that Q,(¢) — 1 as [£] — oo,
and QZ( ) has neither poles nor zeros in the ¢ -plane by cuts along
<é<-—gande<é< CRY L. By using the general product fac-
torization method, Q}(¢) can be further decomposed as the product
of two regular functions Qj, (¢) and Q;_(¢), where

L 1 (&% [3
Q4i(¢):exp{—ﬁ/‘" tan™! {;’t((

MT(W?))]di
Mr(Fm) | n+¢

1 /=% (Ei4k§+é44k W —Chy 72 T i.ﬁg sz dn
—exp _%/sh tan-! \/ m ) dn

ce —v

Caa0(F1) ESS

. e 12 Am 2
X exp _l/sﬂ tan! |- (244’% +C{ikm2'7
T Je Coa0™ (F17) + Caa 0 (F1)

dn .
ﬂif} Q3.(9).
(61)
Then

Mi () = \/ =t <\/Cehl+ = 803, (9Q3 (©) Bis(2) + By ()

1 i) (A
NCEADICanb Q3. (9)Q3 ()(Bis(v) + By (v)  (62)

1 I3
ce—v+§ c‘*+v —¢

Compared with Eq. (59), Mr(¢) for cases (3) and (4) can be written in
a unified form, where:

(CE_V + é) ($ - é) * - * I e w
= =Q3,(€)Q3_(&)(Bgs(v) + Bgs(v)) - (63)
=T ¢ v <

in which
& { cme if the generalized MT wave exists,
e

4
otherwise. (64)
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To solve the Wiener-Hopf equation (41), we introduce the fol-
lowing expression:

BLBLY) o TOTIE)
U gl emiw s
FO=g 5, (65)
6oL Ve=0) 0 VTG =958
OTR@ /G- 0+ o/ -0+ 9 .
S LV B Vi C )

@ (/G +0)- 00/ + 9)-0)

By using the procedure presented by in Noble (1958), the
solution to the Wiener-Hopf equation (41) can be found

o G G.(1/v)
A== e ©7
1 (G.a/v
20~ (o) (©%
The functions A°(¢) and A™(¢) can be determined as
e/ G.(1/v)
A%(&) =
O G @ - @) - 1706,
_ c(chg — V)(Chy — V)
 Gu((&) — () (e — 1/ D) chi(c — )

(1/(chg =)+ A /(chy =) +&) | wcg  Fi()

e -v)+ VAT - (& —0)F (1/)°
(69)
A — G.(1/2)
ep, (am (&) — K,B(E) v — 1/0)G. (&)
. c(cs, — V(L — v)
e (am (&) — KEB() (& — 1/0)c5,ci(c — v)
(/e = v) + 81/ (e, - >+ ) o, F+(é)
(1/c—v )+ &)/, — (¢, —v)F.(1/v)’
(70)

With A°(¢) and A™(¢) in hand, the function B'(¢) can be deter-
mined from Eqgs. (26) and (27).

4. Solutions in the physical domain

In this section, we shall derive the explicit solutions in the phys-
ical domain, i.e. find the inversion of the integrals in Egs. (28) and
(29), which can be done by using the Cagniard-de Hoop scheme
(Cagniard, 1962; de Hoop, 1960).

4.1. Case (1) and case (2): ¢, = cfi

The original Bromwich path is replaced by a deformed Cagniard
contour such that the one-sided Laplace transform can be obtained
by inspection. The particular integral contours are chose in the &-
plane, as shown in Fig. 2. The exponentials in each integral of
Eqgs. (28) and (29) are taken as the form exp(-pt). In the PE space,
we let

2y - ex=t. (71)

Consequently, the first set of deformed paths are obtained as

Im($)

Re()

& __ 1 [ tx + +i Aztzfz—xt r
we+r — X2 T Agyz gﬁy y e ng ng ’

?=x*+y>~ (72)

The inversion path &,., intercepts the Re(¢) axis at the location

: 1 (v N X po_ 1 (o VX A+ 22y?
=S|l t—7/—|le=5at—= |
)ecgh Cy /x2 + Aﬁyz Ay c s,

It can be verified that &, € (—1/(c%, — v),1/(c§, + v)).

As shown in Fig. 2, through the branch cut, the path ¢,., inter-
cepts the Re(¢) axis. So a supplemental path &, may be needed
consisting of two straight segments and a circle of radius R
(R — 0) centered at ¢ = —e. The two segments are given as:

1 v 2v
o =——— | — (X +— 2>+ —xt+—fﬂ 22| iR,
s x2+),§y2< ( V) " Neg e

(74)

(73)

where the range of ¢ satisfy: t,eg <t < tye, toeo =Y/C5,
Similarly, the second set of the deformed paths are given by

F(&y - &x =0, (75)

1 , 5 (M2
Epes _r—2<—xtilyt 1-¢ (E) ) (76)

The inversion path &g, intercepts the Re(¢) axis at the location

X
f/;e = —8;, tl;? = &r. (77)
It can be verified that &y € (—¢,¢).
On the other hand, the two set of integration contours can also
be achieved in the PM space

"y - & =t, (78)
B 1 . [0 20 12

fami 7@ ( <tx+cﬁy > :tly ;,mt —@Xt—@ 5

2 =x*+y~ (79)

The inversion path ¢, intercepts the Re(¢) axis at the location:
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1 v X
fam = — )z—m C_m Eam——-
mCsh \ Csh -\ /x2 4 72y2

1 [ox 2+
ton = i (cs";f 765; , (80)
It can be verified that &m € (=1/(cl} — v),1/(clh, + v)).
For the final integration path, let
By —ix=t (81)
; P X
Cpm = Cpr = —&— (82)

r

The manipulation process is identical to preceding integration
paths and can be obtained also.

After having carried out the inversion integrals along the Cagn-
iard-de Hoop contours, then the closed form solutions in the PE
half space can be represented by

u%(X,y,t):%/t Im{Ae(éw(r))ai%;(T)}dn

1ess
P° t)=———
(%,Y,1) T,

! [ 855‘#(1—)
[ [ 0 2,

at,(x t)ff@H(tft Y | 0 (Ege, )A (€ )‘95‘*"’+
y (XY, 1) = T e Coet Coe+

83
o (83)

& . N
+ #kﬁH(t — tge)lm |:ﬂe(g/je+)Ae(g/;e+) 6{;*} :
e o ypers . 9
Dy(x.3.6) =~ 2 HIE — tolm | (6 A (o)

Similarly, the closed form solutions in the PM half space are also
given by

aT

! m 85[3"‘+(T)
/t/ m A ) 25,

t .
e L O
tym

wm(x,y,0) = 1 s

AT
m _ ET4 m m aéam
0y, (XY, t) = f?H(t — tom)Im | oM (Eym )AT (Egmy) 5t
Ca ; N
+ fkan(t —tgn)Im {5’"(gﬁm+)Am(gﬁm+) a”;} )
h m. Ogm
B}'(x,y.t) = 7%H(t— tym)Im {/3 (Em AT (Egn.) 8";}.

(84)

When the PE and PM coupling effects vanish and the media in
the upper and lower half spaces are identical, the above solutions
degenerate into those for the mode III crack propagating in pure
elastic material (Ma and Chen, 1992).

For the crack propagation problem considered in this paper, one
of our main concerns is the behavior of the solutions near the crack
tip. When y=0, the inversion contours are changed into
&yy = &p = &4, and that:

é+:7
o _
ot

(85)

Xim X

By setting x — 0" (¢ — 0) the fundamental solutions ahead of
the moving crack tip become
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Do o1 (e —v)(ch— ) ves,
0,070 = v(t+;/v)cggc,i(c— RG]
=X/ = 0)(E—X/(Cf —v) Fo(~t/%) >t
(t=x/(c— ) /E=x/(cg, - V) F.(1/0)vX’
A ) c(chg —v)(Chy —v) [ e,
Dyx0%.0= T Chs (Je/E—X/(C5, — D) (E T2/ (C5, + 0)) — K2t) |/ (€ —2)
N t (E=X/(che — V) (E—%/(Cpy — V) F.(=t/x) -
U(E+x/V)C5 R (c—v) (t—x/(c—v)\/(E—X/ (¢ — ) Fi (1/0)V&’ "
B (1,070 = s A6t~ 0)(ch —0) v
Y G (/T /(C — ) (E R/ 0)) ko) | (G = )
o t (E-X/(chy — 0))(E—X/(Cpy — V) F.(=t/x) A
V(E+x/V)CE, R (C— V) (t—x/(c— )/ T—x/(c5, — v)) F(1/v)Vx’ G
(86)

When x — 0%, t/x - oo, F.(—t[x) — 1, the asymptotic solutions of
the stress, normal electric displacement and magnetic induction
ahead of the moving crack tip reduce to

c(Che — V)(Chy — ) veg, 1 1

1
Oy,(x,07,t) ~ =~ 1 o),
ye( ) T ycggc?g(c - ) (c8,— v)vix FL(1/v) (1)
(87)
c(cg, —v)(ch — v e
Dy(X,O+,t) Nl? ! 2 ( bge m)( lf ) evcjh
T Ca (he —K7) VChChe(C — V) (¢, — )
1 1
—— =———+0(1), 88
* TmEaz ol (88)
c(ct. —v)(c —v e
By(X,Oit) Nli-l_:ns ! 2 ( bge m)( liig ) :/C_sh
T Chy (Je— ki)  VCheChe(C— ) (c5, - )
1 1

* Ve FL(1/v)

It can be found from Egs. (87)-(89) that the stress, electric
displacement and magnetic induction exhibit the traditionally
square root singularity.

4.2. Case (3) and Case (4): c§, < cl}

Similarly, we shall derive the explicit solutions in the physical
domain for case (3) and (4), which can be done by using the Cagn-
iard-de Hoop scheme. And the asymptotic solutions of the stress,
normal electric displacement and magnetic induction ahead of
the moving crack tip reduce to

1 c(ch, — v)(Cpg — V)
+ ~ . g g
932,07, 1) T wct,Cm(c— v)

e 1 1

(ch — v) Vix Fi(1/v)

+o0(1),

bg ™~ bg

(90)

les 1 cle”)(cy?) [ v 1 1
Dy(x,07 t) ~—=2 g g sh Lo
V0 e e 1) v 0\ (e Ve EL ()
1)

- 1 hys 1 C(Cigy)(Cg;”) yc";l 1 1
By(x,07,t) ~——= o S +o(1).
O e i) v o)\ e vaF /e
(92)

It can be found from Eqs. (90)-(92) that the stress, electric
displacement and magnetic induction exhibit the traditionally
square root singularity.

)
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5. Dynamic intensity factors and energy release rate (ERR)

In Section 4, the fundamental solutions under a pair of the con-
centrated loads have been derived. Next, we shall employ these
fundamental solutions to obtain the dynamic intensity factors of
the stress, electric displacement and magnetic induction as well
as the dynamic ERR for a general distributed load. The intensity
factors and ERR is of importance for understanding the fracture
behaviors of MEE solids.

5.1. Case (1) and Case (2): ¢, = ¢l
Assume that the newly formed crack surfaces (0<x<vt) are
subjected to a general anti-symmetric external load distribution.

According to the superposing principle, the general field solutions
ahead of the crack are represented by

0= [ 000, X/ X)X,
DO(x, t) = / "Dy, 0.t — X/ 0)p(X)dX, (93)
0

vt
B (x,t) = /0 By(x,0,t — X/v)p(X)dX,

where the superscript (q) denotes the field quantities induced by
the general traction load distribution.
Making the change of variable vt — X =# and letting

P22 [t p - man 94)

Then the dynamic stress, electric displacement and magnetic
induction intensity factors for this general load distribution are

K (vt, v) = limv27x6 9 (x, 1)

(- -v) [ 1
= P(vt), 95
Gac-v \iG-oFdp P 9
2
(D) — i (@) _ ﬁ ke C(Cbg 7})(Cbg 7/)
Ky (vt v) = 1X1£r01v27rny (x,t) = e (o kﬁ) G- 7)
€
S 1 py, (96)

(¢ — ) Fe(1/2)

m 2 clce, —v)(c™ — v
K® (08, v) = limv27xBY (x, £) = 11 Ko . ( by ) (Chg — 2)
x—0 his (m—k.)  ChgChg(C— V)

g, 1
(¢ —v)F.(1/v)

P(vt). (97)

It is convenient to introduce a normalization based on the cor-
responding “quasi-static” intensity factors, as shown by Freund
(1972) for the crack propagation problem in a purely elastic mate-
rial. The relevant intensity factors are

K (vt,0) = P(vt),

K2 (t,0) = 1 ke P(vt)
e es 1 -k ’ (98)
L kfn
K& (0t,0) = £ _En__pyp).
151 -1k

By defining

L c(cg, —v)(ck - v) cs 1
fw)= cAi cgg(c fgv) (c, . v)F.(1/v)’
O ) >
mmél_;ﬂ)

The dynamic intensity factors of stress, electric displacement
and magnetic induction can be written as the following simple
forms

K (vt, v) = f(v)K{7(vt,0),

= g(v)Kjpp (vt,0)
h(v)K () (vt,0).

From Eq. (99), it is seen that f{v), g(v) and h(v) depend on crack
speed, the material properties and the velocities of three different
kinds of the waves, which are the bulk shear wave, the generalized
B-G wave and generalized M-T interfacial wave. They are indepen-
dent of the crack extension length vt and the load distribution
function P(x). Consequently, f{v), g(v) and h(v) can be regarded as
the universal functions of the dynamic interfacial propagation in
PE/PM bi-materials.

Atkinson and Eshelby (1968) obtained the dynamic energy re-
lease rate for the purely elastic material. The static ERR for the
MEE solid is first derived by Wang and Mai (2003) based on the vir-
tual crack closure integral method. In a way analogous to the PE
case, the dynamic ERR for the interfacial running crack considered
in this paper can be calculated by

Kir(vt, v) (100)

B
K;II;‘(ytv V)=

G(vt,v Jlm/{ a,,(%,0, t)a—(xo £)+D%(x,0,) 3

¢(x0t)}d

+lim/ vEn dI'
r-o Jp

—111551 ’{ (th) (th)+De(th) 8¢ (x,O,t)}dx
~lim _l{ (xor)aa—(th)JrB’"(xot)‘)g (th)}dx,

(101)

where I' is the contour surrounding the crack tip, and alone the seg-
ment parallel to the crack surface n; = 0. E is the total energy den-
sity made up of the kinetic energy density and internal energy
density.

Since the electric potential and magnetic potential are zero both
along the line ahead of the crack and on the crack faces; conse-
quently, there is no contribution from electric field and magnetic
field to the dynamic free energy release rate, and therefore, the
free-energy release rate is the same as the purely mechanical
ERR. Therefore, Eq. (101) reduces to

! o ouy
— e 3
G(vt, v) _lan(} , g,,(x,0.t) B (x,0,t) + 0,,(x,0,t) —= o 3 (x,0,t)|dx
(102)
Making use of the identity
. ['TH(x) H(—x) T
llggl/ {\/_ + \/_]dx_j, (103)
One can obtain
e 2 LAmg 12
Glot, v) = 1 Gialle = ke) + Cialim = k) ooy 12 (104)
4 Cha(de — k)T (2m — ki)
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Table 2
Material properties used in the calculations.
BaTiO; PZT-7 PZT-4 CoFe,04
Cagq (x10°9 N/m?) 43.9 25 25.6 453
ey (C/m?) 114 13.5 12.7 -
hqs(N/A m) - - - 550
£11(x107° C3/N m) 9.82 171 6.46 -
1 (x1076 N $?/C?) - - - 157
p (10° kg/m?) 5.7 7.8 7.5 53
csn (x10% m/s) 3.166 2.138 2.596 2.985
Table 3
Three cases corresponding to different bi-material combinations.
bi-materials Chg V Chy ke /Km Cme (x10% m/s) Cases
BaTiO3/CoFe;04 > 2.38 - (2)
PZT-4/CoFe,04 < 3.48 2.591 (3)
PZT-7/CoFe,04 < 1.87 - (4)

According to the relevant quasi-static elastic solution,

1¢5,(1 - k) + (1 — k2

G(vt,0) =
O R k)

(P(v1)).

(105)

Then the normalized energy release rate can be obtained:
G(vt,v) (e — K2) + T3 0m — K2)
G(vt,0) (e — k) (hm — K2)
(1—ke)(1 — k)
Ca(1 —kg) + (1 — k)

C2 ¢ —v)*(ch — p)? e
( ng 2) (Chg — V) eCSh 1 i (106)
Ea(c—v)’ -V (F.(1/v))

Note that when k;;, = 0, the solution degenerates to one of a dy-
namic mode III interfacial crack propagation in an elastic-piezo-
electric bi-material by Chen et al. (2008). When k. =0.00, the
solution degenerates to the case of an elastic-PM bi-material con-
taining a semi-infinite crack along the interface.

5.2. Case (3) and case (4): c&, < ¢,
Similarly, the dynamic intensity factors of stress, electric dis-

placement and magnetic induction as well as energy release rate
(ERR) for case (3) and (4) are obtained in explicit forms:

o C(Chg —V)(Chy —¥) | ch 1
f@)= cge cg;(cfgv) (CZ,’,EV)F+(1/U)’
g(0)2 1—71;<2 (), (107)
1-

(e~ kz 1ok gy,

G(t,v) _ Coalde — ko) + 4 (Um — ki)

e = k) Um —kp)
(1-k)(1 - kp)

e, (1—k)+cn(1-k2)

CZ ¢ —v)*(ch — p)?  m
( bg ) ( bg ) mCSh 1 5. (108)
Za(c—v)’ -V (F.(1/v))
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Fig. 3. Variations of the universal function f{v), g(v), h(v) and the dimensionless
dynamic ERR G(vt,v)/G(vt,0) versus the dimensionless velocity v/c,; for the
following bi-materials: (a) BaTiO3/CoFe,04; (b) PZT-4/CoFe,04; (c) PZT-7/CoFe,04.

6. Numerical examples

Based on the explicit transient solution obtained in the previous
section, the numerical results for the universal functions and the
dimensionless dynamic ERR are presented for several different
material combinations. In our calculation, the PE materials are
BaTiOs, PZT-4 and PZT-7, respectively, while the PM material is Co-
Fe,04. The material constants of these materials and the corre-
sponding bulk shear wave velocities are listed in Table 2. They
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Fig. 4. Variations of the universal functions and the dimensionless ERR versus the
dimensionless velocity v/c,; for a broad range of electro-mechanical coupling
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Fig. 5. Variations of the universal functions and the dimensionless ERR versus the
dimensionless velocity v/cy; for a broad range of magneto-mechanical coupling
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coefficient (k;, = 0.00, 0.25, 0.5, 0.74, 0.92, 0.99).
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can be found in Jiang et al. (2006) and Liu et al. (2008). Three kinds
of the bi-materials combining CoFe,04 with BaTiO3, PZT-4 and PZT-
7 correspond to three different cases correspond to three cases
analyzed in the previous section (see Table 3).

Fig. 3 shows the variation of the universal functions and the
dimensionless dynamic ERR with the normalized crack propagation
speed v/cp, for three different bi-materials, where c,; = min
(Chg» Chy) is the slower B-G wave speed. From Fig. 3, it can seen that
the universal function f{2) of stress intensity factor and the dimen-
sionless dynamic ERR G(vt,v)/G(vt,0) decrease monotonously with
increasing crack propagation velocity v and vanish when v reaches
Cphg. This means that the slower B-G wave speed is the limiting
velocity of the interfacial propagation. The variation of the univer-
sal functions g() and h(v) depend on the relations between cf, and
Chg- When ¢;, > ¢y, e for the BaTiO3/CoFe,0,4 bi-material, g(v) de-
creases as v/cy, increases and trends towards zero, while h(v) first
reduces gradually and then reach its maximum. For the PZT-4/Co-
Fe,0,4 and PZT-7/CoFe,O4 bi-materials, where Chy < Chg» the
variations of g(v) and h(v) are similar to those of h(v) and g(v) of
the BaTiO3/CoFe,0,4 bi-material, respectively.

In the second example, we consider a PE half space overlying
the CoFe,04 half-space with k;;, = 0.2, where the electro-mechani-
cal coupling coefficient k. of the PE half space is allowed to change
while other material constants are the same as the BaTiOs. Fig. 4
plots the universal functions and the dimensionless ERR for a broad
range of electro-mechanical coupling coefficient (k.= 0.00, 0.25,
0.37, 0.48, 0.75, 0.99) against the dimensionless velocity v/cpg.
When 0 < k. < 0.37, the bulk shear wave speed in a PE medium
is slower than that in a PM medium. When 0.34 < k. < 0.41, the
generalized M-T wave exists, which corresponds to the case (1)
analyzed in the previous section. The universal functions f{v) and
G(vt,v)/G(vt,0) decreases smoothly with increasing crack propaga-
tion velocity v and reaches zero when vreaches cg. And the univer-
sal functions g(v) and h(v) are more complicated and do not
necessarily decrease to zero when the crack speed reaches the
slower B-G wave speed.

Finally, we examine the bi-material consisting of the BaTiO3
half-space with k.=0.55 and a PM half space whose magneto-
mechanical coupling coefficient k,, is allowed to vary in a very
broad range. Other material properties of the PM half are chosen
to be the same as the CoFe,0,. Fig. 5 plots the universal functions
and the dimensionless ERR for various magneto-mechanical cou-
pling coefficient (k,, = 0.00, 0.20, 0.38, 0.50, 0.75, 0.99) versus the
dimensionless velocity v/cpe. When 0 < kn, < 0.92, the bulk shear
wave speed in a PE medium is faster than that in a PM medium.
The universal functions f{#) and G(vt,v)/G(vt,0) decreases smoothly
with increasing crack propagation velocity » and reaches zero
when v reaches c.. The universal functions g(v) and h(v) are
more complicated and show the same tendency as the second
example.

7. Conclusions

The dynamic fracture problem of a mode-Ill crack running
along the interface in a PE-PM bi-material is studied. The prob-
lem becomes interesting and complicated when the B-G waves
and the generalized M-T waves propagating along the interface
are taken into consideration. Different from the moving crack
problems reported in the literatures, the numerical results of
the present paper show that the dimensionless stress intensity
and energy release rate always vanish when the crack propaga-
tion velocity arrives at the slower B-G wave velocity in both
materials. This means that the B-G waves play an important role
in determining the dynamic fracture characteristics of PE/PM
composites.
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