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Abstract: In the present paper, the mechanics of axisymmetric-adhesive contact
of rough surfaces involving power-law graded materials is investigated
analytically. A series of general analytical solutions have been obtained with use
of the cumulative superposition and equivalent energy release rate approaches.
These solutions provide closed-form expressions of equilibrium relations among
applied load, indentation depth and contact radius. Based on these solutions, an
effective macroscopic description of the contact evolution is obtained for a
general punch profile with surface roughness. Our analysis results reveal that the
simultaneous presence of surface roughness and graded material properties can
influence the pull-off force and energy dissipation due to adhesion hysteresis
significantly. Moreover, it is found that both the adhesion strength and toughness
can be optimized by adjusting the surface topography and material parameters of
power-law graded solids appropriately. The analytical results obtained in this
paper include the corresponding solutions for homogeneous isotropic materials
as special cases and therefore can also serve as the benchmarks for checking the

validity of numerical solution results.
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1. Introduction

The effects of surface roughness on adhesion have attracted enormous
attentions for their key role in many physical and biological systems (Persson,
2006; Jagota and Hui, 2011) in the last three decades. In parallel with the classical
adhesion theories represented by JKR (Johnson et al, 1971), DMT (Derjaguin et
al, 1975) and MD (Maugis, 1992) models, their counterparts involving random
surface roughness have been proposed by Fuller and Tabor (1975), Maugis (2000)
and Morrow et al (2003), respectively. These works stem  from the
Greenwood-Williamson theory (1966) (a development of Zhuravlev’'s theory
(2007)) where rough surfaces were modeled as an ensemble of non-interacting
asperities with identical radius of curvature but Gaussian distributed heights.
These asperity-type contact models all made the same conclusion that increasing
roughness may result in a monotonic decrease of adhesion. This conclusion
makes intuitive sense because roughened stiff surfaces do have the effect to
prevent intimate contact. However, these models cannot explain the contradictory
experimental evidence such that for some soft elastomeric materials, the adhesion
may increase initially with surface roughness before eventually decreasing (Fuller
and Roberts, 1981; Kim and Russell, 2001). Besides, the asperity geometry was
predicted to have significant influence on the adhesive behaviors (Rabinovich et
al, 2000; Galanov, 2011). On the other hand, one-length scale roughness was
often represented by a sinusoidal wavy profile for exact analytic solutions in the
periodic contact models (Johnson (1995), Hui et al (2001)). It is founded that
asperity interaction may cause the two elastic surfaces to jump into full contact
from partial contact in the absence of external load.

Recently, Guduru (2007) developed a theoretical model with only a concentric
circular contact region to study the JKR adhesion between an elastic half-space
and a rigid parabolic punch with sinusoidal undulations. The surface waviness
was found to render the decohesion process oscillatory with intrinsic instabilities,

causing apparent interface strengthening in the form of higher pull-off force and
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interface toughening by irreversible energy dissipation in the contact process.
This theory was then validated by experiments performed on gelatin by Guduru
and Bull (2007). Waters et al. (2009) proceeded further to extend this model to a
more realistic case with JKR-DMT transition adhesion. More recently, Kesari et al.
(2010) reported that adhesion hysteresis may exist even without moisture,
plasticity and viscoelasticity but hinges solely on the surface roughness. To
interpret the observed hysteresis phenomenon, an improved theoretical model
based on Guduru’s analytical solution was developed by Kesari and Lew (2011) to
investigate the effective macroscopic adhesive contact behavior of contact
systems with surface roughness. It was found that the macroscopic behavior
curve predicted by their theoretical model matched the experiment data well
and better estimates for material properties were obtained than the typical JKR
formulations.

Most of the above mentioned works have focused on homogeneous isotropic
elastic materials. On the other hand, the study of functionality graded materials
(FGMs) has recently emerged as an important research topic in several
communities because of their great potential applications in many physical and
biological systems (Suresh, 2001, Sherge and Gorb, 2001). Even for smooth
contact model, however, only few theoretical works on adhesive behavior of FGMs
has been done for power-law graded pattern (Chen et al., 2009a, 2009b; Jin and
Guo, 2010, 2012; Guo et al, 2011; Jin et al., 2013). Under this circumstance,
understanding the adhesion behavior of contact systems with both surface
roughness and nonhomogeneous materials remains to be a challenging topic. To
our knowledge, there is still lack of a general analytical approach to quantify the
role of surface roughness and the resulting hysteresis effect on the adhesive
behavior of graded solids. Motivated by the works of Guduru (2007) and Kesari
and Lew (2011) on homogeneous materials, the present paper aims at extending
these solutions to the case of power-law graded elastic materials, with special
emphasis on establishing an analytical approach and a set of analytical solutions

to provided physical insights into the roughness strengthening and toughening
3



mechanisms in graded solids. These results also suggest strategies to control the
interfacial adhesion strength and toughness by appropriate surface topography
optimization and material selection.

The plan of the present paper is as follows. First, the considered model
problem is described in section 2. As an application of the generalized cumulative
superposition and an energy release rate approach, the Hertzian and ]JKR
solutions for an arbitrary axisymmetric punch contacting with a power-law
graded half-space are derived in section 3 and 4, respectively. In section 5, based
on the results derived in previous sections, a series of closed-form analytical
solutions are provided, including the equilibrium relations among applied load,
indentation depth and contact radius. With use of these solutions, the asymptotic
representation of the equilibrium curves as well as the effective macroscopic
description of the contact evolutions, are also obtained for a general punch profile
with surface roughness. In addition, as an illustrative example, an axisymmetric
parabolic punch with sinusoidal roughness is analyzed in detail The
corresponding energy dissipation during a loading/unloading process is also
discussed thoroughly in'this section. Finally, some concluding remarks are

provided in section 6:

2. Analysis model for adhesive contact with surface roughness
The model problem considered in the present study is illustrated
schematically in Fig. 1, where an axisymmetric rigid punch with small surface

roughness is in frictionless adhesive contact with a power-law graded half-space

under a normal loading P (F =@ in the case of tensile force). A cylindrical

coordinate system (r.z) is set up with origin at the contact center and =z

direction pointing into the half-space. Similar to Kesari and Lew (2011), the
multiscale punch profile which accounts for both macroscale geometry of the

punch and the microscale surface roughness can be expressed as



Flr)wm g(rl+ Af(rfd) . (1)

Here f:(r)( @], which measures the large-scale topography of the punch, is a
monotonically increasing and differentiable function of radius = with
£(0)m df Sdr|, o m €. In its undeformed configuration, the rough surface of the

punch is described as a product of a length parameter / and a smooth 1-periodic

function fi(r/A) with f(2) = Q. In the present study, it is assumed that A is far

smaller in comparison to the other length parameters so that multiple asperities
can come into contact with the half-space.

Guduru (2007) pointed out that in order to avoid the appearance of multiply

connected regions, a sufficient condition is such that f{r} in Eq. (2.1) should be

a monotonically increasing function with. respect to ». This condition is, however,

too restrictive to allow for the consideration of more general contact cases. In fact

the necessary and sufficient condition guaranteeing the simply connectedness of
contact region is that the z-displacement of the half-space (i.e., .) should be

greater than the punch's profile, i.e.,

L]
-3
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ug(r) = & = Flpl P Q C
for all indentation depth ¢. This condition must be respected in the

corresponding theoretical analysis.

The graded half-space involved in the considered problem has a constant
Poisson’s ratio + and a Young's modulus varied with depth according to a

power-law form as

Ba
=

E -E_EL::"'i'gj;;- Qakal (
where E_ is a reference modulus, ¢; # § is a characteristic depth and k is the
gradient exponent. It is obvious that homogeneous isotropic material is

recovered as & = § while the Gibson solid is obtained as & = 1 and + = @.E
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In the following sections, we shall solve the above model problem based on a

general solution procedure.

3. Generalized cumulative superposition method and Hertzian solutions
Cumulative superposition is a concise approach to determine the influence
of punch profile on the contact behavior in the absence of adhesion without
solving the field equations. The key idea of this approach is based on the fact that
the punch indentation to any depth can be regarded as the accumulation of a
series of small indentations corresponding to a flat-ended punch if the contact
region is always simply connected (Hill and Storakers, 1990; Bower, 2006).
Although initially developed for homogeneous materials without adhesion, this
approach is in fact also valid when the adhesive contact behavior of power-law
graded materials is considered. In the following, based on the generalized
cumulative superposition and an energy release rate approaches, the Hertzian
and JKR solutions for an arbitrary axisymmetric punch contacting with a
power-law graded half-space will be presented. To this end, the results

associated with the circular flat-ended cylinder are reviewed firstly.

3.1 Indentation of a power-law grade half-space by a circular flat-ended cylinder
When the half-space is made of power-law grade materials, Booker et al.
(1985) “and Giannakopoulos and Suresh (1997) obtained the corresponding

Boussinesq contact solution for a circular flat-ended cylinder punch with radius

a.In their solutions, the contact pressure distribution #"(¥) and the
z-displacement #Z(r} of the half-space's outside the contact area are expressed

in terms of indentation depth & as

gE"d", , L. k=L _ N
L F: I'nﬁ- ¥ F ¥ El @ :..?ll:l

2mch

p'[;?':l =

and
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respectively. In Egs. (3.1)-(3.2), ;F; represents Gauss’s hypergeometric function,

@ is the radius of the cylinder and

; 5‘"'"“{:1"3‘:}{-;*&4“'-1'[1“?:} Y ;;r
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= =

(2 k)
with ['(+] denoting the Gamma function. Note that ¥ = 1 in the homogeneous
limit of % = @ while ¥ = & in the Gibson limit of ¥ = 1 and v = Q.5. More

general solutions for elasticity problems involving power-law grade materials can

be found in Rvachev and Protsenko (1977).

3.2 Indentation by a rigid axisymmetric punch with an arbitrary profile

In “the absence of adhesion, the Hertzian contact solution for a rigid
axisymmetric punch with an arbitrary profile f{r) can be obtained from the

above fundamental solutions of flat-ended punch with use of the cumulative

superposition approach (Mossakovskii, 1963).

Suppose that the indentation depth is increased by a small increment &4 at
a contact radius (¥ & # Z aJ, then the normal surface displacement i, and the
contact pressure p will acquire a corresponding increment 4ii; and dp.

respectively. Since Ji_= 4d within the contact region, it is apparent that the
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stress and displacement fields will be similar to those for a circular flat-ended
cylinder. In view of this, p(r) and {7} corresponding to any indentation

depth can be obtained from the following integrations:

s, raa, (3.4)
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where ¢'(z) = @d/d# . In particular, the z-displacement of half-space at the
contact edge (» = a) can be expressed from Eg. (3.5) as

ki b e
1 o g 3
= QS - e i
: I "Jl;ﬂ

ugla) = a) - —r s (3.6)
T la =T

Since from the geometric relation

T

ugla) = &a) = Flal, (2.7

a comparison of Eq. (3.6) with Eq. (3.7) leads to the fact that
2d0n i al 3-]

.ﬂ .ﬁ = -E ' ! d_

i% e (ge — gt ) X
Eq. (3.8) is a generalized Abel integral equation from which the indentation

g, (3.8)

depth can be expressed in terms of f as (see Appendix A for details)

. e (&)
d{]ﬂ-qi"‘f LE . (3.9)

(@% —g=) =
where f'(#) = df/ds. In addition, the # =4J relation can be established from

Eq. (3.4) as
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Up to this point, the Hertzian contact solutions are available as long as the
punch profile f{r) is specified. It can also be verified that #;{r) and J(&)

obtained above does satisfy the simply-connected contact condition described in

Eq. (2.2).

4. Extension to JKR-type adhesion

In this section, we shall make an extension of the above obtained Hertzian
contact solutions to the case of JKR-type adhesion (Johnson et al, 1971). As
pointed out by Johnson (1985) and Maugis (1992), in general, the adhesive
contact solution can be constructed by superposing the corresponding Hertzian
solution of a punch with the same profile and that of a flat-ended cylinder punch.

Based on this argument, the following relations can be established:

. 1=k of _ .
ﬂ-ﬂﬁ-ﬁmuﬁﬁ- ' {hl)
A+ BI(R; =P o
(1 kI(Rg = AL E -
pr) = oy (1) = 1= (=) ] rea,  (42)

_— ke ) -
'.’"'CEE?#[T ) [n-k 1=k 8=k n-} ,

. ' . = 1
i N N ) S

uy(r) m i (r]i= (B = F)
(4.3)

where =, Py ¥:l(r) and wZ(r) are the Hertzian solutions given in Egs. (3.9),
(3.10), (3.4) and (3.5), respectively. With use of the Griffith’s energy balance
principle, the following identity can be established (Jin and Guo, 2012)

6-?—;{-&?. (4:4)

where
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and &» denotes the surface energy which is taken to be the work of adhesion in

the absence of energy dissipation. Combining Eqs. (4.4)-(4.6) gives rise to the

following # = a relation:

| 23=Fxd ErAveitv

(4.7

Inserting Eq. (4.7) back into Eqgs.(4.1)-(4.3) yields the whole set of JKR-type

F L P' - e T = 1
& n (1= &) ¢
solutions:
a . cighf
dwgy=- 2Fmay : —
r';‘ .In?h
L L =l
Fi?] [ | F‘lal:?']- :1-*;‘:.‘-"—”‘::“" - t"'::lT_
N - meg
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(4:8)
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It can be observed from the above equations that the effect of the punch

profile is only embodied in the part of Hertzian solutions. Moreover, the simply

connected contact condition described in Eq. (2.2) needs to be checked a

posteriori to verify that the contact area is indeed a circular one as assumed from

the beginning.

In the present paper, frictionless contact is assumed in the analysis model.

Another situation which may be of great concern in real applications is the

non-slipping case with a perfectly bonded contact interface. In the absence of

surface roughness, as shown by Guo et al. (2011), the frictionless JKR-type

solution obtained here still applies strictly for non-slipping contact on

homogeneous incompressible solids and linearly graded power-law materials.
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However, for general soft compressible materials, the non-slipping interface
condition tends to reduce both the contact area and the indentation depth. The
effect of surface roughness on adhesion behavior under non-slipping case will be

the subject of a separate work.

5. Solutions to a punch with surface roughness
5.1 Equilibrium equations
For the adhesive contact problem described in section 2, one of our main

concerns is the equilibrium relations among applied load, indentation depth and

contact radius. Inserting the punch profile f{r] prescribed in'Eq. (2.1) into Egs.

(3.9)-(3.10) and then into Egs. (4.8)-(4.7) leads to JKR solutions as

[ s
5() m G (a) + ats | LD g (5.1)
¢ (g* =g} T
2kggr | % FL5EA) IR L
¢ M) - —  ad i I R el i .
Pla) = P, (a) YT I —dr f (@ —8*) o £ (ﬁl*ﬂf

" Ln- - 3-;| 2 .
(5.2)

where fI'(#/4) denotes the derivative with respectto /4 and

A [ 5 ki
d;(a) = Eil"""} '*—';F;r:l:- .'F"‘-':r&;-f"ﬂ —_— (2.5)
& g [ S — w/ ﬁE:
Sl I
-mL--'-i,.gE_'- ) & fmk
P, (@) = = a4*"§, (@] = | (g% =5*1T £ (s)ds]. 5.4
- () AR Ia d;la [E 8% =F F (Calds (5.4)

In the absence of small surface roughness, if the large-scale topography of

the punch is of polynomial form f (=] = »™ fmR™=* with an index = & 1 and

a characteristic length & » @, the equilibrium #; =&, curve behaves as

_ r{m/2)r(1/z + k/2) a™ | g n, CEGEE )
. . i L - :':r ri-."__':.. ,I;,. '--.. s "l
) i DA T (8.2
V=R GE" . F(m/2)0(8/2 + kf2) qihm
3 '1""1. . - i i i , P I-.\i
Ple)= e |© S - Tazemaei) B (5:6)
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As expected, in the homogeneous limit (& = 0), &, and P, reduce to the results

given by Borodich (2008). Besides, the JKR solutions for power-law graded solids

m

under a parabolic punch profile can be recovered by letting #: = 2 in Egs.

(5.5)-(5.6) (Chen etal., 2009Db).
To make the discussions more concrete, in the following, we shall focus on a
specified punch profile which is a parabolic function with a single wavelength

sinusoidal undulation of small amplitude, that is

filr -% . ;}ﬁ}}-.&tl-ee:@j. (8.2)

where A is a positive non-dimensional parameter which measures the ratio of
the wave amplitude to the wavelength /. Inserting Eq. (5.7) into Egs. (5.1)-(5.4)

leads to the equilibrium # =& curve as

N Y Y e X
ela) m g (@)= Ady FEF{THTJ E;._(T] (5.8)
. (2v®) I0E" N &
P(a) = Fyla) + S AGa)T
(1 =+%ekep
z<[:;ﬁr{l"'1‘1'1515;[3’?“1-&:;:[3"'r“rh* [ﬂj] (53)
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where (] representsthe w-th Struve function and

1 & | cEgl=¥ i
e T (5.19
ia) 1-kR Yo@Er 510)
Fhe graR | P-Rdn Erhpado

Fla)m

i Y L.r 1- - T 1 m 1. i rs.ll
(l+k)=(B+K)] cfR ,“'-l,l"'ﬁ;" (4] 23]

In the homogeneous limit (i = @), the corresponding equilibrium # =& curve

for homogeneous isotropic materials, which was first obtained by Guduru (2007),

is recovered from Egs. (5.8)-(5.11).

Evolutions of the equilibrium # =4 curve for # = 0.1 and # =10 are
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shown in Fig. 2a-2b according to Egs. (5.8)-(5.11), respectively. In this plot, the
parameters are selected to satisfy the simply connected condition in Eq. (2.2).
The equilibrium curves for graded materials and homogeneous solids are
qualitatively similar and the latter case has been discussed intensively by Guduru

(2007) and Kesari and Lew (2011). In contrast to its smooth counterpart without
surface roughness (pink solid line), the equilibrium # =& relation with surface

roughness exhibits many corrugations between alternating stable (black dashed

line) and unstable segments (black solid line). Another distinctive feature in the

presence of surface roughness is such that for every fixed value of d, the

corresponding equilibrium normal force P is non-unique but has multiple

values. In essence, this phenomenon results from the fact that a prescribed
indentation depth may correspond to several locally stable contact

configurations when surface roughness exists. However, the actual equilibrium
path taken by the contact system may not follow the folds on the # =& curve.

As pointed out by Kesari and Lew (2011), the contact system may experience
snap-through at some critical points where the original equilibrium path
becomes unstable and then reestablish a new equilibrium state, which always
corresponds to the first neighboring local minimizer of the potential energy of
the system.

To illustrate this point of view more explicitly, Figs. 3a-c plot the actual path

taken by the contact system under a displacement controlled mode in # =&,

d=a and # =a spaces, respectively. In Figs. 3a-c the corresponding points in

different parameter spaces are labeled with the same letter. For the considered

case, as shown in Fig. 3a, the contact system is first loaded to the maximum

indentation depth d,,, (point G) and then unloaded until pull-off occurs

(point K). The pull-off force is quantified by the most negative value of F

corresponding to point ] in the figures. It can be seen from these figures that the

13



actually path is only parts of the equilibrium curves (red solid line) combined

with unstable jumps at the tip of each corrugation (red dashed line). These

unstable jumps include A—B, C=D, E=F during loading stage and H=I, K=L

during unloading stage, where the abrupt contact (A—B) and separation (K—L)
are known as jump-in (pull-in) and jump-out (pull-off) instabilities, respectively.
It is at the point F that the loading and unloading stages begin to differ. The
different paths of the loading and unloading stages induced by the surface
roughness compose a loop whose area quantifies the energy loss during the

deformation process, which is directly dependent on the maximum indentation
depth &, In view of this, this energy dissipation mechanism is also referred

as (indentation) Depth-Dependent Hysteresis (DDH) due to surface roughness.
The DDH phenomenon for power-law graded material is qualitatively similar to
that for homogeneous isotropic material, which has been systematic illustrated

by Kesari and Lew (2011).

The pull-off force is characterized by the most negative value of P on the

F =4 curve (ie, F,o®™ =F, ). For the case of homogeneous materials, under

the assumption such that initially intimate contact is maintained before

detachment, Guduru (2007) pointed out that the normalized pull-off force

F‘.."‘." m (=

=F...)/LEnRdy is dependent on four non-dimensional parameters
including 4, £7A/dy, A/R and @g,,/R with a,,, denoting the characteristic

size of the punch and the magnitude of ‘FH-" can be amplified significantly by

introducing surface waviness. In the present study, it is found that for the

considered power-law graded materials besides the above four parameters, two

additional quantities i.e., the gradient exponent k and the non-dimensional

14



modulus variation rate ¢/& will come into play. The effects of k and /& on

the FF;-.- AR relation are shown in Fig. 4a and Fig. 4b, respectively. An
interesting observation from Fig. 4a is that the maximum value of the pull-off

force is not a monotonic function of k. There exists an optimal value of & = k..

(hgge = .7 for the considered case) at which the strongest adhesion (measured

in terms of pull-off force) can be achieved by selecting the surface waviness
appropriately. Our analysis also indicates that the modulus variation rate ¢;/R

of the power-law graded material also has a significant influence on the adhesion

strength. As shown in Fig. 4b, the maximum value of the pull-off force increases as

¢o/R decreases. This is quite different from the case of smooth contact, where the

pull-off force is irrespective of &;/# (Chen et al, 2009b). Consequently, it is

feasible that interface adhesion strength can be optimized by adjusting both the
surface topography and  the material parameters of the graded solids
appropriately.

The above analysis is performed under the assumption that the in-plane size
of the punch is large enough. This is, however, not always valid in practice. The

effect of the finite punch size on the pull-off force is plotted in Fig. 4c by

truncating the abscissa of the corresponding ;= @/& at different values of

G/ B and selecting the most negative values in the interval of {.a.,/ &),

An obvious message from this figure is that the global maximum pull-off force will
decrease and more local maxima will be introduced when the in-plane size of the
punch becomes finite, which is qualitatively the same as in the case of

homogeneous materials (Guduru, 2007). Furthermore, it is also found that

Qumare/ 6 # ©,5@ is a threshold beyond which the behaviors of the finite and
15



infinite size punch are exactly the same.

5.2 Asymptotic form

For most engineered surfaces, modern technology can now make it possible

to restrict the value of /4 below a certain length scale which is far smaller .in

comparison to the other physical dimensions of the contact system. Under this
circumstance, the asymptotic form of the equilibrium # =& curve in the limit of
Afm= T is of special interest. In the following, this point will be discussed in
details.

As f.(&) is a smooth periodic function with period 1, its Fourier series can

then be expressed as

W
_ Qg _ .
folf)m = Z [a, cos(Znm) + &, sin(2nnd)). (5.12)
S
where
riis
a, = 3Z [ E(Elcos(Znnf)dds n2 @ (5.1%)
L
b,m2| AEMm(paddf, w2l (5.14)

As //a = ©,the origin equilibrium # =& curve in Egs. (5.1)-(5.2) behaves in a

simple asymptotic form as (see Appendix B for more details)

e 1ei ab en
B(8)~G: (a) 3"‘:‘0':%(1—" aTe(=] (5.48)
a ! A
e 1k
. 2T VL =y 12k 3K g :
(@)~ (q) + - il T @5 gl=), .
P(&)~P. (&) “_mcgrﬁ —JaTare(z) (5.16)
where
i . - -
glf) = Zlﬁ.mr}ﬂ[-mﬂsm{:nm? -:;- - ]—-&u wsEE‘hm -f-%)]
nul
(5.17)



Note that ¢{{} is also a smooth periodic function with period 1 and it is actually

the (1= k)}/2-fractional derivative of (£ {¥) =a;/2) (Appendix B).
For the parabolic punch with sinusoidal roughness described in Eq. (5.7),

after the substitution of Eq. (5.7) into Egs. (5.12)-(5.17), the asymptotic form of

the equilibrium # =& curve in the limit of £/a = @ can be approximated as

iy cl=], (B.18)

glalwg, = " 0w | '—.Ilf
- v 2 “A
T o
4 =« VK L=k L2k E2R gy .
Plglvp. =~ - r | &% -cff L F)
SN rJ..-.:'{.]e.n‘ l[ 2 J @ ‘.f.:l (3-1¥)
where
=

. t R - .
¢(f)m (27) = ;!:11:[3:# -z J v (8.20)

A comparison between the equilibrium # = ¢ curve (blue dashed line) and
its asymptotic form (red solid line) is shown in Figs. 5a-c for different values of
4/&. The curves are obtained from the example in Fig. 2a and the asymptotic

values are calculated from Eqgs. (5.18)-(5.19). From these figures, it can be
concluded that the asymptotic form can be used as a good approximation of the

equilibrium curves for small roughness periodicity.

5.3 /Approximate envelops and effective contact evolution path during early
unloading
As shown in Fig. 3a, in a displacement controlled loading/unloading process,
the contact system with surface roughness tends to find the most locally stable
configuration under a given indentation-depth. Under this circumstance, by
replacing the oscillatory terms in the asymptotic equation (5.18)-(5.19) with
their respective maximum and minimum values, the approximate envelops of the

equilibrium equations (5.1)-(5.2) can be defined as
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k=l =k 51 kv %K

§=(@)~G;+~2 T a7 | > 8T ¢, (5.2%)
a0h ok
e B 8 ey
where
¢" - -m;mrt:(f'} e, ¢~ = min Sty B (5.25)

and the = signs denote the loading and unloading phases of the process,

respectively. Note that when ¢ = @/ both the loading and unloading branches
collapse to a single curve, which is in agreement with the corresponding smooth
adhesion for power-law graded materials with a punch profile f{r).

For the parabolic punch with sinusoidal roughness described in Eq. (5.7),

inserting Eq. (5.7) into Egs. (5.21)-(5.25) leads to the approximate envelops as

1 & giab=f | Emk el f Aok Lk _
0= —— 2'1---. Ax 1 + g s f{_]i‘l.’ T o . :Er:}ﬁ)
12kRS 7 ‘ 2 .
FFg  Era®™® 23=~F@r E-&ya®**

A=FFE-h A ',ﬂunms T

-'i-ai-r-‘l-

(5:27)

Also, in the absence of surface roughness (1% ,4 = @), the loading and unloading

branches reduce to a single curve, which corresponds to the JKR solution for
power-law graded materials.

The envelop curve according to Egs. (5.26)-(5.27) (green line) is shown in
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Fig. 6, where the equilibrium # =J curve (grey line) and the actual path (red

line) are obtained from Fig. 3a. Slight discrepancy is observed between the
envelop curve and the tips of each corrugation in the actual equilibrium curve.

Strictly speaking, this envelop will reduce to the asymptotic equilibrium curve as
4 = @ but only be approximated for any & = 2.
The approximate envelops are completed by the early unloading stage

approximation labeled by olive line in Fig. 6. For the actual # =& curve, the

indentation depth reaches the maximum value (i.e, &,.,) at point G, where the
contact radius also reaches its maximum value simultaneously (i.e,
dl@a) ™ d,..). The segment G—H is the exact evolution path at initial
unloading stage. Under this circumstance, the approximate maximum contact

radius a,, can be calculated from the @7 =& relation implicitly as
a7 ag,) ® d,.. As an approximation of the GH curve, the effective evolution

path during the initial unloading stage in & =a and #=a spaces can be

expressed approximately according to Egs. (5.23)-(5.24) as

it - N Lo
- -~ " —— s Y E—p— =]
@TReIvu ()= S Gy f'rT As g, (9:29)
B
) 4 e v W 3 Tl e .
PriglyFerigdn) = 5 —r| m AT Gy € (2:29)
' (l+&ef + 3 / '
" [; b

where ¢~ @ ¢ Z =¢". Since the range of the contact radius during initial
unloading is within a segment lying between two consecutive tips of corrugation,

the corresponding # =& curve can be explicitly rewritten from Egs.
(5.28)-(5.29) as

ﬂ.-%.;a—-

P (8 )Py () + m———r
I C O

L:igl-."‘-.:l.:; ['ﬂ = dﬁ [;ﬂa;r_r.l] ; [;E'ug":'r'l

with @3, & d" % §.,,,., where d3,, = §~(a,.) isobtained from
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For the parabolic punch with sinusoidal roughness described in Eq. (5.7),
substitution of Eqgs. (5.10)-(5.11) into Eq. (5.30) yields the effective evolution
path during the early unloading stage as

n-;l.-.'-.'l-; o :1-.‘-.‘1-; r-ﬁi-f-.'

P (") e G2 " . e Sl (5.32)
(1 &K)ch o (1~Kk)(Z~K)cER o

for nae £ 0" % 3y, with

1k "'11-—'

ﬁi;iiu GI r-|-|-|| = f&i E_]uzn i_"l I :'-5"‘5'5:1

Consequently, an effective macroscopic description of the response of the

contact system for small 4 can be obtained by combining envelops of the

asymptotic equilibrium curve and the approximate curve during the initial
unloading stage. As pointed by Kesari (Kesari et al., 2010; Kesari and Lew, 2011),
the simpler effective macroscopic contact evolution curve can be used to estimate
the material properties such as material stiffness and surface energy by fitting
experiment data displaying adhesion hysteresis.

A comprehensive comparison between the effective and the actual evolution

curves in a displacement controlled process for P =g, § =a and F =& are

shown in Figs. 7a-c, respectively. The effective evolution curves (P={a%,(d}),

a5,(d), and P=(g3,)) labeled in green do not display the oscillations in the

actual curves (P=(a=(§), @=(J) and #=(a=)) labeled in red. At the maximum

)

indentation depth &, , the maximum contact radius in approximate and actual

curves are a,. and a. respectively. At the instant of jump out, the minimum

as =ax’

indentation depths (negative) in the effective and actual curves are fff , and
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d...., respectively. It is expected that the discrepancies between a,., and &,

as well as ﬁif and &,,, will become small enough and therefore can be

neglected as &/a = .

5.4 Energy loss during a displacement controlled contact process

As shown above, different branches of the equilibrium path in the loading
and unloading phases induced by surface roughness will form a hysteretic loop,
which may lead to an irreversible energy dissipation quantified by its enclose
area. In fact, adhesion hysteresis and the corresponding energy loss have been
found to be a common feature in rough surface adhesion (Goryacheva and
Makhovskaya, 2004; Zappone et al,, 2007; Li and Kim, 2009; Wei et al., 2010;

Kesari et al., 2010). In this section we shall derive an approximate analytical

expression of the energy loss # in terms of the maximum approximate contact

radius @, and other material parameters. To be specific, a parabolic punch

with sinusoidal undulation given by Eq. (5.7) in a hypothetical displacement

controlled experiment will be considered.
Fig. 8 shows the asymptotic # =& curve described by Egs. (5.18)-(5.19)

(grey line) and the corresponding effective evolution described by Egs.

(5.26)-(5.27) and Eq. (5.32) (green line). Starting at point 1, the punch abruptly

jumps into point 2 with an initial contact radius a-, and then the punch is loaded

until the contact radius reaches the approximate maximum value a,.,
corresponding to point 3. After this, the punch is unloaded to point 4 with a
contact radius a, followed by a jump-out instability. The curves labeled by 2-3

and 3’-4 evolve along the approximate envelops during loading and unloading
stages according to Eq. (5.26) and Eq. (5.27), respectively. Moreover, the curve

3-3’ behaves along the effective evolution path during early unloading stage
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according to Egs. (5.32), which also holds true for curve 2-2’ with a,,, replaced
by a..

Before proceeding, it is of assistance to compute a- and a.. Employing the

identity ¢”(@.] = ¢ in Eq. (5.26) gives rise to

i .. COL¥R= L=k i Aok :
a; = EI“H](N 24+ T -f( > ]ﬁ « ARAS } . fBEE)

By solving dé~(a;)/da = @ in Eq. (5.26), one obtains

l:IIIfR'- (L= i 1= 1=

1=k .. & —_——wmitT
TR r| - J& T arAT | . (5.38)

@y ™ T( ﬁfzi“‘-':-:&r

The area enclosed is split into two closed path €; and C., which gives the

energy loss as

,ﬁ"-[ Pdd 4 |upds | (8.36)
“fe 53

where

T

J Pdd = [”mﬁ— JHJ_PM . (5.57)
f pds o |/ Bdd - J pas+ [ pda~ | pas . (5.38)
&3 oL gt ot aigt

In the simplification of Eq. (5.37), the facts that # = { in segment 0-1 together
with dd = 0 in segments 4-0 and 1-2 have been used.

Evaluating the integrals over €; and expanding it around 4 = @ yields

L

i Feati gy A pd Eé': LA I:.:'i':l'a‘. T ipE ik
fpas = () w o (SE
+Q (ALY, (E.39)

where
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By (k) % 7.0+ 91k — 14K° (3.40)
Fy (k) ¥ 286 — 28.6k -+ 6.5k° . (541)

Evaluating the integrals over C. leads to

- 1-ky . #E" :
| Pdg mar(—=—| lae=tga=sjrsnay — (im—ai) . (842)
-"‘..'.- - '\' .

As a result, the total energy dissipated during a loading/unloading cycle can

be expressed as
- K=k, g'LF
-"' ; 11 -I r F %5 - Ln‘l'i C: " &1- n-'.p - ;nah.
H FI: nf[hl "ﬁllklﬂﬁ-:_f“l'—wl)
Ik i

1=ky | PE"
sar (—) |2° Bty —— (el = ) = Y. (B4)
L I

Fig. 9 shows the normalized energy dissipation & /F-4 as a function of
the gradient exponent & under different values of 4 and 4. In this plot, we set
@an ™ 2G> and other parameters are selected here to satisfy the simply

connected condition. The: curve corresponding to A =@ or i =0 evolves

according to the first term in the right hand side of Eq. (5.43), which quantifies

the energy loss solely induced by the jump-in and jump-out instabilities in the
absence of surface roughness. The impact of surface roughness on # is reflected

in the second and third terms of Eq. (5.43), which indicate that the energy

dissipation depends on the surface roughness only through an aggregated

parameter A% 755 Hence it is verified once again and quantitatively that

rougher surfaces (i.e., with larger 4 and #) can induce more energy loss and
may increase the work of separation substantially. Another observation from Fig.

9 is that the energy loss decreases monotonically with k. That is, for the same

type surface pattern, Gibson solid has the minimum value of the energy loss
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among all power-law graded materials. In addition, from the third term in the
right hand side of Eq. (5.43), the energy loss is predicted to increase linearly with

the incremental amount of contact area from initial contact to the finial loading
state. At large indentation depth, @, becomes proportional to §,., according
to Eq. (5.26), hence the energy dissipation is a monotonic increasing function of
U.ae- Similar conclusions about the energy loss for homogeneous isotropic

materials were first made by Kesari and Lew (2011).

6. Concluding remarks

In the present paper, the mechanics of axisymmetric adhesive contact of
rough surfaces involving power-law graded materials is investigated analytically.
A series of general analytical solutions have been obtained with use of the
cumulative superposition and equivalent energy release rate approaches for this
challenging problem. These solutions provide closed-form expressions of
equilibrium relations among applied load, indentation depth and contact radius.
Based on these solutions, an effective macroscopic description of the contact
evolution is obtained for a general punch profile with surface roughness. Besides

the common features as in the case of homogeneous materials, our study reveals

that (1) the pull-off force can be influenced by both the gradient exponent k& and

the modulus variation rate ¢;/& of the power-law graded materials, and hence

the adhesion strength may be optimized by selecting both the surface topography
and the form of material inhomogeneity appropriately. (2) For the considered

power-law graded materials, the energy loss during a loading/unloading cycle is

controlled by the parameter A% /7%, which indicates that for the same type of

surface roughness, the Gibson solid has the smallest value of energy dissipation.
Therefore by introducing the power-law graded materials, the toughness of the

adhesive contact system can be further improved.
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Although the surface roughness is modeled as axisymmetric undulations in
the present study, the roughness strengthening, toughening mechanisms and
rough-adhesion hysteresis mechanism are expected to be fairly general for both
functionally graded and homogeneous elastic solids. Our results may be helpful
for understanding of the adhesive contact behavior of systems involving the
nonhomogeneous materials with rough surfaces, and the solutions suggests
appropriate strategies to improve the interfacial adhesion strength -and
roughness. Furthermore, the closed-form solution obtained in the paper may also

serve as the benchmarks for checking the validity of numerical solution results.
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Appendix A: Solution to the generalized Abel integral equation

The generalized Abel integral equation in (3.9) can be converted to

- . kw - .

(T flalada 4083 7 gda [ #%3(s) ds o
| T e @Y
¢ (T2 -a?)T CE M -at)T 0 (@f -9t

where T( @) isavariable. Sine f{7) isa continuous and differentiable function

of » with f(Q) = @, after a integration by parts, the lefthand side of Eq. (A1)

becomes
T flala da 1 fF . B

s | (T5=a®)T Ffla)da.  (AR)
¥Q I:T;-'ﬁ;]-:- !“ql'._.'

By reversing the order of integration on the righthand side of Eq. (A1) and

using the identity
" (a- ) Fe- g s AS
- . - ."_ - I' - —— .

J (o= T = 7T = s (43)
we can simplify Eq. (A1) as

Y I .
—[ (T*=a~)7 fla)dam [ # 3(s)ds . (&4)
l = R g ) ’

Differentiating both sides of Eq. (A3) with respectto 7 results in

- AT ‘(a)
o =il L@
C(Ti =g T

da . (AB)
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Appendix B: Derivation of the asymptotic equilibrium equation
Inserting Eq. (5.12) into the equilibrium # =& relation given in Egs.

(5.1)-(5.2) leads to

3(a) m a,..,—-n"?‘:( :Z“ . [-GHHE;_{'TG] —-w{{'rm“ j].
(B1)

Flg)mp Lﬁ_.ﬁ[ h]“ : Lm} ..Ll f[ﬁzi._}:fl:‘i{_ﬁﬁji"il;].
(B2}

where

) .Hr,l-"ﬁ:;'_vﬁ nwa ﬁ-m‘m

4, ZI [rr-:( —_ - ~ by }] (B%)
=y ot [k g ()b (B @

Here #, and J,. represent the '-th Struve function and v-th Bessel function of
the first kind, respectively. In addition, the asymptotic form of H, can be

expressed in terms of Y, , which is the v-th Bessel function of the second kind,

as (Abramowitz and Stegun, 1970, p497, Eq. (12.1.29))

Hi'[rrzfﬂ]\?:_‘(ﬁ;‘?ﬂ] ’—?riﬁl_l‘l[ﬂ:;n)i-r_g{:[;_‘ﬂ)g-rill

as A/na = . (BB)

In this limit, the Bessel functions /. and Y. can also be written in the
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asymptotic form as (Abramowitz and Stegun, p364, Egs. (9.2.1)- (9.2.2))

f2nma LA 2nEqa VE &
WEE e (EE-F-1)0E) . e
fInma A 2nma vE 1 .
(= ]\W;W:ﬂsm( ; -—--} EE] (B7)

Combining Egs. (B1)-(B7) gives rise to

d(a) m g (a)+ 270 f(l“ k)ﬂhgi.ﬁ;ftil ﬂ‘.?(gl . (BE)
I.Ir.“
F{-ﬁ} F:Cﬂ') f'l ::}E;e f[ > #].&I:“ﬂiii{ (%l - ﬁ;ﬂ(;—.] {E?J

in the limit of A& == @, where

;:{:E}-ifzsmjl:u[ ay ﬁin(.ﬁﬁ{-i—ﬁ——]ﬁh‘ cr;wﬁznﬁf'-ﬂ-g)}

Y

(E10)

Weyl (Zygmund, 1959) defined the «- fractional derivative of a function

Gz m z la, cws(nx) = &, sinfnx)] (B11)
el
as
d
G (x] = EQ'I" {x] . v awl, (B12)
where
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ACCEPTED MANUSCRIPT

Qax) = cosT- 2w [ cos(ua) + by ain(ra]

i
e
+ IMTE % [a, sln(nx) = &, cos(nx)). (B18)
& &
Under this circumstance, it is easy to conclude that ¢{#} in Eq. (B10) is in fa q

(L=Kk])fZ -fractional derivative of (£ (&} = a 2. o
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Figure captions
Figure 1

A rigid punch with surface roughness is in frictionless adhesive contact with a
flat elastically power-law graded half-space under a normal loading P (negative

when tensile).

Figure 2

Comparison of the equilibrium # =& curves between both rough contact model

(black line) and smooth contact model (pink line) for (a) & = @1 and (b) & = @.

These curves are obtained according to Egs. (5.8)-(5.11) where the punch profile
is specified in Eq. (5.7). The parameters selected here satisfy the simply

connected condition in Eq. (2.2).

Figure 3

Actual path of the contact system taken in a displacement controlled
loading/unloading process for (a) # =J, (b) 4 =& and (c) # =& curves,

respectively. A'’complete adhesion and decohesion process is described in these
figures with the same set of parameters, and the corresponding points are
labeled with the same letter. The actual contact evolution path is only parts of the
equilibrium curves (red solid line) combined with unstable jumps at the tip of

each corrugation (red dashed line).

Figure 4

Variation of the pull-off force as a function of the wavelength 4. (a) An punch with
infinite in-plane size for different values of ; (b) An punch with infinite in-plane

size for various values of ¢y/&; (c) A truncated punch with different finite
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in-plane sizes a.,,. .

Figure 5

Comparison between the equilibrium # =& curve (blue dashed line) and its

asymptotic form (red solid line) for different values of /&, such as (a) 0.1, (b)

0.05 and (c) 0.01. The former is obtained according to Egs. (5.8)-(5.9) while the
latter is plotted according to Egs. (5.15)-(5.16).

Figure 6
Approximate envelops (green line) of the # =& curve and effective contact

evolution path at early unloading stage (olive line). These curves are predicted
according to Egs. (5.26)-(5.27) and (5.32), respectively. For comparison purpose,
the equilibrium curve (grey line) and the actual path (red line) in Fig. 3a are also

included.

Figure 7

Comparison between effective and actual evolutions in a displacement controlled

loading/unloading process for (a) # =4J, (b) § =4 and (c) # =& curves,
respectively. The effective evolutions (#={az, (&)}, #%,(d), and P=(g%]) are

labeled in green, while the actual evolutions (F=(&=(¥]), &=(¢) and F=(g=))

are labeled in red.

Figure 8

Energy loss in a displacement controlled loading/unloading process. The
asymptotic F =4 curve (grey line) is borrowed from Fig. 4c, and the

corresponding effective macroscopic response (green line) including the envelope
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of the asymptotic curve and the approximate initial unloading path are obtained

according to Egs. (5.26)-(5.27) and Eq. (5.32), respectively. The complete loading/

unloading cycle is marked by numbers 0-4 and split into two closed path C, and

€. to facilitate the computation of the energy loss.

Figure 9

Energy loss as a function of the gradient exponent k during a loading/unloading

cycle. Here, @,, represents the approximate maximum contact radius and a,

is the contact radius at the initial contact.
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