
International Journal of Solids and Structures 51 (2014) 3604–3618
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r
Shock wave propagation through a model one dimensional
heterogeneous medium
http://dx.doi.org/10.1016/j.ijsolstr.2014.06.021
0020-7683/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: bhatta@caltech.edu (K. Bhattacharya).
Vinamra Agrawal, Kaushik Bhattacharya ⇑
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 December 2013
Received in revised form 15 May 2014
Available online 15 July 2014

Keywords:
Heterogeneous materials
Shock waves
Impact
Hugoniot
We study the problem of impact-induced shock wave propagation through a model one-dimensional
heterogeneous medium. This medium is made of a model material with spatially varying parameters
such that it is heterogeneous to shock waves but homogeneous to elastic waves. Using the jump
conditions and maximal dissipation criteria, we obtain the exact solution to the shock propagation
problem. We use it to study how the nature of the heterogeneity changes material response, the structure
of the shock front and the dissipation.
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1. Introduction

Shock wave propagation in solids has been extensively studied
for a number of decades, see for example Davison (2008) and the
references there. Shocks are described as a moving front across
which the stress, strain and particle velocity suffer a discontinuity.
They occur when subjected to large deformations at high deforma-
tion rates as a result of the nonlinear nature of the equation of
state.

While shocks are idealized as a discontinuity, in reality they
have a structure where the state of stress varies sharply but
smoothly across a narrow region to connect to the limiting states.
This structure is commonly attributed to time-dependent inelastic
process like viscoelasticity (Band, 1960), viscoplasticity (Swegle
and Grady, 1985; Armstrong et al., 2007; Johnson and Barker,
1969), twinning etc. In particular, Swegle and Grady (1985) com-
piled experimental observations of a wide range of metals and
showed that the shock structure follows an universal fourth power
law – the peak strain rate in the shock is proportional to the fourth
power of the jump in stress across the shock wave. They also
proposed a viscoplastic constitutive law consistent with this obser-
vation. Recently, Molinari and Ravichandran (2004) revisited this
analysis following the constitutive framework of Clifton (1971).

The models of shock structure that are mentioned above are
ultimately phenomenological and assume that the material is
homogeneous. However, most experiments are conducted on
polycrystalline media. One would have significant scattering and
dispersion of the elastic and inelastic waves in such a media.
Grady (1998) explored the scattering of waves in solids as an
alternative explanation to the structured shock waves. In this anal-
ysis, elastic modes which were treated using a quasi-harmonic
approximation and statistical mechanics were coupled to a
nonlinear wave propagation problem. It was shown that this
theory produced results in accordance with the single shock data
for metals. However, the proposed model was not able to predict
more complicated loading like two step shocks. A complete
discussion on the fourth power law is presented by Grady (2010).

Structured shocks have also been examined in strongly hetero-
geneous media, and they do not display the fourth power law in
general (Grady, 2010). Zhuang et al. (2003) observed a second
power law in periodically layered composites. This work also
highlighted the role of scattering by using stress sensors interior
to the specimen. Vogler et al. (2012) reinterpreted the observations
and suggested an exponent of 2.4 (instead of 2). They also found an
exponent of 2–3 in particulate composites and linear relation in
granular media. These different exponents in composites are
attributed to the scattering of shock waves (as opposed to elastic
waves).

The scattering of elastic waves (in linear media) has been
widely studied both experimentally and theoretically. Much is
known about periodic media where resonances create a highly fre-
quency dependent response through the use of the Bloch–Floquet
theory (Sun et al., 1968; Lee and Yang, 1973; Nayfeh, 1995). There
is also an understanding of random media and how multiple
scattering leads to diffusive response (Ryzhik et al., 1995).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.06.021&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.06.021
mailto:bhatta@caltech.edu
http://dx.doi.org/10.1016/j.ijsolstr.2014.06.021
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. Schematic representation of the impact problem.

1 It is customary in the study of shocks to specify the constitutive relation as a
(often linear) relation between the shock speed and particle velocity. We report this
relation later for our material.
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In contrast, much less is known about nonlinear wave propaga-
tion in heterogeneous solids. Chen et al. (2004) adapted the Bloch–
Floquet analysis to study plate impact on a periodically layered
medium. They developed an analytic solution for the linear case,
and used it to obtain an approximate solution for the nonlinear
case by making an ansatz about the wave reflections and matching
the impedence to nonlinear response. There is also an extensive
study of interactions at individual interfaces (Davison, 2008, ch.
9) considering characteristic solutions and Riemann invariants.
Since the system also contains rarefaction waves, the interaction
happens over a zone and this makes the analysis quite involved.

In this work, we build on the study of individual interactions to
understand the collective response of a heterogeneous medium with
multiple interfaces. Specifically we consider a one-dimensional
piecewise homogeneous material with perfectly bonded interfaces.
In a typical shock process, the loading happens along the material’s
Hugoniot while the unloading happens along an isentrope. This
leads to a system of shocks and rarefaction waves traveling in
the medium. The interaction between shocks, rarefaction waves
and interfaces happen over a zone and the solutions are not piece-
wise uniform. To keep the problem tractable, we idealize the equa-
tion of state of each segment in a piecewise affine manner so that
there are no rarefaction waves and elastic waves propagate homo-
geneously, and the heterogeneity is limited to shock waves. We
also assume isothermal conditions for simplicity.

It is customary in the study of shock waves to specify an empir-
ical (often linear, (Ruoff, 1967)) relation between the shock speed
and particle velocity. We follow Knowles (2002) instead and
specify the equation of state as a relation between stress and
strain, and supplement it with a kinetic relation that relates the
rate of dissipation at the shock front to the shock speed. This
framework was introduced in the study of phase transitions
(Abeyaratne and Knowles, 1991, 1992), but has also been shown
to be useful in the study of shocks (Knowles, 2002; Niemczura
and Ravi-Chandar, 2011). In our context, this framework allows
us to quickly identify parameters that simplify rarefaction waves
and make the elastic waves propagate homogeneously.

We also neglect the structure of the shock, and treat it as a
discontinuity. It is known (Abeyaratne and Knowles, 1992) that
the kinetic relation can be chosen such that the dissipation at the
discontinuity is exactly equal to that of the dissipation in
structured shocks. It has also been recently shown (Tan and
Bhattacharya, in preparation) that the equivalent sharp
discontinuity treatment is appropriate when the length-scale of
the heterogeneous media is large compared to the inherent
length-scale of the structure shock.

There are a number of powerful numerical methods that can be
used in the study of shock waves in one and higher dimensions for
detailed empirical material models (see for example Zukas, 2004).
These can be used to gain detailed information in specific exam-
ples. Our approach using an idealized model is unable to provide
such high fidelity information. Instead, the simplified framework
that we propose can provide important insight and understanding
about a broad range of phenomena. Further, every numerical
method has limited resolution (even if it is extremely fine), and
this becomes an issue when one has multiple interfaces and reflec-
tions. Our results can be used to benchmark these numerical
studies.

After recalling the governing equations in Section 3, we study
the interaction between a shock wave and an interface in Section 4.
Since there are no rarefaction waves, solutions are piecewise
uniform in space–time and the interaction leads to a Riemann
problem. We are able to solve this Riemann problem analytically.
We show that increasing compressibility dissipates the shock
while decreasing compressibility intensifies the shock. We extend
the analysis to semi-infinite media in Section 5. We show that the
shock speed and state of stress in any segment depends only on the
properties of the first and that segment.

We turn to the impact of a finite medium in Section 6. We take
advantage of the fact that the solution is piecewise constant, and
thus it only remains to follow the shock and elastic waves. We pro-
pose a new object oriented algorithm to solve this problem exactly.
In short, we follow each (elastic and shock) wave and account for
all interactions explicitly. We use this method in Section 7 to study
the influence of parameters like number of interfaces, arrangement
of layers in the target and length of the impactor on the dynamics
of the problem on particle velocity profiles, shock structure and
effective shock velocities. We use it to provide insights into the
optimal arrangement for enhanced attenuation. We conclude in
Section 8 with a discussion of the main results.

2. Problem statement

We analyze a plate impact induced shock propagation through
an idealized nonlinear heterogeneous material. Fig. 1 provides a
schematic illustration of the problem. We use the sign convention
that compression is positive. We have a linearly elastic impactor
traveling at the speed v impact hit a heterogeneous medium or target.
The right edge of the ensemble and the left edge of the impactor
are free, and the impactor is free to separate from the target.

The heterogeneous medium or target is made of N segments or
elements. All the interfaces are perfectly bonded. Each element is
made up of a material that follows a piecewise affine stress - strain
curve as shown in Fig. 1.1 Real materials have an effective stress–
strain curve that is characterized by an elastic linear region, followed
by an yield or Hugoniot elastic limit, and in turn followed by a con-
vex increasing stiffening nonlinear response (Marsh, 1980). We ide-
alize this behavior using a piecewise affine curve. This allows the
problem to be simple enough for detailed analysis while retaining
the essential features like wave–wave and wave-boundary interac-
tions. Specifically, it collapses rarefaction waves on to unloading
shocks. A further idealization is that each material has the same
yield strength (r1), Young’s modulus (E) and density (q). So the
material is elastically homogeneous. However, each material has a
different compressibility ec and thus material is heterogeneous with
respect to shock waves.

We assume for simplicity that the problem is isothermal.

3. Governing equations

We work in a Lagrangian setting. We denote particle velocity,
strain and stress at the particle X in the reference configuration
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at time t to be vðX; tÞ; eðX; tÞ and rðX; tÞ respectively. We assume
that the system is governed by the usual compatibility and
momentum balance equations. Note that we do not need an energy
balance due to our isothermal assumption. Further, in light of our
piecewise affine constitutive assumption as well as the nature of
the impact problem, all solutions to these equations are going to
be piecewise constant in the X � t plane. Therefore, the governing
equations reduce to the following jump conditions (Davison, 2008,
ch. 2):

srtþ q_ssvt ¼ 0; ð1Þ

svtþ _sset ¼ 0; ð2Þ

where _s is the propagation velocity of the wave or discontinuity.
We describe as an elastic wave a propagating discontinuity

where the states on both sides of the discontinuity lie on the same
branch of the stress–strain curve (e.g., from point 1 to point 2 or
from point 3 to point Q in Fig. 2(a)). We describe as a shock wave
a propagating discontinuity where the states on the two sides of
the discontinuity lie on two different branches of the stress–strain
curve (e.g., from point 2 to 3 in Fig. 2(a)).

For an elastic wave, it is easily shown that the two equations
hold simultaneously if and only if

_s ¼ �c :¼ �
ffiffiffiffiffiffiffiffiffi
E=q

p
: ð3Þ

Further, for this wave speed, the two equations above become
degenerate.

For a shock, the equations above are insufficient to prove a
unique propagation speed. Typically, an empirical linear relation
between shock velocity and particle velocity is used (Asay and
Shahinpoor, 1993; Davison, 2008; Meyers, 1994) to deal with this
non-uniqueness. Here, we instead follow Knowles (2002) and spec-
ify a kinetic relation or entropy condition. It is easily shown that the
rate of dissipation or rate of entropy production at a propagating
shock is given by the product of the shock speed and the driving
force which is the signed area between the stress–strain curve
and the line joining the two states (the difference in areas enclosed
by triangle 3PQ and triangle 12P in Fig. 2(a)). The kinetic relation or
entropy condition is an empirical relation between the rate of
dissipation and the shock speed.

We specifically assume the maximally dissipative kinetic relation
that maximizes dissipation amongst all possible admissible shocks
(Knowles, 2008). Thus, for a shock which takes a state on the low-
strain branch to a state on high-strain branch, the maximum dissi-
pation is attained when the low strain state is at point 1 in Fig. 2(a).
Similarly, for a shock which takes a state on the high-strain branch
to a state on low-strain branch, the maximum dissipation is
attained when the low strain state is at point Q in Fig. 2(a). Thus,
(a) 0 0.1 0.2
0

0.2

0.4

v/c →

U
/c

→

(b)

Fig. 2. (a) Illustration of a possible shock wave that satisfies balance laws on r� e
plane. A maximally dissipative loading shock always starts from 1 while a
maximally dissipative unloading shock always starts from Q. (b) Shock speed vs.
particle velocity jump for a maximally dissipative loading shock.
the maximally dissipative kinetic law states that admissible shocks
are limited to the following:

� Loading: shocks loading from low strain branch to high strain
branch start at state 1;
� Unloading: shocks unloading from high strain branch to low

strain branch start at state Q.

We conclude this section by observing that the formulation
above is equivalent to one that specifies a relation between the
shock speed and (jump in) particle velocity. Notice that for our
stress–strain curve, we have

srt ¼ E set� ecð Þ: ð4Þ

We can use this and the jump conditions (1) and (2) to eliminate
srt and set and obtain a relation between the shock speek _s ¼ U
and the (jump) in particle velocity.

�svt ¼ Uc2ec

c2 � U2 : ð5Þ

While this is not linear, it can be approximated by one for a large
range of under-driven shocks as shown in Fig. 2(b).

4. Interaction of a shock wave and a material interface

We begin with a simple problem that reveals the behavior of
shocks at the interface between two elements. We consider two
materials A and B with an interface separating them. They are ini-
tially stress free and a stress r0 > r1 is imposed on the left side of
material A. The X � t diagram of the process is presented in
Fig. 3(a) with the particle velocity and stress constant in each
region. An elastic wave and a shock wave originate at the origin
and travel into material A. The elastic wave travels faster than
the shock-wave, and proceeds unimpeded into material B due to
our constitutive assumption of uniform modulus and density. It
follows from maximally dissipative kinetics that the elastic wave
takes both material A and B to state 1 corresponding to the point
1 in Fig. 3(b). The shock wave that follows takes material A from
state 1 to state 2 shown in Fig. 3(b) with r2 ¼ r0. The jump condi-
tions across the elastic wave and the shock wave is given by

r1 � 0þ qcðv1 � 0Þ ¼ 0; ð6Þ

r2 � r1 þ qUAðv2 � v1Þ ¼ 0; ð7Þ

v2 � v1 þ UAðe2 � e1Þ ¼ 0: ð8Þ

Since r1; e1;r2; e2 are known, we solve these equations to obtain
v1;v2;UA to be

v1 ¼ �
r1

qc
; ð9Þ

UA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r1

qðe2 � e1Þ

r
; ð10Þ

v2 ¼ v1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðr2 � r1Þðe2 � e1Þ

p
: ð11Þ

As soon as the shock traveling in material A hits the interface, three
things can potentially happen:

1. A backward propagating elastic wave appears in material A
taking it to point 3.

2. A forward propagating elastic wave in material B taking the
material from point 1 to point 4.

3. A forward propagating shock wave in material B taking it from
point 4 to point 5.
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Fig. 3. (a) X-t diagram of the shock interaction process. (b) Representation of the stress states on the stress–strain curve.
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However, according to the maximally dissipative kinetics applied
to material B, state 4 has to equal state 1.2 Thus, we do not have
a forward propagating elastic wave in material B. Further, since
the interface is perfectly bonded, states 3 and 5 are equal
(r3 ¼ r5;v3 ¼ v5). Thus, it only remains to compute state 3 as well
as the shock wave UB. We do so by solving the remaining jump con-
ditions – one across the backward elastic wave in material A and two
across the shock wave in material B:

r3 � r2 � qcðv3 � v2Þ ¼ 0; ð12Þ

r3 � r1 þ qUBðv3 � v1Þ ¼ 0; ð13Þ

v3 � v1 þ UBðe3 � e1Þ ¼ 0: ð14Þ

We can solve these for the remaining unknowns r3;v3;UB noting
that r3 and e3 are related through the stress–strain curve. We
obtain

r3 ¼
EeB

c r1 � r2
1 þ ðr2 þ qcðv1 � v2ÞÞ2

2ðr2 � r1Þ þ qcðeB
c c þ 2v1 � 2v2Þ

; ð15Þ

v3 ¼
ðEeB

c ðr1�r2þqcv2ÞÞ�ðr1�r2þqcð�v1þv2ÞÞðr1�r2þqcðv1þv2ÞÞ
qcð�2r1þ2r2þqcðeB

c cþ2v1�2v2ÞÞ
;

ð16Þ

UB ¼
r2 � r1 þ qcðv1 � v2Þ

r2 � r1 þ qcðeB
c c þ v1 � v2Þ

c: ð17Þ

It follows from the equations above that

UB ¼
rUAc

c þ ðr � 1ÞUA
; ð18Þ

where

r ¼ eA
c

eB
c

may be regarded as a compliance ratio.
A few comments are in order. First, we see from (18) that

UB ¼ UA if r ¼ 1 and that dUB=dr < 0. Therefore, we conclude that
if the compliance ratio r < 1 so that the shock passes from a stiff
material to a compliant material, the shock speed decreases and
vice versa. Further, it follows from Fig. 3(b) that the stress follows
the same trend: stresses decrease when the shock passes from a
stiff material to a compliant one, and vice versa. We can not obtain
an expression for r3 in terms of r (as in (18)) because ec terms can
not be eliminated completely from (15).

Second, no forward moving elastic wave is generated when
the shock wave interacts with the material interface. This is
2 Precisely r4 ¼ r1 and then the jump condition implies that v4 ¼ v1.
independent of the compliance ratio. This will prove important in
future discussion. Third, notice that the backward moving elastic
wave eventually brings the entire element to the stress state r5.
Finally, if the compliance ratio r < 1, then the backward moving
elastic wave unloads the material, and vice versa. In a realistic
material where the Hugoniot is curved, the interaction of the
shock wave at the interface depends on the impedance ratio

ðZ ¼ qACA
0=qBCB

0Þ of the two materials involved. Here Ci
0 is the initial

sonic velocity of the material i. The problem is described in Davison
(2008, ch. 3 and 9) and Meyers (1994, ch. 7). We consider the case
where Z < 1. In this case, the shock upon interaction, produces two
shock waves propagating into material A and B. In our model, this
is equivalent to the case when r > 1 where we see a loading elastic
wave traveling back into the material A. For Z > 1, the interaction
results in a shock wave in B and a rarefaction fan in material A. This
is equivalent to r < 1 in our case where an elastic wave of
unloading nature propagates in A. There are no fans here due to
the particular choice of constitutive relation.
5. Shock wave propagation in a semi-infinite medium

We now turn to the heterogeneous material shown in Fig. 1
with multiple segments. As a first step, we assume that the impac-
tor and last element of the ensemble are semi-infinite. This
assumption means that no elastic waves reflect from the free ends
and interact with the advancing shock wave. Further, recall from
the earlier section that no forward moving elastic wave is
generated when the shock interacts with the interface. Together,
these means that the shock wave never interacts with an elastic
wave as it passes through the medium and that the interaction
of the shock wave with each interface is exactly as described in
the previous section. Therefore, we can obtain a solution by a
sequence of solutions to the single interface problem. So the shock
speed at the Nth element can be calculated by recursively applying
(18). We conclude

UN ¼
rNU1c

c þ ðrN � 1ÞU1
; ð19Þ

where rN ¼ e1
c

eN
c

is the compliance ratio of the first and last elements.
This means that the shock speed at the Nth element depends

only upon the incident shock speed and the properties of first
and last element. The arrangement of intermediate materials does
not matter. From (19), it can be observed that UN < U1 (and hence
rN < r1) if eN

c > e1
c . As before, this follows the same trend. Stresses

and particle velocity at the Nth element are also independent of the
arrangement of the intermediate elements. Again, it must be noted
that the receding elastic waves will cause the entire ensemble to
eventually reach rN stress state.
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6. Impact of a finite heterogeneous medium: method

We are now in a position to consider the problem shown in
Fig. 1. This is considerably more difficult than the problems
considered above because the elastic waves reflect off the free
end and interact with the shock. So we have to proceed numeri-
cally. We take advantage of the fact that the solution ðv;rÞ is
piecewise constant in the X � t plane, and thus it only remains to
follow the waves. Our numerical method follows each elastic or
shock wave as it is nucleates, propagates, reflects and otherwise
interacts with other waves. As a first step towards this, we catalog
all possible interactions between waves, interfaces and free-ends.
Note that each of these may be posed (locally in X � t) as a Rie-
mann problem with piecewise constant initial data at the instant
of interaction.
6.1. Individual interactions

We begin by cataloging all possible interactions and the associ-
ated Riemann problems:

1. Reflection of elastic wave from a free edge.
2. Elastic wave interacting with another elastic wave.

(a) Interaction in a linearly elastic medium.
(b) Interaction in a piecewise affine medium.

i. Interaction of elastic waves resulting in the formation of
two elastic waves.

ii. Interaction of elastic waves in low strain branch forming a
compression shock pair.

iii. Interaction of elastic waves in high strain branch forming
an unloading shock pair.
(c) Interaction at the interface of linear and piecewise affine
medium.

i. Formation of two elastic waves.
ii. Formation of a compression shock in the piecewise affine

layer.
iii. Formation of an unloading shock in the piecewise affine

layer.
3. Elastic wave from piecewise affine material interacting with
material boundary.

4. Elastic wave from a purely elastic medium entering a piecewise
affine medium.
(a) Elastic wave of high compression amplitude leads to a com-

pression shock.
(b) High amplitude elastic wave of tensile nature leads to an

unloading shock.
(c) Elastic wave of sufficiently low amplitude passes through

unaffected.
5. Compression shock interacting with an interface.

(a) Interface joining a linearly elastic and a piecewise affine
layer.

(b) Interface connecting two piecewise affine layers.
6. Unloading shock interacting with an interface.

(a) Interface joining a linearly elastic and a piecewise affine
layer.

(b) Interface connecting two piecewise affine layers.
7. Elastic wave interaction with a shock wave.

(a) Interaction with a compression shock traveling in the same
direction.

(b) Interaction with a compression shock traveling in opposite
direction.

(c) Interaction with an unloading shock traveling in the same
direction.
(d) Interaction with an unloading shock traveling in opposite
direction.

8. Interaction of two shock waves traveling in opposite direction.
(a) Interaction of two compression shocks.
(b) Interaction of two unloading shocks.

We find explicit solutions to each of these problems following the
method in Section 4. These are listed in Appendix A.

6.2. Numerical method

Our numerical method follows all the waves in the system. We
treat each wave as an object that contains origin and endpoints in
the X � t plane, the speed, the direction, the state ðr; e;vÞ before
and after the wave, the material in which it is propagating and
the status of the wave. At any instant of time, the status of each
wave that is propagating in the system is active while that of the
others is inactive. We then find the smallest time when any of
the active waves interact with another active wave or interface
or boundary. We then look up the solution to the appropriate Rie-
mann problem, update the list of waves (reclassify as active/inac-
tive or introduce new waves if necessary) and proceed. We have
implemented this in MATLAB.

Notice that this numerical method produces the exact solution
as there is no discretization of either time or space. The only pos-
sible source of errors are the round-off errors in computing the
time of interaction and the explicit solution of the Riemann
problems.
7. Impact of a finite heterogeneous medium: results

All calculations are performed for the following parameters:
q ¼ 2700 kg/m3, c ¼ 6000 m/s, r1 ¼ 200 MPa, E ¼ qc2; v impact ¼
1000 m/s, length of target bar 1 m. The following parameters are
varied from simulation to simulation: length of the impactor L0,
number of segments N and profile of the plateau strain ec (though
the range is always from 0:2 to 0:6). The range of ec is to chosen for
both demonstrative purposes and to keep the relation between the
shock speed and the particle velocity in the linear regime shown in
Fig. 2(b). The analysis holds true smaller values of ec . The length of
all segments are equal so that their length is 1=N.

7.1. Typical results

A typical result is shown in Fig. 4(a). This simulation has
L0 ¼ 1 m;N ¼ 20 and ec decreasing linearly from 0:6 to 0:2 along
the length of the target. The impactor is represented by the region
X 2 ½0;1�m. As mentioned before, the left edge of the impactor
(X ¼ 0 m) and the right edge of the ensemble (X ¼ 2 m) are free.
The impactor is free to separate from the target. However, this phe-
nomenon is not observed during this simulation. The vertical lines
represent the element boundaries. The (narrow) red lines are the
elastic waves while the (bold) black lines are the shock waves.

At the moment of impact (t ¼ 0), we see compressive elastic
waves moving into the impactor and the target followed by a shock
wave in the target. As per our assumption, the target is homoge-
neous to elastic waves. Hence, the elastic waves travel through
the target unimpeded. The compression shock, on the other hand,
interacts with the interfaces setting off backwards propagating
elastic wave at each interface. Since ec decreases (the effective stiff-
ness increases) along the length, the shock speed increases (by
(18)) and the backwards propagating elastic wave further loads
the material. The leading elastic waves in the target and the impac-
tor eventually reach the free end and reflect back as tensile
(unloading) elastic wave. The reflected elastic wave (of unloading
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Fig. 4. Impact problem for L0 ¼ 1 m and ec decreasing linearly.
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nature) in the target interacts with the shock wave as shown. This
interaction leads to formation of new elastic waves which in turn
reflect back and interact with the shock. This kind of interaction
happens over and over again until the compression shock changes
its direction and nature. In other words, the interaction of type 7(b)
happens over and over again until the solution shown in Fig. 21(b)
dominates over the one in Fig. 21(c). It is important to note that the
shock never actually reaches the free edge. The reflection of com-
pression shock as a tensile shock happens very close (but just
before) to the free edge of the target. Meanwhile in the impactor,
the reflected elastic wave (of unloading nature) interacts with a
series of backwards propagating elastic waves (of loading nature)
before interacting with the shock.

Particle velocities measured by velocity interferometry (VISAR)
or Doppler velocimetry (PDV) are often the only way of interrogat-
ing shock waves in experiment and provide valuable insights into
the rise times and peak pressures achieved in the target. A sum-
mary of most commonly used experimental methods can be found
in Asay and Shahinpoor (1993). Fig. 4(b) shows the particle velocity
profiles at X ¼ 0 m (left end of the impactor), X ¼ 1 (the point of
impact) and X ¼ 2 (the right edge of the ensemble) for the result
shown in Fig. 4(a). An important observation of the particle veloc-
ity profile at the free (right) end of the impactor (X ¼ 2) is that the
heterogeneities does not give rise to a structured shock. We see a
series of elastic precursors followed by a sharp rise or spike corre-
sponding to the time compression shock reflects off as unloading
shock. We see this repeatedly in our simulations and is consistent
with some recent experimental observations (Rauls and
Ravichandran, in preparation). Fig. 4(c) shows the variation of
stress at the point of impact (X ¼ 1) for this case. The sharp decline
observed at t � 3:3� 10�4 s corresponds to the time when first
release wave from the impactor hits the impactor/target interface.

Similar results are presented for ec increasing case in Fig. 5(a)–
(c). For ec increasing case e1

c ¼ 0:2, while for ec decreasing case,
e1

c ¼ 0:6. Hence for the same impact speed, initial shock speed
(and hence stress) is higher in ec increasing case. This explains the
difference in stresses at t ¼ 0 in Figs. 4(c) and 5(c). Further, the
receding elastic waves, formed by the interaction of shock wave
with layer interfaces, are of unloading nature. Hence the unloading
nature of the release waves is intensified. At t � 3:3� 10�4 when
release wave hits the impactor/target interface, the impactor sepa-
rates. This is observed in the Fig. 5(c) when the stress becomes zero.
As this release wave goes further into the target, it interacts with
more receding elastic waves leading to the formation of pairs of
unloading shocks (interaction of type 2(b).iii). Under certain condi-
tions like higher impact speeds or higher contrast in the target, ten-
sile stresses develop within these pairs corresponding to the
possibility of spallation. This will be studied in detail in Section 7.4.

7.2. Effect of reflected waves

7.2.1. Shock arrival times
The shock arrival time is the time taken by the compression

shock wave to the reach the free edge of the target before reflecting
off as an unloading shock wave. Since the wave never fully reaches
the free end as discussed above, we define this time T as the time
where the compression shock wave reverses direction. Fig. 6 shows
the plot of shock arrival time T vs the number of elements N in the
ensemble for the case L0 ¼ 5 m. Since L0 ¼ 5 m, the release waves
from the impactor do not reach the shock front. The effect of
release will be studied separately. The figure also shows the shock
arrival time at 1 m for a semi-infinite medium (no reflections)
studied earlier. Note that for the semi-infinite case, the arrival
times are independent of number of interfaces and ec profiles. This
is because the ec profiles are chosen linear and the layers have
identical thickness. This will not hold in general. The reflected elas-
tic waves have two effects on the shock waves. First, it slows down
the shock wave in both cases. This is because the reflected waves
are unloading in nature. Second, it breaks the symmetry: the point
of interaction in the target becomes important as the shock wave is
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slower in the material with increasing ec (progressively more
complaint).

7.2.2. Number of elements
Fig. 6 shows that the number of segments have only a marginal

effect on shock velocity.
Fig. 7(a) and (b). compares the particle velocity profiles (nor-

malized by impact velocity) for different values of N. For compari-
son, calculations were also performed for the case when all the
elements have the same value of ec . In every simulation the total
length of the ensemble is kept constant. Once again, it is observed
that N does not have a significant influence over the particle veloc-
ity profiles. The profiles overlap and are bounded by the homoge-
neous cases of ec ¼ 0:2 and ec ¼ 0:6. In accordance with Fig. 6, the
arrival times remain fairly constant with N. The slow decrease
(increase) observed in ec increasing (decreasing) case in the post
shock phase is the result of the elastic waves between the free edge
and the reflected unloading shock.
7.2.3. Alternating linear and nonlinear material
In order to further understand the significance of reflected elas-

tic waves, we study a different type of target. Given N (even), we
construct a target of N � 1 layers such that every alternate layer
(total of N=2� 1 layers) is purely elastic and remaining N=2 layers
are elastic plastic with identical values of ec . The layers have
identical length while the total length of the target is 1 m. The
calculations were performed for various values of N for ec ¼ 0:2
and 0:6. Fig. 6(a) and (b) show the particle velocity profiles at the
free end of the target.

Unlike in Fig. 7(a) and (b), the particle velocity profiles vary
with N in Fig. 6(a) and (b). The reflected elastic wave can interact
with either elastic wave in the elastic layer (interaction of type 2
in Section 6.1) or the shock wave in the piecewise affine layer
(interaction of type 7(b) in Section 6.1). This leads to different evo-
lution of shock profile as N changes. From Fig. 8(a) and (b), we can
see that the arrival times decrease as N increases. This is particu-
larly interesting because the total length of the elastic layers is
same for all N. This effect is purely due to the different interactions
of reflected waves. The decrease in arrival times imply that the
effective shock speed is increasing with N. In the case of ec ¼ 0:6,
the shock speed in the system is slower than that in ec ¼ 0:2 case
which accounts for the difference in arrival times.

The decrease observed in the particle velocity profiles after the
peak is achieved is due to the tensile shock hitting the elastic layer
on the way back. The magnitude of this decrease is independent of
N because the Riemann problem remains independent of the thick-
ness of the layers. There is an increase when the next piecewise lin-
ear layer is encountered followed by another decrease at the next
elastic layer. These oscillations continue until either the release
wave enters the target or the tensile shock hits the target/impactor
interface. The period of oscillation is determined by the thickness
of the layers and number of interfaces in the target. This is consis-
tent with the analysis in Chen et al. (2004) and Chen and Chandra
(2004).
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7.3. Effect of ec profiles

In Sections 7.2.1 and 7.2.2, we considered a linear variation in
the value of ec along the length of the ensemble. We now study
other variations. Through out this section, we take the impactor
length to be very long L0 ¼ 5m so that we do not encounter a
release wave.
7.3.1. Power law profile
We consider a power law variation of ec along the length of the

target between the values 0.2 and 0.6. Specifically, we assume that

ei
c ¼ aþ b

i� 1
N � 1

� �n

; i ¼ 1; . . . ;N; ð20Þ

where a ¼ 0:2; b ¼ 0:4 for the increasing case and a ¼ 0:6; b ¼ �0:4
for the decreasing case. We take N ¼ 20. We study the particle
velocity profiles for linear, quadratic, cubic and quartic exponents
(n ¼ 1; . . . ;4). The particle velocities at end of the target are shown
in Fig. 9(a) and (b). We see that the shock arrival times decreases
with n in Fig. 9(a) while it increases in Fig. 9(b). We understand this
by recalling from our analysis in Section 4, that the shock slows
down if ec increases across the interface. As n increases, the increase
in ec is slower in the beginning of the ensemble.
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7.3.2. Step ec profiles
Next we consider a step profile for ec along the length of the

ensemble. We assume that ec takes one value (0:2 for increasing
and 0:6 for decreasing) in ½0; kÞ and another (0:6 for increasing
and 0:2 for decreasing) in ½k;1�. The particle velocities at the end
of the target are shown in Fig. 10(a) and (b) for various values of
k. For comparison, particle velocity profiles for ec ¼ 0:2 and 0:6
constant (ref: Fig. 7(a)) are also shown. For the increasing case
(Fig. 10(a)), the arrival time decreases with increasing k since it
travels larger distances in the stiffer ec ¼ 0:2 material. The opposite
is true for the decreasing case (Fig. 10(b)). Notice that in both cases,
profiles corresponding to constant ec bound the k�dependent
profiles.
7.3.3. Alternating material
In order to further understand the role of ec in the problem, we

consider a target with alternate arrangement of ec ¼ 0:2 and
ec ¼ 0:6 layers. The particle velocity profiles at the free edge of
the target are shown in Fig. 11(a) and (b). Notice that unlike
Fig. 8(a) and (b), N plays almost no role in this case till the peak
ratio of v=v impact is achieved. In Fig. 8(a) and (b), the reflected elas-
tic wave was interacting with either shock wave (in a piecewise
affine medium) or an elastic wave (in a purely linear medium). In
that case, the particle velocity profile changed drastically
0 0.2 0.4 0.6 0.8 1 1.2
x 10

−3

0

0.5

1

1.5

v/
v im

pa
ct

Time (s)

Linear
Quadratic

Cubic
Quartic

(b) εc decreasing

files with ec exponent for L0 ¼ 5 m.
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3 For a non-piecewise equation of state, these would be fans.
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(marginally) when the reflected elastic wave interacted with an
elastic (shock) wave. We also take a hint from our results in
Fig. 7(a) and (b) where the particle velocity profiles were (almost)
independent of N.

In this case, the reflected elastic wave interacts with either a
slow propagating shock (in ec ¼ 0:6 layer) or a fast propagating
shock (in ec ¼ 0:2 layer). In both cases the particle velocity profiles
only change marginally. This explains why the profiles overlap in
Fig. 11(a) and (b) till the arrival time. N starts to play a role after
the compression shock reflects off the free edge as an unloading
shock. We observe small oscillations in the particle velocity pro-
files after the reflection. These correspond to the interaction of
unloading shock at material interfaces on its way back. The argu-
ment is similar to the one presented in Section 7.2.3.

7.4. Effect of release waves

The impact initiates compressive elastic waves in the impactor
(see Fig. 4(a)) which is then reflected from the free boundary
(release wave). These waves are of unloading nature. Since the
elastic wave speed is always greater than the shock speed, the
release wave eventually catches up with the shock front. Till
now, we avoided this interaction by taking a long impactor,
L0 ¼ 5 m. We now include this interaction by taking L0 ¼ 0:5 m.

In a heterogeneous target, the release waves interact with the
receding elastic waves from the interfaces before interacting with
the shock wave. These receding waves can either be of loading or
unloading nature depending on the compliance ratio of the layers
in the target. As a result, the unloading nature of the release waves
can be reduced or intensified. This is evident while comparing the
X � t diagrams of Figs. 4(a) and 5(a). In Fig. 4(a) which corresponds
to decreasing ec and thus increasing stiffness, the receding elastic
waves are of loading nature which reduces the unloading nature
of release waves. This is evident from the fact that we do not see
separation between the impactor and the target. On the other
hand, in Fig. 5(a) where one has increasing ec and thus decreasing
stiffness, the unloading nature of the receding wave intensifies the
release wave resulting in the separation of impactor and the target
(Fig. 5(c)). Further, interaction of release waves with receding elas-
tic waves (of unloading nature) in the target leads to the formation
of a pair of unloading shocks.3

Fig. 12(a) and (b) show the X � t diagrams of the impact process
on a target with N ¼ 2 and N ¼ 20 layers. In both cases, the ec

increases in equal steps from e1
c ¼ 0:2 in the first layer to

eN
c ¼ 0:6 in the final layer. Hence by (19) the ratio of the shock

speeds and stresses in the first and last layers would be the same
if we neglected the reflections from the free edge and the release.
However, the contrast at the interface for the case N ¼ 2 is much
larger than the contrast at any of the interfaces for the case
N ¼ 20. Therefore, according to the analysis in Section 4, the
unloading of the receding elastic wave for N ¼ 2 case is stronger
than any of the receding elastic waves in N ¼ 20 case. This strong
receding wave for N ¼ 2 interacts with the release wave and can
lead to negative (i.e., tensile) stresses as shown in Fig. 12(a). This
in turn can lead to spallation. On the other hand, the stresses do
not become negative for the case N ¼ 20 as shown in Fig. 12(b)
since the receding waves are gentler.

Spallation resulting from reflections from free edges has been
extensively studied (see for example Bushman et al., 1992). Recent
numerical and analytic studies of stress wave propagation in heter-
ogeneous media have also shown that there can be significant var-
iation in the critical stress and location of spall due to internal
stress variations (Erzar et al., 2011; Vogler and Clayton, 2008;
Wang et al., 2006). The example here shows that internal interfaces
with high contrast can also give rise to internal receding waves
which can result in spallation.

7.5. Dissipation

The shock is dissipative by nature. Since the elastic waves
change the stress state of the medium along the same branch of
the stress–strain curve, they do not dissipate any energy. From
Fig. 2(a) the dissipation (per unit volume) due to shock UA is the
area between the stress strain curve and the line 2–3. In all the



Fig. 12. X � t diagrams for target with ec increasing and impactor length L0 ¼ 0:5 m.
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Riemann problems, we assume a maximally dissipative kinetics.
This is equivalent to saying that the stress state ahead of the shock
wave is r1. Using the maximally dissipative kinetics, we can prove
that point 4 in Fig. 3(b) coincides with point 1. Fig. 13 shows the
total dissipation in the ensemble due to the compression shock
only. The ec profiles chosen are linear ranging from 0:2 to 0:6 and
the impact velocity v impact ¼ 1000 m/s. The qualitative behavior of
dissipation in Fig. 13 is more important that the quantitative values.

The dissipation shows a nominal increase with N when L0 ¼ 5 m.
This is because the release waves do not interact with the compres-
sive shock and hence the dynamics is almost independent of N. This
is consistent with Fig. 7(a) and (b) where the particle velocity pro-
files at the free edge show almost no dependence on N. Since the
stress state before the compression shock is always r1 because of
maximally dissipative kinetics, the shock speed directly corre-
sponds to the dissipation involved. In other words, the dissipation
plots can be explained using the arguments used before.
8. Conclusions and discussion

In this paper, we have studied impact problems on a one-
dimensional heterogeneous medium with the goal of gaining
insights into the overall shock propagation phenomenon in the
presence of multiple interfaces. The propagation of shock waves
in homogeneous solids has been extensively studied (Davison,
2008). The interaction of a shock with a single interface has been
studied extensively in the literature (Davison, 2008, ch. 3 and 9).
However, relatively less is known about the overall consequence
of the interaction of a shock with multiple interfaces and this is
the focus of our work.

We use the constitutive framework proposed by Knowles
(2002), but show that this is consistent with the more traditional
approach of specifying a relationship between the particle velocity
and the shock speed. In order to focus on shock wave propagation,
we considered a model situation where the medium is heteroge-
neous to the shock wave but homogeneous to the elastic waves
and where unloading rarefaction fans collapse into unloading
shocks. In light of this constitutive assumption, our solutions are
always piecewise constant in the x� t plane. Thus, the whole prob-
lem reduces to one of understanding interactions between various
waves and interfaces. We classify all such interactions and use an
object oriented program to track them and advance all the waves
and shocks in time.

There are a number of powerful numerical methods that can be
used in the study of shock waves in one (and higher) dimensions
for detailed empirical material models (see for example Zukas
(2004)). While these provide detailed information in specific
examples, our idealized approach allows us to gain insight and
understanding about a broad range of phenomena. Further, every
numerical method has limited resolution (even if it is extremely
fine), and this becomes an issue when one has multiple interfaces
and reflections. Our results can be used to benchmark these
numerical studies.

We investigated in some detail the problem of shock mitigation
(respectively intensification) in a medium with decreasing (respec-
tively increasing) stiffness. We found the surprising result that if
we neglect all reflections as for example in a semi-infinite medium,
the instantaneous shock wave speed and state of stress in the Nth
element depends only on the properties of first and Nth element
(Section 5). Of course the shock arrival time (or the overall shock
speed) depends on the actual profile since the overall shock speed
is the harmonic mean of the segment-wise shock speed. Elastic
waves reflected from the free edge change the situation. Since each
reflected elastic wave is unloading in nature, it slows down the
shock wave. While each interaction is small, they can collectively
lead to significant differences (Section 7.1).

A more important distinction is observed in a situation with a
small impactor that results in a release wave (Section 7.4). This
is due to the interaction between this release wave and the elastic
waves from the interaction between the shock wave and the mate-
rial interfaces. In particular, for a material with decreasing stiffness
as would be used for shock mitigation, these interactions can lead
to an unloading shock, a tensile state of stress and possible spalla-
tion. This happens when the drop in stiffness is sudden, but not
when this is more gradual. Spallation resulting from reflections
from free edges has been extensively studied (see for example
Bushman et al. (1992)). Recent numerical and analytic studies of
stress wave propagation in heterogeneous media have also shown
that there can be significant variation in the critical stress and loca-
tion of spall due to internal stress variations (Erzar et al., 2011;
Vogler and Clayton, 2008; Wang et al., 2006). Our example shows
that internal interfaces with high contrast can also give rise to
internal receding waves which can also result in spallation.
Further, we observe that the amount of energy dissipated increases
with the number of interfaces (Section 7.5). We thus conclude that
is is preferable for mitigation to have a material with many layers
(graded material) than one with an abrupt change in stiffness.
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A recurring observation is that heterogeneities do not necessar-
ily lead to structured shocks. We see a series of elastic precursors
followed by a sharp rise or spike corresponding to the time com-
pression shock reflects off as unloading shock. This is consistent
with some recent experimental observations (Rauls and
Ravichandran, in preparation). This remains true also in materials
with alternating stiffness (or alternating linear and nonlinear
materials). However, in such materials, one sees an oscillation in
the particle velocity at the free surface. This is consistent with
observations (Zhuang et al., 2003) and previous numerical studies
(Chen et al., 2004; Chen and Chandra, 2004).
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Appendix A

In this appendix, we present solutions to the Riemann problems
mentioned in Section 6.1. In order to solve each Riemann problem,
the procedure is essentially the same as in Section 4 with minor
differences.

A.1. Interface interactions

a. Elastic wave from a purely elastic medium entering a piecewise
affine medium

Fig. 14(a) and (b) shows the schematic of such an interaction. As
shown in Fig. 14(b), material A is purely elastic while material B is
piecewise affine. Depending upon the states a and b in Fig. 14(a),
there are three possible cases.

Case 1: No shock formation
This happens when either ra < r1; rb 6 r1 or ra > r1; rb P r1. In
(a)

Fig. 14. Schematic diagram of the elasti

(a)

Fig. 15. Elastic wave interaction le
this case, the elastic wave passes through the interface without any
interruption.

Case 2: Formation of compression shock
The compression shock arises when ra 6 r1 and rb > r1. If
ra ¼ r1, then we have to look at the state just ahead of the point
of interaction to decide if case 1 is applicable or case 2. The X � t
diagram of this process is presented in Fig. 15(a). The stress state
is depicted in Fig. 15(b). The maximal dissipation criteria requires
state e to coincide with r1. The shock speed U is given by

U ¼ cð�2r1 þ ra þ rb þ cqðva � vbÞÞ
�2r1 þ ra þ rb þ cqðecc þ va � vbÞ

:

Case 3: Formation of unloading shock
This scenario arises when ra P r1 and rb < r1. Like in case 2, if
ra ¼ r1, we have to look at the state ahead of the point of interaction
to decide if case 1 is applicable or case 3. The Riemann problem is
presented in Fig. 16(a) and (b). In this case, the shock speed is
given by

U ¼ c � Eecc
2r1 � ra � rb þ qcðecc � va þ vbÞ

:

Notice that state d in Fig. 16(b) can very easily be unloading in nat-
ure which can lead to the separation of A–B interface. This allows us
to study spallation and re-compression shocks.

b. Compression/unloading shock entering a purely elastic medium
We have already studied the interaction of compression shock

at the interface of two piecewise affine materials in Section 4.
Now we look at the interaction of compression shock wave at
the interface of piecewise affine material and purely elastic mate-
rial. Fig. 17(a) and (b) depict the interaction. As expected, we get
two elastic waves originating from the point of interaction. The
state d in material A is given by

rd ¼
1
2

r1 þ rb þ qcðva � vbÞð Þ;

vd ¼
1

2qc
r1 � rb þ qcðva þ vbÞð Þ:
(b)

c wave interaction at A–B interface.

(b)

ading to a compression shock.
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The analysis of unloading shock in this case is very similar. The
schematic is presented in Fig. 18(a) and (b). The expressions for
rd and vd are exactly the same as above.
c. Unloading shock entering another piecewise affine material
The interaction of unloading shock at the interface of two piece-

wise affine materials results in another unloading shock. The pro-
cess is exactly the same as described in Section 4. The process is
(a)

Fig. 16. Elastic wave interaction le

(a)

Fig. 17. Compression shock wave en

(a)

Fig. 18. Unloading shock wave ent

(a)

Fig. 19. Unloading shock wave entering
depicted by Fig. 19(a) and (b). The interaction leads to formation
of an unloading shock, a receding elastic and forward propagating
elastic wave. From our maximum dissipation argument, we know
that the forward propagating elastic wave will not exist and state
e will coincide with r1. The speed of the new unloading shock is
given by

UB ¼ c
r1 � rb þ qcð�va þ vbÞ

r1 � rb þ qcðeB
c c � va þ vbÞ

� �
:

(b)

ading to an unloading shock.

(b)

tering a purely elastic material.

(b)

ering a purely elastic material.

(b)

another piecewise affine material.
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A.2. Wave–wave interactions

a. Interaction of elastic wave and shock wave traveling in the same
direction

Next, we study the interaction between an elastic wave and a
shock wave in the same direction. Fig. 20(a) and (b) present the
schematic of the interaction. The speed of the new shock is given by

U2 ¼ c
�r1 þ r3 þ qcðv1 � v3Þ

�r1 þ r3 þ qcðecc þ v1 � v3Þ

� �
:

The analysis for unloading shock case is exactly the same.

b. Interaction of elastic wave and shock wave traveling in opposite
directions

Next, we consider the situation when the waves travel in oppo-
site direction.

Fig. 21(a) depicts the schematic of the Riemann problem under
consideration. A shock wave traveling with speed U interacts with
an elastic wave traveling in the opposite direction. The Riemann
problem involves connecting states 2 and 4 as shown in the figure.
Fig. 21(b) and (c) show two possible outcomes of this interaction,
which are unloading and compression shocks respectively. Using
jump condition and maximal dissipation criteria to solve each case
individually, we obtain the following expressions for U1 and U2.

U1 ¼ c � Ecec

r2 þ r4 � 2r1 þ qcðecc � v2 þ v4Þ
; ð21Þ

U2 ¼ c � Ecec

2r1 � r2 � r4 þ qcðecc þ v2 � v4Þ
: ð22Þ
(a)

Fig. 20. Interaction of elastic wa

Fig. 21. Interaction between a compr
Here r1 is the yield strength of the material (as in Fig. 3(b)). For
the unloading (compression) shock to be applicable, U2 (U1) should
be from 0 to c. In most of the cases, only one solution is applicable.
However, if both shock speeds lie in ð0; cÞ, the dissipation values
are compared. As explained in Section 7.1, this problem is crucial
in the analysis of shock wave propagation.

c. Interaction of two elastic waves in a piecewise affine layer
Now we consider the interaction between two elastic waves in

a piecewise affine layer (interaction 2(b) in Section 6.1). Two elas-
tic waves of unloading nature in high strain branch of the stress
strain curve can lead to the formation of a pair of unloading shocks.
This type of interaction is observed in Fig. 5(a) when the release
wave from the impactor interacts with the receding elastic waves
in the target. The schematic of the interaction is shown in
Fig. 22(a) and (b). The shock speeds U1 and U2 are given by

U1 ¼ U2 ¼ c
Eec � ½E2e2

c þ ðr3 þ r2 � 2r1 þ qcðv3 � v2ÞÞ2�
1=2

r3 þ r2 � 2r1 þ qcðv3 � v2Þ
:

ð23Þ

Similarly, the interaction of two elastic waves (of loading nat-
ure) in the low strain branch can lead to the formation of a pair
of compression shocks. Fig. 23(a) and (b) show the schematic of
such a process. The shock speeds obtained by solving such a Rie-
mann problem are given by

U1 ¼ U2 ¼ c
�Eec þ ½E2e2

c þ ðr3 þ r2 � 2r1 þ qcðv3 � v2ÞÞ2�
1=2

r3 þ r2 � 2r1 þ qcðv3 � v2Þ
:

ð24Þ
(b)

ve with compression shock.

ession shock and a elastic wave.



(a)

(b)

Fig. 22. Interaction of two elastic waves forming a pair of unloading shocks.

(a)

(b)

Fig. 23. Interaction of two elastic waves forming a pair of compression shocks.

(a) (b)

Fig. 24. Interaction of two compression shock waves forming a pair of elastic waves.

(a)
(b)

Fig. 25. Interaction of two elastic waves forming a compression shock in the piecewise affine layer.
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d. Interaction of two shock waves traveling in opposite direction
Another Riemann problem of concern is the interaction

between two shock waves traveling in opposite directions.
Fig. 24(a) and (b) show the schematic representation of such a
problem involving compression shocks. As expected, the shocks
annihilate and form two elastic waves. The jump conditions across
the two elastic waves gives us state 4. Similarly, the interaction of
two unloading shocks lead to the formation of two elastic waves.
e. Interaction of two elastic waves at the interface of linear and
piecewise affine layer

Although a pretty rare event, this becomes important in certain
cases like a target with alternate layers of linear and piecewise
affine material. This type of interaction can yield shocks in the
piecewise affine layer under certain conditions. Fig. 25(a) and (b)
show the schematic of the problem where compression shock
forms in the piecewise affine layer. Solving the Riemann problem,
the shock speed obtained is given by

U1 ¼ c � Ecec

r2 þ r3 � 2r1 þ qcðEec � v2 þ v3Þ
: ð25Þ

Similarly, Fig. 26(a) and (b) represent the case of tensile shock forma-
tion. An expression can be obtained for tensile shock speed as follows

U1 ¼ c þ Ecec

r2 þ r3 � 2r1 � qcðEec þ v2 � v3Þ
: ð26Þ



(a)
(b)

Fig. 26. Interaction of two elastic waves forming a compression shock in the piecewise affine layer.
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