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should be equal to the solution of a related static problem. This expectation is justified here. First, the
solution of the static problem is constructed. Then, the asymptotic limit of the transient problem is found,
correcting previously published results.
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1. Introduction

At time t =0, there is an underground explosion, generating
elastic waves. Determining the subsequent wave motion can be
modeled as a variant of Lamb’s problem. Garvin (1956) considered
a plane-strain version in an elastic half-plane with a discontinuous
change in pressure at a point S inside the half-plane. This problem
can be solved by the Cagniard-de Hoop technique. Garvin (1956)
gave the resulting displacement components on the flat traction-
free boundary of the half-plane; see Kausel (2006, Section 5.5)
for an exposition. There have been numerous studies of related
problems; see, for example, Borejko (1987), Tsai and Ma (1991),
Ma and Huang (1996), Wang and Achenbach (1996), Georgiadis
et al. (1999) and Sanchez-Sesma and Iturraran-Viveros (2006).

Thirteen years after Garvin’s paper was published, Alterman
and Loewenthal (1969) gave formulas for the displacement compo-
nents at any arbitrary point inside the half-plane. Their solution
has been reviewed and clarified recently by Sanchez-Sesma et al.
(2013). It is valuable because it is exact and so it can be used for
benchmarking purposes.

The Garvin problem is an initial value problem: how does the
solution behave for long times? Physically, we expect the solution
to approach that of a related static problem. That problem is an
elastic half-plane containing a singularity at the point S. If r and
o are polar coordinates at S (see Fig. 1), the displacement vector
should be directed away from S and it should be singular as r-1.
We construct this solution in Section 2.
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Next, we determine the long-time asymptotic limit of the
Garvin-Alterman-Loewenthal solution, starting with the formulas
given by Sanchez-Sesma et al. (2013). It turns out that this is not
straightforward: indeed, the long-time results given by Sanchez-
Sesma et al. (2013, Section 3.4) are incorrect (but not the dynamic
solution itself). In Section 3, we confirm that the long-time limit is
the static solution described above. The fact that these two solu-
tions agree perfectly implies not only that they corroborate each
other, but provides also a strong indication that the dynamic
solution may be free from errors, because the static and dynamic
solutions were obtained independently.

2. Static solution using integral transforms

Consider a two-dimensional elastic half-plane subjected in its
interior to a dilatative line source. We start the derivation of the
static solution to the problem at hand by considering a full space
containing both the actual source and an image source placed
symmetrically with respect to the position in the plane that will
ultimately form the free surface. Then from the known analytical
solution to this problem, we can infer the stresses that act at the
interface between the upper and lower half-planes forming the full
space. If we then separate the upper and lower half-planes and ap-
ply external tractions equal to the known internal stresses at the
now free surface, equilibrium will be preserved so that the lower
half-plane with the actual source and the tractions at the free sur-
face will elicit exactly the same displacement field as the full space
with the two sources. Applying next tractions at the surface which
are equal in magnitude but opposite in sign to those inferred in the
previous step, we cause that surface to be stress free. Hence, it
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Fig. 1. Full space subjected to one source at the origin.

suffices to find the displacement field elicited by those surface
tractions and subtract these from the full space solution. The latter
are obtained by means of integral transform techniques.

2.1. Full space containing two sources

With reference to Kausel (2006, p. 44, Eq. (3.51)), the displace-
ment field elicited by a line of pressure (dilatative source) acting at
the origin of coordinates in a full space is

1 .

T (1)

where p is the shear modulus and r is a unit vector along the
direction with angle of inclination o with respect to the horizontal
direction x (see Fig. 1).

Next, consider a full space subjected to two sources which are
vertically aligned and are separated by a vertical distance 2z,. For

Fig. 2. Full space subjected to two sources.

convenience, we change the positive direction z to point down into
the lower half-plane (Fig. 2). The mid-plane between the two
sources will ultimately represent the free surface of a half-space,
and z, > 0 will be the depth of the source. Placing the origin of
coordinates at the intersection of the mid-plane with the line con-
necting the sources, then from Eq. (1), the response at some arbi-
trary point is

1 /r; T
=7 @)
2nu\ry 1
where 1; and 1, are unit vectors pointing away from the source and
its image, respectively,

r=1/x*+(z— zo)2 is the source-receiver distance and
ry=1\/X2+(z+ 20)2 is the image source-receiver distance.

We also introduce polar coordinates, writing

X=ry8in0; =r,8in0,, zZ—2zy=11C0S0;, Z-+Zy="T,C0S0,,

3)
so that Eq. (2) becomes

1 (sin01 sin02> 1 <c0561
+ bl ul

e = 2nu\ T - 27

N cos 02). @)

r Ly}
We use Hooke’s law and calculate the stresses, 1, and o, at the
mid-plane (“free surface”, z=0), where ry =r, =r=,/x2 +22.
We find that t,, = 0 (as expected, by symmetry) and
2(x* - 23)
0:(x,0) = =15 = p,(x), (3)
(x> +23)
say, where g, is positive when tensile. Clearly, we can now remove
the upper half-space containing the image source and preserve
equilibrium in the newly formed free surface by application of an
external traction equal in magnitude to and with the same spatial

distribution as o,. This traction is upwards when positive (i.e.,
tensile).

2.2. Fourier transform solution

To solve the problem of the source acting on a lower half-plane
with a free surface condition, it suffices to start from the full space
solution for the two sources already described and add the dis-
placement field caused by a downward (i.e., compressive) external
traction p, applied on the lower half-plane which is equal and
opposite to the stress defined by Eq. (5). Doing this cancels exactly
the internal stresses at the interface between the lower and upper
half-planes.

The Fourier transform of p,(x) is

P, (k) = / p,(x)e*dx = —2|k|e k0 z5 > 0. (6)

From Kausel (2006), modified to account for a z-axis pointing down,
the static stress-displacement relationship in the transform domain
for a lower half-space and a downward traction applied at the free
surface is

(AUX> _1-v(sgnk a? ( 0 ) 2o 172 ™
—iAU; /), o ku \ @ sgnk/\-iP;)" = 2(1-v)’

where v is Poisson’s ratio, AU, and AU, are the Fourier transforms of
Auy and Au,, respectively, and Au, and Au, are the displacements
which need to be added to the full space solution so as to model

a half-space; Au, points down when positive. On the other hand,
for a harmonically distributed source acting on the surface, the
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transfer matrix needed to extend in the transform domain the dis-
placements from the surface to some arbitrary depth z > 0 can be
shown to be given by

_ (1 — |klzb  —kzb )e*"“z
“\ kzb  1-—Jkjzb '

1-a
T 1+4a’

z>0,

SO

< AUy >7l—v<1f|k|zb —kzb ) sgnk a? < 0 >e’”“z
—iAU, )~ ku kzb  1—|kjzb @ sgnk )\ —iP,
_1-v(sgnk—(1-a*)kz @*—(1-a?)k|z < 0 )e*"“z
T oku \ @+ (1-a?)|kjz sgnk+(1—a?)kz |\ ~iP, :

Hence, using Eq. (6),

AU\ _2(1-v) (ilasgnk — (1 - @Kz \ perm
(Au)* 7 (—[1+<1—a2>k|21 )e ' °

The incremental displacements, Au, and Au,, are then obtained by
carrying out an inverse Fourier transform of Eq. (8).

2.3. Vertical displacement

We begin by inverting the exponential term,

1 / e KIEtz0) @-ikx qe — — / e k#+20) cos kx dk
21 ) T Jo
B Z+2o Z+2zp c0s0;
X2+ (z+20)7] WS T

Differentiating this formula with respect to z gives

_ 1 J (z+ V4
[Fel(. z+zo ikx
2 / |k\ e dk = ( 1'% )

C1(1 2@z+2)*)  cos20,
NG s N nr

It follows that

21_71 / ”<|Z(l _ az)ef\ki(zﬂu)e—ikxdk _ %(1 _ az) c0s20,.

2

Hence, inverting Eq. (8) gives

v) 1 [~
5z /%[1 + |kjz(1 —

~2(1-v)fcosb, =z
u ry nrz

[2(1 —Vv)cosb, + r— cos 202} .
2

Auz - _ )}e [Kl( z+zo —ikx dk

(1 —a )cos 202}

-1
T omur;

The total vertical displacement is then obtained by adding u, from
Eq. (4):
1 {cos 6 1

Uy = =——
FT2mu | T

{(3 4v) cos 0, + 2— cos 292} } 9)
This displacement is positive when pointing down.
2.4. Horizontal displacement

From Eq. (8),

21-v) 1
m 2n/ ija®sgnk — kz(1

_2(1-v) 2_
=~ /O[a kz(1

But

Aty =

az )]efik\(przo) efikx dk

a?))e *#20) sin kx dk.

sin 0
2 b

o , X
/ e k=) sinkxdk = = =
0 5]

and the derivative of this formula with respect to z gives

/ ket sin kxdk — S1202.

0 b3

Hence

Aty — 2(1-v) {az sinf, (1- az)zsmzzez}
T I r2

Adding u, from Eq. (4) gives the total horizontal displacement,

1 (sin6; 1 . 2z .
uxfm{ r +E{(3—4V)51n02—gsm202}} (10)

This displacement is positive from left to right.

3. Long-time asymptotics
3.1. Preliminaries

We recall some formulas for the Garvin-Alterman-Loewenthal
solution for an impulsive blast line load, as given by Sanchez-Sesma
et al. (2013). They are given in terms of a dimensionless time,
T =tB/ry, where t is time and g is the shear wave speed. From
Sanchez-Sesma et al. (2013, Eq. (19)): for sufficiently large 7 (so
that all the Heaviside functions therein take the value 1),

Tsin6; Tsin 0,
TULy, =
14/7T2 — 12 215, /T2 — T3
Al G J 7 W
r Im{ o V 35 1 ot
2 q, oq,
+glm{R—ﬂ +2q9z/r \/%/x ﬁ} (11)
T COS 04 TC0S 6,
TUU, =

2114/ 72 —‘c,% 215, /T2 — 1

1 (1 + qu)z 9y 2 qiﬁ qdﬁ
r—zRe{i to Re sz( +2qaﬁ) r

R,y aT
(12)

where tp = /o, Tp = Tppr'1/12 and o is the compressional wave
speed. The quantity q,, solves (Sanchez-Sesma et al., 2013, Eq.
(11a)); this equation is Eq. (16) below. Similarly, q,, solves solves
(Sanchez-Sesma et al., 2013, Eq. (11b)); this is Eq. (17) below. The
Rayleigh functions, R,, and R.; are defined by Sanchez-Sesma
et al. (2013, Eq. (18)); thus, Ry = R(q,,) and R, = R(q,) with

RQ) = 2Q% +1)" - 4Q> V@2 +1y/Q% + a2 (13)

as before, a = B/a is given by Eq. (7) in terms of Poisson’s ratio.
Henceforth, we write Q for q,, or q,; as they satisfy similar
equations.

3.2. Analysis

We are interested in large (dimensionless) time 7. It is conve-
nient to introduce T = el so that we are interested in large |T|.
Leading-order estimates show that Q ~ T. (To see this, replace
the square-roots in Egs. (16) and (17) by Q.) As we require a more
accurate estimate, we start with

A B
Q:T(1+T2+T4+ ) (14)
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where the coefficients A and B are to be found. (We could include
terms such as C/T and D/T® inside the parentheses in Eq. (14),
but subsequent calculation would show that such terms must be
absent.) A quick inspection of Eqs. (11) and (12) suggests that we
will need B in order to estimate the Rayleigh functions correctly:
however, it turns out that the value of B will not be needed.

3.3. Rayleigh functions

From Eq. (14), we obtain

s 2A A*+2B
~TH1+5+ ;

Q < T? T

, 2A+c¢> A’ +2B

Q+C2NTZ<]+ T2 T4 ’

2 _ 2 4
/Q2+C2~T 1Jr2/‘\+zc +SB 4Ai c 7
2T 8T

using vT+x ~1+1x—1x? the constant ¢? will be selected later.
We estimate the terms in Eq. (13). Thus,

4A+1 A*+2B
202 +1~2T% 1+ + ,
< 2T? T

4A+1+(4A+1)2+8(A2+28)>
T? "

414

4A+a>+1 8A +16B—(a>—1)°
V@ +1/QP+a~T? [ 1+ +a2+ il @ -1 :
2T 8Tt
40%1/0%+1y/Q* +a? ~4T*

( 8A+a’+1 8A(a2+1)+16(3A2+23)—(a2—1)2>
x| 1+ + .

(2Q2+1)2~4r‘<1+

2T? 8T*
Hence some calculation gives

2+8A<1—a2>+2+<a2—1>2).

(15)

R~2T*(1-a >
4T

Surprisingly, the terms in B cancel. For later calculations, we require

1 1 8A(1—a®) +2+ (a® - 1)
2~ 1-— .
R 27*(1-a?) 4T*(1 — a?)

3.4. Calculation of A

We find A by substituting into the governing equation for Q.
(This is simpler than substituting into an explicit but complicated
formula for Q. The same method could be used to find B.)

With Q = q,,, (Sanchez-Sesma et al., 2013, Eq. (11a)) gives

7 =Te = cosf,/Q* + a? — iQ sin b,

2
~ Tcos(b(l +2A +2a ) - iTsin02<1 +£2>
2T T

=Te 1% +21—T{(2A+a2)c0502 — 2iAsin6,}. (16)

As the coefficient of T~' must vanish, (2A +a*)cos 0, — 2 iAsin 0, = 0,
we obtain

A=— %aze“’2 €os b, = Ay
say. Thus

2 ity _ 2
Quy ~ T(l - az;‘z cos 92) = tel®2 — ;—T €os 6.

This agrees with the exact formula for q,,, Sanchez-Sesma et al.,
2013, Eq. (15).

Similarly, with Q = q,;, Sanchez-Sesma et al., 2013, Eq. (11b)
gives

Te % = H\/Q? + @ + 2\/Q* +1 - ixQ
2
~ TH<1 [Hra ) + TZ(] +2A+21)
2T 2T
—nx<1 +%>, (17)

where H = zy/r;,X =x/r,and Z = z/r,. AsH + Z — iX = e 712 (see Eq.
(3)), the terms in T' balance. The terms in T~' give

HRA+a*)+Z(2A+1) - 2iXA=0

whence

A= —%ei"z(azH +7) = Ay,

say. An estimate for q,, follows readily.
3.5. Vertical displacement

The vertical displacement is given by Eq. (12). From Eq. (14), we
have

nQ i0; _é
Ewe (l TZ). (18)

Then, we find

(1+2Q%° 9Q 2% ( 4A(1 — ) + 1 - 22 —a4>

R ot 1-@ 4T*(1 - @)
Q’ 2,0Q  T%el® 4A(1 - a?) —a* -1
= (1+2Q) 5~ |1+ 70— @) :
Hence
(14263 00, % 2 0y
Roczx ot * ZR“/; (1 + Zq“/}) ot
_2T% 14 41 —a})—a*-1
1—a? 4T*(1 - a?)

_ 2 _ 2 _ 44
_(1+4Am(l @)+1-2a a>]

4T%(1 — a2)
@it
~ g (2 = 2R~ 1), (19)
Now
2A,5 — 2A,, = @€ cos 0, — e (a’H + 7). (20)
Then, from Eq. (12),
— cos 01 n Cos 0,
Kz 2r1 2r2
+ - [ cos 0, + (a* cos 0, — a*H — Z) cos 205 ]
r2(1 —a?)
_cost  (1+ a®) cos 0,  Zcos26,
T2n 2(1 — a?)r, b}

using H + Z = cos 0,. Finally, using

1-2v 1 3 -4y
2 _ 2 2 _
C=zaow T Aoy Mgy @1
we find precise agreement with the known static result, Eq. (9), de-
rived in Section 2.2.
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3.6. Horizontal displacement

The horizontal displacement is given by Eq. (11). We find

A
R 0t 2(1-a?) 4AT*(1-a?) ’
Q2Q%+1) [, -0Q Tei* 4A1-a®)+1-2a%—a*

R Q JrlE~l—a2 1+ 4T*(1-a?) :
Hence

— qiwt 2 9y q“ﬂ(zqiﬁ +1) 2 9Gu
AR, VT 157427 —— @y 15

2T2ei% 4A,;(1 —a®) +1-2a — a*
1-a2 4T*(1 - a?)
47, (1 —a?) —a* -1 eil2
— l+ 4T2(] _az) Nw(zAaﬂ—zAm("F]),
which is almost the same as Eq. (19). Using Eq. (20), Eq. (11) gives
sin6; sind, 1 . 2 5 .
Ty ST rz(]_az)[smez+{a cosb, —a*H —Z}sin26,]
_sin0; +(1 +0a%)sind, Zsin20,
T 2r | 2(1-ad)n, o

Using Eq. (21), we find agreement with the static result, Eq. (10),
found in Section 2.2.

4. Conclusion

This article has presented two independent solutions for the
long-time asymptotic limit of the dynamic problem of a line blast

load suddenly applied within an elastic half-plane, the so-called
generalized Garvin problem. The need for these solutions arose
after the writers detected an error in the limits given in an earlier
article by Sanchez-Sesma et al. (2013), an error which resulted
from a naive asymptotic approximation. However, as demon-
strated herein, obtaining the correct limit is not entirely trivial.
Thus, for verification purposes, it was necessary to arrive at the
same limits by two independent methods: perfect agreement
was found. The correct long-time limits are given by Egs. (9) and
(10).
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