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a b s t r a c t 

A method for reconstructing the locations of point-like scatterers in an elastic half-space is developed in 

this article. Point-like scatterers are characterized by fluctuations of the Lamé parameters and the mass 

densities from the background structure of the wavefield. A representation of the wavefield is realized 

with the monopole and dipole Green’s functions. The main contribution of the present work is to clarify 

the far-field properties of the Green’s functions for both the monopole and dipole sources, which yields 

the pseudo-projection approach to the wave problem. Indicator functions that reconstruct the locations 

of point-like scatterers are defined by the far-field operator derived from the pseudo-projections and the 

near-field observation. Numerical computations were carried out to verify the accuracy of the pseudo- 

projection method. The sensitivities of the accuracy of the reconstruction results for the proposed method 

to random noise, the grid resolution at the free surface, and the analyzed frequency were also examined. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Inverse scattering analysis techniques have been widely studied

ue to their inherent appeal as well as their potential applications,

uch as in geophysical exploration, site characterization, medical

maging, and non-destructive testing. Many significant articles

n this field have already been published and the number of re-

earch articles is growing rapidly. This being the case, Colton and

ress (2018) published a review article on the development of the

athematical theory of inverse scattering analysis since the 1970s.

s they mention, it is well known that sampling methods such

s the linear sampling, factorization, and topological sensitivity

ethods, also have had important roles in the history of the

evelopment of inverse scattering analysis. 

The application of the linear sampling method ( Colton and

irsch, 1996 ) to an elastic wavefield can be seen in Fata and

uzina (2004) and Baganas et al. (2006) . They formulated the

ear-field equation and gave the mathematical details its prop-

rties for an elastic half-space. Pourahmadian et al. (2017) pre-

ented a generalized linear sampling method for the recon-

truction of heterogeneous fractures. The factorization method

irsch (1998) and Kirsch (2011) , which clarifies the range of

he far-field operator by factorization, is also a useful tool for
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lastic wave scattering problems. Hu et al. (2016) applied the

actorization method to the solid-fluid interaction problem.

 Bazán et al., 2017 ) applied the factorization method together

ith maximum product criterion ( Bazán et al., 2012 ) to the shape

econstruction problem in an elastic wavefield. Applications of the

opological sensitivity methods based on the topological derivative

 Sokolowski and Zochowski, 1999 ) to an elastic wavefield can

e seen in Ammari et al. (2013) , in which they used the elastic

oment tensors ( Ammari and Kang, 2007 ). The MUSIC algorithm

e.g., Cheney, 2001 ) is also a sampling method which identifies the

ocations of scatterers. The application to the elastic wavefield of

he MUSIC algorithm can be seen in Gintides et al. (2012) , who re-

onstructed point-like scatterers in 2D full space using one type of

lastic scattering wave (P or S waves). Ammari et al. (2005) applied

he MUSIC algorithm to locating small electro-magnetic buried

nclusions in a half-space. They also applied their method for

mall elastic inclusion ( Ammari et al., 2008 ), in which the elastic

oment tensor played a role in constructing the indicator function.

One of the authors of the present article also developed

he pseudo-projection approach for the MUSIC algorithm

 Touhei, 2018 ) in order to apply it to a 3D elastic half-space.

he method derives the far-field operator from the near-field

bservation by applying the pseudo-projection, which extracts

ne type of wave (P, SV, or SH waves) from the wavefield in an

lastic half-space. In addition, the range of the far-field operator

s constructed with respect to each probing point in order to

https://doi.org/10.1016/j.ijsolstr.2019.04.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. Schematic of the scattering problem. An incident wave generated from a point source propagates to point-like scatterers. We observe the scattered waves propagating 

back to the free surface. 
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observe the locations of the point-like scatterers carefully. These

properties of the method are expected to provide accurate imaging

results and differ from those in the articles mentioned above.

The method, however, was formulated for point-like scatterers

characterized only by the fluctuation of the mass density from the

background of the wavefield. 

This article develops an inversion method for identifying loca-

tions of point-like scatterers characterized by the fluctuation not

only of the mass densities but also of the Lamé parameters from

the background structure of an elastic half-space. The method itself

is a qualitative one as in a group of the sampling methods and is

an extension of the method presented by Touhei (2018) . In the pre-

vious work by one of the authors, however, the pseudo-projection

was only for a Green’s function due to a monopole source. In ad-

dition, the characterization of the far-field operator derived from

the pseudo-projection was not complete. When dealing with point-

like scatterers characterized by the fluctuation of the Lamé param-

eters and mass densities, Green’s functions for both monopole and

dipole sources are necessary. In view of the above, the task of the

present article comprises the following four points: 

(i) Clarify the far-field properties of the Green’s functions for

both monopole and dipole sources in terms of polarization

vectors. 

(ii) Construct the pseudo-projections for the Green’s functions

for both monopole and dipole sources. 

(iii) Verify the factorization of the far-field operator derived from

the pseudo-projections. 

(iv) Characterize the range of the far-field operator derived from

the pseudo-projections. 

For the purpose of the task of the present article, the outline

of the formulation of the present method is organized as follows:

First, in Section 2.1 , the problem considered in this paper is de-

fined. In Section 2.2 , a representation of a scattered wavefield by

Green’s functions for the monopole and dipole sources is shown.

After that, the pseudo-projections for Green’s functions for both

the monopole and dipole sources, which are found to be the same

due to the structure of the directivity tensors, are introduced in

Section 2.3 . In Section 2.4 , the far-field operator is obtained by

applying the pseudo-projections to the near-field operator in the

Born regime. 

2. Theoretical formulation 

2.1. Definition of the scattering problem and basic equations 

Fig. 1 shows the outline of the wave problem dealt with in this

article. The wavefield is a 3D elastic half-space, in which the in-

cident waves from point sources at the free surface propagate to-

ward the point-like scatterers embedded in the half-space. We ob-

serve the scattered waves propagating back to the free surface. The

problem considered in this article is how to develop a method for

identifying the locations of point-like scatterers characterized by

fluctuations of the Lamé parameters as well as the mass densities

from the background structure of the wavefield. 
The analysis is carried out in the frequency domain with time

actor exp (−iωt) , where ω is the circular frequency and t is the

ime. A Cartesian coordinate system is employed to express the

avefield. The components of the spatial point in terms of the

artesian coordinates are expressed as 

  = (x 1 , x 2 , x 3 ) ∈ R 

2 × R + = R 

3 
+ (1)

here x 3 denotes the vertical coordinate where the positive di-

ection is downwards and x 3 = 0 denotes the free surface of the

lastic half-space, which is denoted by S . The subscript index for

he vectors and tensors describes the components of the coordi-

ate system and the summation convention is applied to the sub-

cript index. We set the source and sensor grids in S to identify

he location of the point-like scatterers, for which the number of

rid points in S is finite. Let the set defining the source and sensor

rids be denoted by 

 g = { � x p } N p=1 ⊂ S (2)

here N is the number of grid points in S g . 

The Lamé parameters and the mass density are expressed as 

λ( � x ) = λ0 + ̃

 λ( � x ) 

( � x ) = μ0 + ˜ μ( � x ) 

ρ( � x ) = ρ0 + ˜ ρ( � x ) (3)

here λ, μ, and ρ are the Lamé parameters and the mass density

ith background values λ0 , μ0 , and ρ0 and fluctuations ˜ λ, ˜ μ, and

˜ . 

The fluctuations are characterized by the point-like scatterers

hich are expressed by 

˜ λ( � x ) = 

∑ 

�
 y m ∈ E 

˜ λm 

δ( � x − �
 y m 

) 

˜ ( � x ) = 

∑ 

�
 y m ∈ E 

˜ μm 

δ( � x − �
 y m 

) 

˜ ρ( � x ) = 

∑ 

�
 y m ∈ E 

˜ ρm 

δ( � x − �
 y m 

) (4)

here ˜ λm 

, ˜ μm 

and ˜ ρm 

are the amplitudes of the fluctuations, δ( · )

s the Dirac delta function, and 

�
 y m 

is the position of the point-like

catterers. Note that the set of point-like scatterers is denoted by

 . 

The S and P wave velocities for the background structure are

epresented by 

 

(1) = 

√ 

λ0 + 2 μ0 

ρ0 

 

(2) = 

√ 

μ0 

ρ0 

. (5)

he wavenumbers for the P and S waves are expressed as 

(1) = ω/ c (1) , ξ (2) = ω/ c (2) . (6)

Note that the superscripts (1) and (2) for c and ξ indicate that

he physical quantities are related to the P and S waves, respec-

ively. Later, we use the superscript (3) to indicate the physical
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E∫

w  
uantities related to SH waves. Here, the superscript (2) is for de-

cribing SV waves. For example, we sometimes use ξ (2) and ξ (3) 

or the wavenumbers of SV and SH waves, respectively. Regardless

f the notation, we understand that 

(2) = ξ (3) (7) 

The Green’s function for an elastic half-space is denoted by

 i j ( � x , � y ) , where the subscripts i and j describe the components of

he Cartesian coordinate system, � x is the field point, and 

�
 y is the

ource point. The Green’s function for an elastic half-space is de-

ned by the following equation: 

 i j (∂ x ) G jk ( � x , � y ) = −δik δ( � x − �
 y ) , ( � x , � y ∈ R 

3 
+ ) (8) 

lim 

 3 → 0 
P i j (∂ x ) G jk ( � x , � y ) = 0 (9) 

here L ij is the Lamé operator defined by 

 i j (∂ x ) = (λ0 + μ0 ) ∂ x i ∂ x j + δi j (μ0 ∂ x k ∂ x k + ρ0 ω 

2 ) (10)

nd P ij is an operator that transforms the displacement field to the

raction for the x 3 plane, whose components are 

P i j (∂ x ) 
]

= 

[ 

μ0 ∂ x 3 0 μ0 ∂ x 1 
0 μ0 ∂ x 3 μ0 ∂ x 2 

λ0 ∂ x 1 λ∂ x 2 (λ0 + 2 μ0 ) ∂ x 3 

] 

. (11) 

Note that ∂ x j is the partial differential operator whose subscript

enotes the parameter for the differentiation and δij in Eq. (8) is

he Kronecker delta. As notation for Green’s functions, G 

↖ 

i j 
( � x , � y ) and

 

↙ 

i j 
( � x , � y ) are used later to clarify the direction of the waves of a

reen’s function, as well as the structure of the factorization of the

ar-field operator derived from the pseudo-projections. The defini-

ions for this notation are 

 

↖ 

i j 
( � x , � y ) 

def = G i j ( � x , � y ) , for � x ∈ S and 

�
 y ∈ R 

3 
+ \ S 

 

↙ 

i j 
( � x , � y ) 

def = G i j ( � x , � y ) , for � x ∈ R 

3 
+ \ S and 

�
 y ∈ S (12) 

According to the reciprocity of Green’s functions, the following

elationship can be established: 

 

↖ 

i j 
( � x , � y ) = G 

↙ 

ji 
( � y , � x ) , �

 x ∈ S, �
 y ∈ R 

3 
+ \ S (13)

he derivatives of Green’s functions are also necessary in the fol-

owing. We employ the following notation for the derivatives of

reen’s functions G 

↖ 

i j 
( � x , � y ) : 

 

↖ 

i j,k 
( � x , � y ) = ∂ y k G 

↖ 

i j 
( � x , � y ) , ( � x ∈ S, y ∈ R 

3 
+ \ S, k = 1 , 2 , 3) (14)

hile the notation for the derivatives of Green’s function G 

↙ 

ji 
( � y , � x )

s 

 

↙ 

ji,k 
( � y , � x ) = ∂ y k G 

↙ 

ji 
( � y , � x ) , ( � x ∈ S, y ∈ R 

3 
+ \ S, k = 1 , 2 , 3) . (15)

As can be seen in the Appendix, the derivatives of Green’s

unctions G 

↖ 

i j,k 
are evaluated from the dipole sources. The tensors

ormed by the derivatives of Green’s functions are also important

n the formulation of the proposed method later, which are 

 

↖ 

i jk 
( � x , � y ) = (1 / 2) 

(
G 

↖ 

i j,k 
( � x , � y ) + G 

↖ 

ik, j 
( � x , � y ) 

)
(16) 

 

↙ 

k ji 
( � y , � x ) = (1 / 2) 

(
G 

↙ 

ji,k 
( � y , � x ) + G 

↙ 

ki, j 
( � y , � x ) 

)
. (17) 

From the reciprocity and symmetry of Green’s functions, the

ollowing relationship is established: 

 

↙ 

k ji 
( � y , � x ) = T ↖ 

ik j 
( � x , � y ) (18) 

 

↖ 

i jk 
( � x , � y ) = T ↖ 

ik j 
( � x , � y ) 

↙ � � ↙ � �

 

k ji 
(  y ,  x ) = T 

jki 
(  y ,  x ) (19) b  
.2. Representation of the scattered wavefield 

In this section, we have to clarify the representation of the scat-

ered wavefield in the presence of fluctuations characterized by the

amé parameters and mass densities of the wavefield. We will see

ow the derivatives of Green’s functions can be used for the repre-

entation of the scattered wavefield. Let u i and ε ij be respectively

he displacement field and strain tensor corresponding to the to-

al field for the wave problem. We decompose the wavefield in the

ollowing form: 

u i ( � x ) = u 

(0) 
i 

( � x ) + u 

(s ) 
i 

( � x ) 

i j ( � x ) = ε(0) 
i j 

( � x ) + ε(s ) 
i j 

( � x ) (20) 

here a (0) superscript denotes the incident background wavefield

nd an ( s ) denotes the scattered wavefield. We employ the Born

pproximation in this article. Then, the decomposition of the stress

ensor can be expressed as 

i j ( � x ) = λ0 δi j ε
(0) 
kk 

( � x ) + 2 μ0 ε
(0) 
i j 

( � x ) 

+ λ0 δi j ε
(s ) 
kk 

( � x ) + 2 μ0 ε
(s ) 
i j 

( � x ) 

+ ̃

 λ( � x ) δi j ε
(0) 
kk 

( � x ) + 2 ̃  μ( � x ) ε(0) 
i j 

( � x ) . (21) 

It is known that the scattered wavefield can be expressed by

he following volume integral equation (e.g., Touhei, 2011 ): 

 

(s ) 
i 

( � x ) = 

∫ 



G i j ( � x , � y ) M jk (∂ y ) u 

(0) 
k 

( � y ) d � y (22)

here 
 is an arbitrary domain which includes the region for the

oint-like scatterers E and M jk is the operator due to the presence

f the fluctuation of the wavefield expressed as 

 jk (∂) = ( ̃ λ + ˜ μ) ∂ j ∂ k + δ jk 

(
˜ μ∂ l ∂ l + ˜ ρω 

2 
)

+ ∂ j ̃  λ ∂ k + ∂ k ̃  μ ∂ j + δ jk ∂ l ˜ μ ∂ l . (23) 

As shown in Fig. 2 , the domain 
 is surrounded by the bound-

ry � and S , where � ∩ S = ∅ . According to the decomposition of

he wavefield, Eq. (22) can be modified into 

 

(s ) 
i 

( � x ) = 

∫ 



G 

↖ 

i j 
( � x , � y ) 

(
∂ y k 
(
λ( � y ) δ jk εll ( � y ) + 2 μ( � y ) ε jk ( � y ) 

)
+ ρ( � y ) ω 

2 u j ( � y ) 
)
d � y 

−
∫ 



G 

↖ 

i j 
( � x , � y ) 

(
∂ y k 
(
λ0 δ jk εll ( � y ) + 2 μ0 ε jk ( � y ) 

)
+ ρ0 ω 

2 u j ( � y ) 
)
d � y (24) 

n the context of the Born approximation, we have used 

( � x ) u i ( � x ) = ρ0 u i ( � x ) + ˜ ρ( � x ) u 

(0) 
i 

( � x ) (25)

or Eq. (24) . 

Integration by parts of the first term on the right-hand side of

q. (24) yields 
 



G 

↖ 

ij 

(→ 

x , 
→ 

y 
)(

∂ y k 

(
λ
(→ 

y 
)
δjk εll 

(→ 

y 
)

+ 2 μ
(→ 

y 
)
εjk 

(→ 

y 
))

+ ρ
(→ 

y 
)
ω 

2 u j 

(→ 

y 
))

d 
→ 

y 

= 

∫ 



[ 
−λ
(→ 

y 
)

T ↖ 

ikk 

(→ 

x , 
→ 

y 
)
εll 

(→ 

y 
)

− 2 μ
(→ 

y 
)

T ↖ 

ikl 

(→ 

x , 
→ 

y 
)
εkl 

(→ 

y 
)

+ ρ
(→ 

y 
)
ω 

2 G 

↖ 

ij 

(→ 

x , 
→ 

y 
)

u j 

(→ 

y 
)] 

d 
→ 

y 

+ 

∫ 
�

G 

↖ 

ij 

(→ 

x , 
→ 

y 
)

n k 

(→ 

y 
)[ 

λ0 δjk εll 

(→ 

y 
)

+ 2 μ0 εjk 

(→ 

y 
)] 

d�
(→ 

y 
)

(26) 

here n k is the component of the normal vector defined at the

oundary � whose direction is outward from the region 
. As a
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Fig. 2. Region 
 containing the point-like scatterers. Region 
 is surrounded by the boundaries � and S , where � ∩ S = ∅ . Note that applying integration by parts to 

Eq. (24) does not yield the boundary terms for � and S . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Definitions of the angles θ and ϕ, which determine the direction of � x − �
 y . 
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result of Eq. (26) , it is not difficult to see that the boundary terms

caused by the results of applying integration by parts to the first

and second terms on the right-hand side of Eq. (24) cancelled each

other out. Therefore, introducing Eq. (4) into the results of the in-

tegration by parts of Eq. (24) yields 

u 

( s ) 
i 

(→ 

x 

)
= −

∑ 

→ 

y m ∈ E 

˜ λm 

T ↖ 

ikk 

(→ 

x , 
→ 

y m 

)
ε( 0 ) 

ll 

(→ 

y m 

)
−

∑ 

→ 

y m ∈ E 

2 ̃  μm 

T ↖ 

ijk 

(→ 

x , 
→ 

y m 

)
ε( 0 ) 

jk 

(→ 

y m 

)
+ 

∑ 

→ 

y m ∈ E 

˜ ρm 

ω 

2 G 

↖ 

ij 

(→ 

x , 
→ 

y m 

)
u 

( 0 ) 
j 

(→ 

y m 

)
(27)

At this point, let the background wavefield be due to the Green’s

function at the source point � x q ∈ S g . Then, from Eq. (27) , we have

the representation of the kernel of the near-field operator as the

following form: 

N i j ( � x p , � x q ) = −
∑ 

�
 y m ∈ E 

˜ λm 

T ↖ 

ikk 
( � x , � y m 

) T ↙ 

l l j 
( � y m 

, � x q ) 

−
∑ 

�
 y m ∈ E 

2 ̃  μm 

T ↖ 

ikl 
( � x , � y m 

) T ↙ 

kl j 
( � y m 

, � x q ) 

+ 

∑ 

�
 y m ∈ E 

˜ ρm 

ω 

2 G 

↖ 

ik 
( � x , � y m 

) G 

↙ 

k j 
( � y m 

, � x q ) (28)

Eq. (28) shows how the derivatives of Green’s functions are used in

the representation of the near-field operator. We need to evaluate

G 

↖ 

i j 
and T ↖ 

i jk 
for Eq. (28) , from which G 

↙ 

i j 
and T ↙ 

i jk 
are determined by

the reciprocity of Green’s functions. 

2.3. Pseudo-projections derived from the far-field properties of 

Green’s functions 

The far-field properties of Green’s functions and their deriva-

tives are derived and summarized in the Appendix, where a

Green’s function and its derivatives are expressed as 

G 

↖ 

i j 
( � x , � y ) = 

3 ∑ 

α=1 

exp (iξ (α) | � x − �
 y | ) 

4 π | � x − �
 y | D 

∞ (α) 
i j 

(θ, ϕ) + O (| � x − �
 y | −2 ) (29)

G 

↖ 

i j,k 
( � x , � y ) = 

3 ∑ 

α=1 

exp (iξ (α) | � x − �
 y | ) 

4 π | � x − �
 y | D 

∞ (α) 
i jk 

(θ, ϕ) + O (| � x − �
 y | −2 ) (30)

based on Eq. (A.31) , where the tensors D 

∞ (α) 
i j 

and D 

∞ (α) 
i jk 

, which we

call the directivity tensors, are defined by Eqs. (A .35) –(A .38) . Note

that an ‘A’ in an equation number, such as Eq. (A.38) , indicates an

equation presented in the Appendix. The angles θ and ϕ define the

direction of the vector � x − �
 y as shown in Fig. 3 . 

The main properties of the directivity tensors are summarized

in the following theorem based on Eqs. (A.39) and (A.40) . 

f

heorem 1. The directivity tensors for the derivative of Green’s func-

ion can be decomposed into the following form: 

 

∞ (α) 
i jk 

(θ, ϕ) = −iξ (α) D 

∞ (α) 
i j 

(θ, ϕ) V 

(1) 
k 

(θ, ϕ) 

= −iξ (α) A 

(α) (θ ) W 

(α) 
i 

(θ, ϕ) V 

(α) 
j 

(θ, ϕ) V 

(1) 
k 

(θ, ϕ) 

(31)

here V (α) 
i 

and W 

(α) 
i 

denote the polarizations of the elastic waves of

he ( α) -type wave in the full space and at the free surface, respec-

ively, and A 

( α) is the amplitude. The explicit forms of A 

( α) , V (α) 
i 

, and

 

(α) 
i 

are 

 

(1) (θ ) = 

−2 ξs 1 γs 1 (ξ
2 
s 1 + ν2 

s 1 ) 

μ0 F s 1 sin 

2 θ

 

(2) (θ ) = 

2 ν2 
s 2 (ξ

2 
s 2 + ν2 

s 2 ) 

μ0 F s 2 cos 2 θ

 

(3) (θ ) = 

2 

μ0 

(32)

V 

(1) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin θ sin ϕ sin θ − cos θ

)
V 

(2) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ cos θ sin ϕ cos θ sin θ

)
V 

(3) 
i 

(θ, ϕ) 
)

= 

(
sin ϕ − cos ϕ 0 

)
(33)

W 

(1) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin θ sin ϕ sin θ

i (ξ 2 
s 1 + ν2 

s 1 ) 

2 νs 1 ξs 1 

sin θ

)
W 

(2) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ cos θ sin ϕ cos θ

2 iξs 2 γs 2 

ξ 2 
s 2 

+ ν2 
s 2 

cos θ

)
W 

(3) 
i 

(θ, ϕ) 
)

= 

(
V 

(3) 
i 

(θ, ϕ) 
)

(34)

here 

ξsα = ξ (α) sin θ

sα = 

√ 

ξ 2 
sα − (ξ (1) ) 2 

νsα = 

√ 

ξ 2 
sα − (ξ (2) ) 2 

F sα = 

(
2 ξ 2 

sα − (ξ (2) ) 2 
)2 − 4 ξ 2 

sαγsανsα (35)

or α = 1 , 2 . 
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At this point, we construct W 

(α� ) 
i 

satisfying the following prop-

rties: 

 

(α) 
i 

(θ, ϕ) W 

(β� ) 
i 

(θ, ϕ) = δαβW 

(α) 
i 

(θ, ϕ) W 

(α� ) 
i 

(θ, ϕ) (36)

he explicit forms of W 

α� 
i 

are also given in Eq. (A.45) and are as

ollows: 

W 

(1 � ) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin ϕ 

i (ξ 2 
s 2 + ν2 

s 2 ) 

2 ξs 2 γs 2 

)
W 

(2 � ) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin ϕ 

2 iνs 1 ξs 1 

(ξ 2 
s 1 

+ ν2 
s 1 

) 

)
W 

(3 � ) 
i 

(θ, ϕ) 
)

= 

(
W 

(3) 
i 

(θ, ϕ) 
)

(37) 

rom the structure of the directivity tensors D 

∞ (α) 
i j 

and D 

∞ (α) 
i jk 

hown in Theorem 1 as well as W 

(α� ) 
i 

, we reach the definition of

he pseudo-projection as follows: 

 

(α) 
i j 

(θ, ϕ) = 

W 

(α) 
i 

(θ, ϕ) W 

(α� ) 
j 

(θ, ϕ) 

W 

(α) 
l 

(θ, ϕ) W 

(α� ) 
l 

(θ, ϕ) 
, (α = 1 , 2 , 3) (38) 

hich satisfies the identity 

 

(α) 
i j 

(θ, ϕ) F 

(β) 

jk 
(θ, ϕ) = δαβF 

(α) 
ik 

(θ, ϕ) (39) 

lthough F 

(α) 
i j 

is not Hermitian. The effects of the pseudo-

rojection on a Green’s function as well as its derivatives are sum-

arized by the following corollary derived from Theorem 1 . 

orollary 1. Pseudo-projections extract one type of wave from a

reen’s function as well as its derivatives as follows: 

 

(α) 
i j 

(θ, ϕ) G 

↖ 

jk 
( � x , � y ) 

= 

exp (iξ (α) | � x − �
 y | ) 

4 π | � x − �
 y | W 

(α) 
i 

(θ, ϕ) U 

(α) 
k 

(θ, ϕ) + O (| � x − �
 y | −2 ) 

 

(α) 
i j 

(θ, ϕ) T ↖ 

jkl 
( � x , � y ) 

= 

exp (iξ (α) | � x − �
 y | ) 

4 π | � x − �
 y | W 

(α) 
i 

(θ, ϕ) U 

(α) 
kl 

(θ, ϕ) + O (| � x − �
 y | −2 ) (40) 

here 

 

(α) 
k 

(θ, ϕ) = A 

(α) (θ ) V 

(α) 
k 

(θ, ϕ) (41) 

 

(α) 
kl 

(θ, ϕ) = −(1 / 2) iξ (α) A 

(α) (θ ) 

×
(
V 

(α) 
k 

(θ, ϕ) V 

(1) 
l 

(θ, ϕ) + V 

(α) 
l 

(θ, ϕ) V 

(1) 
k 

(θ, ϕ) 
)
(42) 

roof. The results of this corollary come from the straightforward

alculations in Eqs. (29) –(31) and the properties of W 

(α� ) 
i 

shown in

q. (36) . �

The actions of the pseudo-projections on G 

↙ 

i j 
as well as T ↙ 

i jk 
are

lso important. Due to the reciprocity of Green’s functions, these

ctions are expressed as follows: 

 

(α) 
i j 

(θ, ϕ) G 

↙ 

k j 
( � y , � x ) 

= 

exp (iξ (α) | � x − �
 y | ) 

4 π | � x − �
 y | W 

(α) 
i 

(θ, ϕ) U 

(α) 
k 

(θ, ϕ) + O (| � x − �
 y | −2 ) 

 

(α) 
i j 

(θ, ϕ) T ↙ 

kl j 
( � y , � x ) 

= 

exp (iξ (α) | � x − �
 y | ) 

4 π | � x − �
 y | W 

(α) 
i 

(θ, ϕ) U 

(α) 
kl 

(θ, ϕ) + O (| � x − �
 y | −2 ) . (43) 

Note that the angles ( θ , ϕ) also describe the direction of the

ector � x − �
 y even for G 

↙ 

k j 
( � y , � x ) and T ↙ 

kl j 
( � y , � x ) . 
t  
emark. The role of the pseudo-projection will be clarified based

n Corollary 1 together with the definition of the operator P 

(α) 
i j 

ater. 

We now make some remarks on the properties of the direc-

ivity tensors. The polarization of the elastic waves of the P wave

 

(1) 
k 

(θ, ϕ) also describes the direction of any type of wave (namely,

, SV, or SH waves). Therefore, V (1) 
k 

(θ, ϕ) in Eq. (31) should be un-

erstood in the sense of the direction of the ( α)-type wave, which

s caused by differentiation of a Green’s function. In addition, the

races of tensors U 

(2) 
ll 

and U 

(3) 
ll 

vanish: 

 

(2) 
ll 

(θ, ϕ) = U 

(3) 
ll 

(θ, ϕ) = 0 . (44)

This is due to the orthogonality of the polarization of the elastic

aves between the P and SV waves as well as between the P and

H waves. Eq. (44) arises from the fact that the volumetric strains

aused by the SV and SH waves vanish. 

.4. Introduction of the far-field properties of the Green’s function for 

he near-field operator 

Now, we return to Eq. (28) for N i j ( � x p , � x q ) , which describes the

cattered wave at � x p due to the point force acting at the free sur-

ace � x q . The near-field operator is constructed from the stack of

 i j ( � x p , � x q ) . We employ the following representation of the near-

eld operator: 

( N ik f k ) ( � x p ) = 

N ∑ 

q =1 

N ik ( � x p , � x q ) f k ( � x q ) , ( � x p , � x q ∈ S g ) (45)

here f k (·) ∈ C 

3 N which is defined in S g , with C 

3 N denoting the

 N -dimensional complex vector space. In the following, we some-

imes use the notation ( f k ( · )), where 

( f k ( � x p ) ) = 

(
( f k ( � x p ) k =1 , 2 , 3 

)
p=1 , ... ,N 

∈ C 

3 N . (46) 

ccording to Eq. (28) , Eq. (45) can also be expressed as 

( N ik f k ) ( � x p ) 

= 

( 

N ∑ 

q =1 

∑ 

�
 y m ∈ E 

−˜ λm 

T ↖ 

ikk 
( � x p , � y m 

) T ↙ 

l l j 
( � y m 

, � x q ) − 2 ̃  μm 

T ↖ 

ikl 
( � x p , � y m 

) T ↙ 

kl j 
( � y m 

, � x q ) 

+ ˜ ρm 

ω 

2 G 

↖ 

ik 
( � x p , � y m 

) G 

↙ 

k j 
( � y m 

, � x q ) 

) 

f j ( � x q ) , ( � x p , � x q ∈ S g ) . (47) 

To introduce the far-field properties of Green’s functions to the

ear-field operator shown in Eq. (47) , let � z s be a probing point and

efine the following operator with respect to this probing point: 

 

(α) 
i j 

( � x p , � z s ) = κ(ξ (α) , � x p , � z s ) F 

(α) 
i j 

(θps , ϕ ps ) (48)

here (
ξ ( α) , 

→ 

x p , 
→ 

z s 

)
= 4 π

∣∣∣→ 

x p −
→ 

z s 

∣∣∣ exp 

(
−iξ ( α) 

∣∣∣→ 

x p −
→ 

z s 

∣∣∣) (49) 

nd angles ( θps , ϕps ) define the direction of the vector � x p − �
 z s . In

he following, we also use the notation for angles ( θpm 

, ϕpm 

) to

efine the direction of the vector � x p − �
 y m 

. 

The operator P 

(α) 
i j 

( � x p , � z s ) is now applied to the near-field oper-

tor N jk to obtain a far-field operator. By the use of Corollary 1 ,

hich holds from the properties of pseudo-projections, character-

zation of the range of the far-field operator becomes possible.

amely, for the case that � z s ∈ { � y m 

} , the application of P 

(α) 
i j 

yields a

erived operator with a range coinciding with the directivity ten-

or for the α-type waves, which enables the construction of the

ndicator function. In order to realize the properties of the range,

he operator P 

(α) 
i j 

needs κ(ξ (α) , � x p , � z s ) to eliminate the effects of
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geometrical decay and the phase of the waves from the probing

point. 
To introduce the far-field properties of Green’s function to the

near-field operator and to characterize the derived far-field opera-

tor, we construct the tensors H 

(α) 
ikl 

and H 

(α) 
ik 

: 

P 

(α) 
il 

( � x p , � z s ) T 
↖ 

l jk 
( � x p , � y m 

) = H 

(α) 
i jk 

( � x p , � z s , � y m 

) + O (| � x p − �
 z s || � x p − y m 

| −2 ) 

P 

(α) 
il 

( � x p , � z s ) G 

↖ 

l j 
( � x p , � y m 

) = H 

(α) 
i j 

( � x p , � z s , � y m 

) + O (| � x p − �
 z s || � x p − y m 

| −2 ) 

(50)

According to Eqs. (40) , (48) and (50) , the tensors H 

(α) 
i jk 

and H 

(α) 
i j 

can

be expressed by 

H 

(α) 
i j 

( � x p , � z s , � y m 

) = W 

(α) 
i 

(θps , ϕ ps ) 
3 ∑ 

β=1 

B (αβ) ( � x p , � z s , � y m 

) U 

(β) 
j 

(θpm 

, ϕ pm 

) 

H 

(α) 
i jk 

( � x p , � z s , � y m 

) = W 

(α) 
i 

(θps , ϕ ps ) 
3 ∑ 

β=1 

B (αβ) ( � x p , � z s , � y m 

) U 

(β) 

jk 
(θpm 

, ϕ pm 

) 

(51)

here 

B 

(αβ) ( � x p , � z s , � y m 

) 

= 

| � x p − �
 z s | 

| � x − �
 y m 

| 
exp (iξ (β) | � x p − �

 y m 

| ) 
exp (iξ (α) | � x p − �

 z s | ) 
W 

(β) 

k 
(θpm 

, ϕ pm 

) W 

(α� ) 
k 

(θps , ϕ ps ) 

W 

(α) 
l 

(θps , ϕ ps ) W 

(α� ) 
l 

(θps , ϕ ps ) . 

(52)

The introduction of the far-field properties of Green’s function

to the near-field operator is realized by A 

∞ (α) 
i j 

which is the product

of P 

(α) and the kernel of the near-field operator such that 

P 

(α) 
ik 

( � x p , � z s ) N kl ( � x p , � x q ) P 

(α) 
jl 

( � x q , � z s ) 

= A 

∞ (α) 
i j 

( � z s ) + O (| � x p − �
 z s || � x p − �

 y m 

| −2 ) + O (| � x q − �
 z s || � x q − �

 y m 

| −2 ) . 

(53)

Substituting Eq. (47) into Eq. (53) gives (
A 

∞ (α) 
i j 

( � z s ) f j 
)
( � x p ) 

= 

N ∑ 

q =1 

∑ 

�
 y m ∈ E 

(
−˜ λm 

H 

(α) 
ikk 

( � x p , � z s , � y m 

) H 

(α) 
jll 

( � x q , � z s , � y m 

) 

− 2 ̃  μm 

H 

(α) 
ikl 

( � x p , � z s , � y m 

) H 

(α) 
jkl 

( � x q , � z s , � y m 

) 

+ ˜ ρm 

ω 

2 H 

(α) 
ik 

( � x p , � z s , � y m 

) H 

(α) 
jk 

( � x q , � z s , � y m 

) 
)

f j ( � x q ) , 

(α = 1 , 2 , 3) . (54)

For the case that � z s → 

�
 y m 

, we see that 

B 

(αβ) ( � x p , � z s , � y m 

) −→ δαβ (55)

and as a result we have 

H 

(α) 
i j 

( � x p , � z s , � y m 

) −→ W 

(α) 
i 

(θpm 

, ϕ pm 

) U 

(α) 
j 

(θpm 

, ϕ pm 

) 

= D 

∞ (α) 
i j 

(θpm 

, ϕ pm 

) 

H 

(α) 
i jk 

( � x p , � z s , � y m 

) −→ W 

(α) 
i 

(θpm 

, ϕ pm 

) U 

(α) 
jk 

(θpm 

, ϕ pm 

) 

= (1 / 2) 
(
D 

∞ (α) 
i jk 

(θpm 

, ϕ pm 

) + D 

∞ (α) 
ik j 

(θpm 

, ϕ pm 

) 
)

(56)

for the case of � z s → 

�
 y m 

. We have thus used Eqs. (A .39) , (A .40),

(41) and (42) to obtain Eq. (56) . 

We now characterize the range of the operator A 

∞ (α) 
i j 

( � z s ) . 

Theorem 2. Let M 

(α) ( � z s ) be a subspace of C 

3 N such that 

M 

(α) ( � z s ) = span 

1 ≤k,l≤3 

{(
D 

∞ (α) 
ik 

(θps , ϕ ps ) 
)
, 
(
D 

∞ (α) 
ikl 

(θps , ϕ ps ) 
)}

(57)
hen, the following characterization of the range of the operator

 

∞ (α) 
i j 

( � z s ) becomes possible: 

 

�
 y m 

∗ ∈ E such that � z s = 

�
 y m 

∗ ⇐⇒ M 

(α) ( � z s ) ⊂ ran A 

∞ (α) 
i j 

( � z s ) (58)

emark. Note that the elements in M 

(α) become 

D 

∞ (α) 
ik 

(θps , ϕ ps ) 
)

= 

((
D 

∞ (α) 
ik 

(θps , ϕ ps ) 
)

i =1 , 2 , 3 

)
p=1 , ... ,N 

∈ C 

3 N 

D 

∞ (α) 
ikl 

(θps , ϕ ps ) 
)

= 

((
D 

∞ (α) 
ikl 

(θps , ϕ ps ) 
)

i =1 , 2 , 3 

)
p=1 , ... ,N 

∈ C 

3 N (59)

or fixed k and l . 

roof. Assume that ∃ � y m 

∗ ∈ E such that 

�
  m 

∗ = 

�
 z s ; (60)

hen we have the following expression for the derived far-field op-

rator: 

A 

∞ (α) 
i j 

( � z s ) f j 
)
( � x p ) 

= 

(
A 

∞ (α) m 

∗

i j 
( � z s ) f j 

)
( � x p ) + 

(
A 

∞ (α) m 

∗
i j 

( � z s ) f j 

)
( � x p ) (61)

here (
A 

∞ (α) m 

∗

i j 
( � z s ) f j 

)
( � x p ) 

= D 

∞ (α) 
ikk 

(θps , ϕ ps ) 

×
N ∑ 

q =1 

−˜ λm 

∗ W 

(α) 
j 

(θqs , ϕ qs ) U 

(α) 
ll 

(θqs , ϕ qs ) f j ( � x q ) 

+ (1 / 2) 
(
D 

∞ (α) 
ikl 

(θps , ϕ ps ) + D 

∞ (α) 
ilk 

(θps , ϕ ps ) 
)

×
N ∑ 

q =1 

−2 ̃  μm 

∗ W 

(α) 
j 

(θqs , ϕ qs ) U 

(α) 
kl 

(θqs , ϕ qs ) f j ( � x q ) 

+ D 

∞ (α) 
ik 

(θps , ϕ ps ) 

×
N ∑ 

q =1 

˜ ρm 

∗ ω 

2 W 

(α) 
j 

(θqs , ϕ qs ) U 

(α) 
k 

(θqs , ϕ qs ) f j ( � x q ) (62)

nd (
A 

∞ (α) m 

∗
i j 

( � z s ) f j 

)
( � x p ) 

= 

N ∑ 

q =1 

∑ 

�
 y m ∈ E\{ � y m ∗ } 

(
−˜ λm 

H 

(α) 
ikk 

( � x p , � z s , � y m 

) H 

(α) 
jll 

( � x q , � z s , � y m 

) 

− 2 ̃  μm 

H 

(α) 
ikl 

( � x p , � z s , � y m 

) H 

(α) 
jkl 

( � x q , � z s , � y m 

) 

+ ˜ ρm 

H 

(α) 
ik 

( � x p , � z s , � y m 

) H 

(α) 
jk 

( � x q , � z s , � y m 

) 
)

f j ( � x q ) (63)

q. (62) can be further modified as (
A 

∞ (α) m 

∗

i j 
( � z s ) f j 

)
( � x p ) 

= D 

∞ (α) 
ikl 

(θps , ϕ ps ) 
N ∑ 

q =1 

C (α) 
(1) jkl 

(θqs , ϕ qs ) f j ( � x q ) 

+ D 

∞ (α) 
ik 

(θps , ϕ ps ) 
N ∑ 

q =1 

C (α) 
(2) jkl 

(θqs , ϕ qs ) f j ( � x q ) (64)

here 

 

(α) 
(1) jkl 

(θqs , ϕ qs ) 

= (−˜ λm 

∗δkl U 

(α) 
nn (θqs , ϕ qs ) − ˜ μm 

∗ (U 

(α) 
kl 

(θqs , ϕ qs ) + U 

(α) 
lk 

(θqs , ϕ qs )))

×W 

(α) 
j 

(θqs , ϕ qs ) 
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(α) 
(2) jk 

(θqs , ϕ qs ) = ˜ ρm 

∗ω 

2 U 

(α) 
k 

(θqs , ϕ qs ) W 

(α) 
j 

(θqs , ϕ qs ) (65)

q. (64) is the factorization of the operator and we see that 

 

(α) ( � z s ) ⊂ ran A 

∞ (α) m 

∗

i j 
( � z s ) ⊂ ran A 

∞ (α) 
i j 

( � z s ) . (66) 

Conversely, let � z s / ∈ E. Using Eq. (54) and following the same

rocedure used for deriving Eq. (64) , the expression for the far-

eld operator is 

A 

∞ (α) 
i j 

( � z s ) f j 

)
( � x p ) 

= 

∑ 

�
 y m ∈ E 

[ 
W 

(α) 
i 

(θps , ϕ ps ) B 
(αβ) ( � x p , � z s , � y m ) A 

(β) (θpm ) V 
(β) 

k 
(θpm , ϕ pm ) V 

(1) 
l 

(θpm , ϕ pm )

×
N ∑ 

q =1 

C (α) 
(3) jkl 

( � x q , � z s , � y m ) f j ( � x q ) 

+ W 

(α) 
i 

(θps , ϕ ps ) B 
(αβ) ( � x p , � z s , � y m ) A 

(β) (θpm ) V 
(β) 

k 
(θpm , ϕ pm ) 

×
N ∑ 

q =1 

C (α) 
(4) jk 

( � x q , � z s , � y m ) f j ( � x q ) 

] 
(67)

here 

 

(α) 
(3) jkl 

( � x q , � z s , � y m ) = −˜ λm δkl H 

(α) 
jnn 

( � x q , � z s , � y m ) 

− ˜ μm 

(
H 

(α) 
jkl 

( � x q , � z s , � y m ) + H 

(α) 
jlk 

( � x q , � z s , � y m ) 
)

C (α) 
(4) jk 

( � x q , � z s , � y m ) = ˜ ρm ω 

2 H 

(α) 
jk 

( � x q , � z s , � y m ) (68) 

Eq. (67) is also a factorization of the operator and we see that 

D 

∞ (α) 
i jk 

(θps , ϕ ps ) 
)

= 

(
A 

(α) (θps ) W 

(α) 
i 

(θps , ϕ ps ) V 

(α) 
j 

(θps , ϕ ps ) V 

(1) 
k 

(θps ,

/ ∈ span 

β

{ (
W 

(α) 
i 

(θps , ϕ ps ) B 

(αβ) ( � x p , � z s , � y m 

) A 

(β) (θpm 

) V 

(β) 
j 

(θpm 

, ϕ pm

D 

∞ (α) 
i j 

(θps , ϕ ps ) 
)

= 

(
A 

(α) (θps ) W 

(α) 
i 

(θps , ϕ ps ) V 

(α) 
j 

(θps , ϕ ps ) 
)

/ ∈ span 

β

{ (
W 

(α) 
i 

(θps , ϕ ps ) B 

(αβ) ( � x p , � z s , � y m 

) A 

(β) (θpm 

) V 

(β) 

k 
(θpm 

, ϕ pm

nd as a result 

D 

∞ (α) 
ikl 

(θps , ϕ ps ) 
)

/ ∈ ran A 

∞ (α) 
i j 

( � z s ) 

D 

∞ (α) 
ik 

(θps , ϕ ps ) 
)

/ ∈ ran A 

∞ (α) 
i j 

( � z s ) . (70) 

herefore, we have 

  s = 

�
 y m 

∗ ∈ { � y m 

} �
 y m ∈ E ⇐ M 

(α) ( � z s ) ⊂ ran A 

∞ (α) 
i j 

( � z s ) (71)

The result then follows from Eqs. (66) and (71) . �

Now, we use the following orthogonality relation: 

er 
(
A 

∞ (α) 
i j 

( � z s ) 
)H ⊥ ran A 

∞ (α) 
i j 

( � z s ) (72)

here 
(
A 

∞ (α) 
i j 

( � z s ) 
)H 

is the Hermitian adjoint of the operator

 

∞ (α) 
i j 

( � z s ) . Theorem 2 and Eq. (72) allow construction of the in-

icator functions that reconstruct the locations of point-like scat-

erers. For expressing the indicator functions, we employ the fol-

owing convention for the directivity tensor: 

D 

∞ (α) 
i j0 

(θps , ϕ ps ) 
)

= 

(
D 

∞ (α) 
i j 

(θps , ϕ ps ) 
)

(73) 

amely, (D 

∞ (α) 
i j0 

(θps , ϕ ps )) denotes the directivity tensor for the

onopole Green’s function. Based on the above convention, we

ave the following four kinds of indicator functions with respect
o the use of the monopole and dipole Green’s functions: t  
 

)
) (θpm 

, ϕ pm 

) 
)} 

 

(69) 

φk ( � z s ) = 

3 ∏ 

α=1 

[ ∑ 

n 

3 ∑ 

j=1 

∣∣∣(�(α) 
n ( � z s ) 

)H (
D 

∞ (α) 
i jk 

(θps , ϕ ps ) 
)∣∣∣2 ] −1 

, 

(k = 0 , 1 , 2 , 3) (74) 

here { (�(α) 
n ( � z s )) } n is the basis for ker (A 

∞ (α) 
i j 

( � z s )) H . The indicator

unction in Eq. (74) has the following properties: 

lim 

  s → 

�
 y m ∈ E 

φk ( � z s ) = ∞ . (75)

So far, we have shown the derivation process of the indica-

or function for imaging the locations of point-like scatterers. The

seudo-code for computing the indicator function is shown in

ig. 4 . 

As can be seen in Theorem 2 , the present method has strong

ies with the factorization method. The present indicator func-

ion, however, is based on the properties of the far-field operator

 

∞ (α) 
i j 

( � z s ) defined by Eq. (53) , which is defined for each probing

oint � z s . As a result, the basis of the kernel of (A 

∞ (α) 
i j 

) H has to be

lso calculated with respect to each probing point. Although this

rocedure is complicated, it is expected to improve the accuracy

f the reconstruction of the locations of many point-like scatterers

y a small number of source and sensor grid points at the free

urface. As is mentioned in the Introduction, this fact marks its

ignificant difference from other sampling methods. In the follow-

ng numerical examples, the spatial spreads of the indicator func-

ions will be investigated to examine how accurately the locations

f point-like scatterers are reconstructed. 

. Numerical examples 

.1. Analysis model 

The model analyzed in this section is shown in Fig. 5 (a) and

 (b). We can see grid points at the free surface and point-like scat-

erers in the elastic half-space. The grid points at the free sur-

ace are the source and receiver sensors, for which the interval

s 2.0 km and the total number of points is 121. The number of

oint-like scatterers for the analyzed model is 1618, which is much

arger than that of the surface grid points. The point-like scatterers

re spread horizontally over a 10 km × 10 km area. The source

nd sensor grid points at the free surface spread over an area of

0 km × 20 km, which covers the area of the point-like scatterers

orizontally. The point-like scatterers are placed with a grid inter-

al of 0.25 km, and the set of the point-like scatterers forms the

hape of the object. The shape of the object is based on the salt

odel described in Abubakar et al. (2011) . For the object, the P-

nd S-wave velocities are set at 4 km/s and 2.23 km/s, respectively,

nd the mass density is set at 2.5 g/cm 

3 , while the P- and S-wave

elocities for the background structure of the wavefield are 2 km/s

nd 1 km/s, respectively, and the mass density is 2 g/cm 

3 . Namely,

he Lamé parameters and the mass densities for the background
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Fig. 4. Pseudo-code for computing the indicator function. Note that the parameter k is used for identifying the monopole and dipole sources for the directivity tensors used 

for the indicator function. 

Fig. 5. Analysis model showing the source and receiver sensor grids at the free surface and the object expressed by the set of point-like scatterers in the elastic 

half-space. 
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and fluctuations of the wavefield are expressed by 

λ0 = 4 GPa 

μ0 = 2 GPa 

ρ0 = 2 g / cm 

3 (76)

˜ λ = 11 . 2 GPa 

˜ μ = 10 . 5 GPa 

˜ ρ = 0 . 5 g / cm 

3 . (77)
Therefore, amplitudes of the fluctuations of the Lamé param-

ters and the mass density in terms of Eq. (4) are obtained by

ultiplying Eq. (77) by (0.25 km) 3 , where 0.25 km is the grid

nterval of the point-like scatterers. The results for the fluctua-

ions of the Lamé parameters and mass density of the point-like

catterers are as follows: 

˜ λm 

= 0 . 175 [ GPa · km 

3 
] 

˜ m 

= 0 . 164 [ GPa · km 

3 
] 

˜ ρm 

= 7 . 81 × 10 

9 [ kg ] (78)
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Fig. 6. Sensitivity of the indicator functions to the choice of the directivity tensors. 
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In the following, numerical computations are carried out to

xamine the accuracy of the indicator functions with respect

o the choice of the directivity tensors, the analyzed frequency,

andom noise, and the surface sensor grid resolutions. Green’s

unctions needed for constructing the kernel of the near-field op-

rator shown in Eq. (28) are calculated by the direct wavenumber

ntegrals shown in Eqs. (A.7) and (A.8) . For the direct wavenumber

ntegral, the trapezoidal formula is employed after removing the

ffects of the singularity of the Rayleigh pole, as is described in the

ppendix. The parameters δ1 and δ2 defined in the Appendix are

et at 1.0 km 

−1 and 0.7 km 

−1 , respectively. For the discretization

f the interval [ ξ (2) − δ2 , ξ
(2) + δ2 ] for the trapezoidal formula,

he increment of the wavenumber �ξ is set as 1 × 10 −4 km 

−1 .

therwise, �ξ is set as 1 × 10 −2 km 

−1 . 

.2. Sensitivity to the choice of the directivity tensors in the indicator 

unctions 

Eq. (74) shows that there are four kinds of indicator functions

rising from the choice of the directivity tensor for the Green’s

unction in the indicator function. Here, we examine the sensitiv-

ty of the accuracy of the reconstruction results to the choice of

he directivity tensors. Fig. 6 shows the spatial distribution of the

mplitude of the indicator functions around the point-like scatter-

rs, for which the point-like scatterers are colored dark gray. The

mplitude of the indicator function is expressed by the color map.

pecifically, the map describes a cloud of probing points by color-

ng them according to the amplitude value of the indicator func-

ion. The analyzed frequency is 0.5 Hz and the figure shows the

ifferences between the four directivity tensors. 

Fig. 6 shows that the high-amplitude area of the indicator func-

ions agrees well with the location of the point-like scatterers, re-

ardless of the choice of directivity tensors. A closer look at the

patial distribution of φ , which uses the directivity tensor of the
3 
ipole source around the x 3 axis, however, shows the amplitudes

f the indicator function are very small when compared to other

ases. Apart from this, the agreement of the high-amplitude area

nd the location of the point-like scatterers suggests the present

ethod is generally valid. 

.3. Sensitivity to the analyzed frequency 

It is also necessary to examine the effects of changing the an-

lyzed frequency on the accuracy of the reconstruction results.

igs. 7 and 8 show the reconstruction results with respect to the

nalyzed frequencies, which are 0.5 Hz to 2.0 Hz in increments of

.5 Hz. In these figures, the indicator functions φ0 and φ1 are used

o illustrate the investigations. As can be seen in Figs. 7 and 8 , the

igh-amplitude areas of the indicator functions agree well with the

ocation of the point-like scatterers regardless of the frequency and

irectivity tensor considered. A closer look at the amplitudes of the

ndicator functions, however, shows that the amplitudes as well as

he high-amplitude areas tend to decrease and become narrower

s the frequencies increase. It can be said that the differences in

he amplitudes of the indicator functions become smaller as the

requencies increase. 

.4. Sensitivity to random noise 

In this section, we apply random noise to the near-field opera-

or and examine the accuracy of the indicator functions when re-

onstructing the location of the point-like scatterers. The applica-

ion of the random noise to the kernel of the near-field operator is

arried out according to the following equation: ˜ 

 i j ( � x p , � x q ) = N i j ( � x p , � x q ) + �i j ( � x p , � x q ) (79)

here �ij is the random noise and N i j is the kernel of the near-

eld operator defined by Eq. (28) . We also define the level of noise
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Fig. 7. Spatial distributions of the indicator functions for a monopole directivity tensor ( k = 0 ). 

Fig. 8. Spatial distributions of the indicator functions for the dipole directivity tensor ( k = 1 ). 
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Fig. 9. Effects of introducing random noise on the accuracy of the reconstruction of the location of the point-like scatterers ( k = 1 ). 
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e  
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 n as follows: 

 

2 
n = 

3 ∑ 

i =1 

3 ∑ 

j=1 

∑ 

�
 x p ∈ S g 

∑ 

�
 x q ∈ S g 

| �i j ( � x p , � x q ) | 2 

3 ∑ 

i =1 

3 ∑ 

j=1 

∑ 

�
 x p ∈ S g 

∑ 

�
 x q ∈ S g 

|N i j ( � x p , � x q ) | 2 
(80) 

Fig. 9 shows the effects of introducing random noise on the ac-

uracy of the reconstruction of the area of the point-like scatter-

rs. The analyzed frequency is 0.5 Hz and the indicator function

sed for the analysis is φ1 . From Fig. 9 , the spatial distribution of

he high-amplitude area of the indicator function agrees well with

he area of the point-like scatterers when the noise level is 5%.

n this sense, this noise level does not affect the accuracy of the

econstruction of the point-like scatterers. When the noise level

ncreases to 10% or 15%, the high-amplitude area of the indica-

or function agrees well with the area of the point-like scatter-
Fig. 10. Analysis model for investigating the effect of
rs; however, the amplitudes also increase outside of the point-like

catterers, especially over a deep area below the point-like scatter-

rs. When the noise level increases to 20%, high-amplitude areas of

he indicator function are scattered outside the area of the point-

ike scatterers and it is then difficult to identify the area. In other

ords, when the noise level exceeds 20%, the accuracy is insuffi-

ient. At this point, we have to remark that the described perfor-

ance of the indicator function with respect to the random noise

pplies to the present numerical examples. Even though the de-

cribed performances are associated with specific numerical exam-

les, similar performances can be expected in comparable configu-

ations. 

.5. Sensitivity to the sensor grid resolution 

For the reconstruction of the locations of the point-like scatter-

rs, it is desirable to have as few surface grid points as possible

n order to keep the cost low. Fig. 10 shows the analyzed model
 the sensor grid resolution at the free surface. 
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Fig. 11. Sensitivity of the accuracy of the inversion to the sensor grid resolution at the free surface ( k = 1 ). 
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for case studies examining the effects of the number of surface

grid points, for which 81, 64, and 49 points were used. Fig. 11

shows the results of the identification of the area of the point-

like scatterers according to surface grid resolution for an analyzed

frequency of 0.5 Hz. It is found from Fig. 11 that the grid res-

olutions for cases (a) and (b) provide acceptable levels of accu-

racy. On the other hand, the grid resolution for case (c) results

in a low accuracy; that is, it is not possible to reconstruct the

area of the point-like scatterers with the grid resolution of case

(c). 

3.6. Computational cost 

It is also necessary to consider the computational cost of the

proposed method. Message Passing Interface parallel processing

was introduced into the numerical computations by dividing the

calculation points for Green’s functions, as well as the number

of probing points, among multiple CPU cores. An Intel Xeon E5-

2690, 2.6-GHz CPU was used for the numerical computation. As

mentioned earlier, the numbers of point-like scatterers and sur-

face grid points were 1618 and 121, respectively. The number

of probing points around the point-like scatterers was 26,896.

The elapsed time needed for the computation for the analysis

model, shown in Fig. 5 , in order to obtain the near-field oper-

ator and the spatial distribution of the four kinds of indicator

functions for all probing points was 92 min when 24 cores were

used. 

4. Conclusions 

This article dealt with the reconstruction of the locations of

point-like scatterers characterized by the Lamé constants as well

as the mass densities in an elastic half-space. The near-field op-

erator was represented by the monopole and dipole Green’s func-

tions. The far-field properties of the monopole and dipole Green’s

functions were derived from the steepest descent path method,

which leads to the pseudo-projections. The pseudo-projections for

the monopole and dipole Green’s functions to extract one type of

wave were found to be common from the structure of the directiv-

ity tensors. By means of the pseudo-projections, the near-field op-

erator was transformed into a far-field operator that reflected the

properties of one type of wave (P, SV, and/or SH waves). The indi-

cator functions were defined from the kernel of the adjoint of the

derived far-field operator with respect to each probing point. For

the numerical model, the number of scatterers was much larger

than the resolutions of the source and receiver sensor grids at the

surface. The effects of introducing random noise and changing the
urface grid resolution on the accuracy of the results were also ex-

mined. We found that the numerical results supported the valid-

ty of our method. 

ppendix A. Far-field properties of the derivatives of Green’s 

unction for an elastic half-space 

1. Fourier–Hankel transform for Green’s functions for monopole and 

ipole point sources 

The purpose of this appendix is to clarify the far-field proper-

ies of derivatives of Green’s function. Throughout this appendix,

he wavenumbers for the P, SV, and SH waves are denoted by

1 , ξ 2 and ξ 3 , respectively, for simplicity (note that ξ2 = ξ3 ). The

erivatives of a Green’s function can be obtained from the re-

ponses due to the dipole point sources, which can be expressed

s 

f i j,k ( � x , � y ) = ∂ y k f i j, 0 ( � x , � y ) , (k = 1 , 2 , 3) (A.1)

here f ij ,0 denotes the monopole point source defined by 

f i j, 0 ( � x , � y ) = δi j δ(x 1 − y 1 ) δ(x 2 − y 2 ) δ(x 3 − y 3 ) (A.2)

rom Eq. (A.1) , the Green’s function as well as its derivatives are

efined by 

L i j (∂ x ) G jk,l ( � x , � y ) = − f ik,l ( � x , � y ) 

lim 

 3 → 0 
P i j (∂ x ) G jk,l ( � x , � y ) = 0 (A.3)

here L ij ( ∂ x ) is the Lamé operator and P ij ( ∂ x ) is the operator for

he traction defined by Eqs. (10) and (11) , respectively. As can be

een in Eq. (A.3) , the Green’s function due to the monopole source

unction is sometimes expressed by G ij ,0 . The following Fourier–

ankel transform and its inverse ( Touhei, 2003 ) can be used to

olve the above Eq. (A.3) : 

ˆ 
 (m ) l (ξ , x 3 ) = 

∫ 2 π

0 

Q ik (ϕ) 

∫ ∞ 

0 

r 
(
h (m ) lk (ξ , r, ϕ) 

)∗
u i ( � x ) d rd ϕ 

u i ( � x ) = 

1 

2 π

∞ ∑ 

m = −∞ 

Q ik (ϕ) 

∫ ∞ 

0 

ξh (m ) kl (ξ , r, ϕ) ̂  u (m ) l (ξ , x 3 ) dξ

(A.4)

here u i in this appendix is a wavefunction for an elastic half-

pace, ˆ u (m ) i is the Fourier–Hankel transform for u i , and the su-

erscript ∗ denotes the complex conjugate. Here, ξ is the radial

avenumber, m is the azimuthal order number, and r and ϕ are

efined by 
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ϕ (A.5) 

a

[
ϕ) . (A.6) 

N  th order. 

(A.4) to Eq. (A.3) leads to the following equation: 

G (ξ ) dξ , ( when k = 0 , 1 , 2) (A.7) 

G j, 0 (ξ ) dξ (A.8) 

w

(A.9) 

a ecomposed into 

[
−νy 3 ) 

ν

[
g (3) 

ln 
(ξ ) 

]
(A.10) 

w

γ

(A.11) 

T

[
[
[

(A.12) 

w

F (A.13) 

T point source functions are as follows: 
r = 

√ 

(x 1 − y 1 ) 2 + (x 2 − y 2 ) 2 , 

 = tan 

−1 x 2 − y 2 
x 1 − y 1 

nd the components for [ Q ik ( ϕ)] and [ h ( m ) kl ( ξ , r , ϕ)] are given as 

[ Q ik (ϕ) ] = 

[ 

0 cos ϕ − sin ϕ 

0 sin ϕ cos ϕ 

1 0 0 

] 

h (m ) kl (ξ , r, ϕ) 
]

= 

[ 

1 0 0 

0 ξ−1 ∂ r (im )(ξ r) −1 

0 (im )(ξ r) −1 −ξ−1 ∂ r 

] 

J m 

(ξ r) exp (im

ote that J m 

in Eq. (A.6) is the Bessel function of the first kind of m

The application of the Fourier–Hankel transform defined by Eq. 

 

↖ 

i j,k 
( � x , � y ) = 

1 

2 π

2 ∑ 

m = −2 

Q il (ϕ) 

∫ ∞ 

0 

ξ h (m ) ln (ξ , r, ϕ) g np (ξ , y 3 ) 
ˆ f̄ (m ) p j,k 

 

↖ 

i j, 3 
( � x , � y ) = 

1 

2 π

1 ∑ 

m = −1 

Q ik (ϕ) 

∫ ∞ 

0 

ξ h (m ) kl (ξ , r, ϕ) ∂ y 3 g ln (ξ , y 3 ) 
ˆ f̄ (m ) n

here ˆ f̄ is the Fourier–Hankel transform for f̄ defined by 

f̄ ik, 0 ( � x , � y ) = δik δ(x 1 − y 1 ) δ(x 2 − y 2 ) 

f̄ ik,l ( � x , � y ) = ∂ y l f̄ ik, 0 ( � x , � y ) , (l = 1 , 2) 

nd g ij is a Green’s function in the wavenumber domain which is d

 

g ln (ξ , y 3 ) ] = 

exp (−γ y 3 ) 

γ

[
g (1) 

ln 
(ξ ) 

]
+ 

exp (−νy 3 ) 

ν

[
g (2) 

ln 
(ξ ) 

]
+ 

exp (

here 

= 

√ 

ξ 2 − ξ1 
2 

ν = 

√ 

ξ 2 − ξ j 
2 
, ( j = 2 , 3) 

he arrays for the functions are as follows: 

g (1) 
ln 

(ξ ) 
]

= 

1 

μF (ξ ) 

[ 

γ 2 (ξ 2 + ν2 ) −ξγ (ξ 2 + ν2 ) 0 

2 ξγ 2 ν −2 νγ ξ 2 0 

0 0 0 

] 

g (2) 
ln 

(ξ ) 
]

= 

1 

μF (ξ ) 

[ −2 ξ 2 γ ν 2 ξγ ν2 0 

−ξν(ξ 2 + ν2 ) ν2 (ξ 2 + ν2 ) 0 

0 0 0 

] 

g (3) 
ln 

(ξ ) 
]

= 

1 

μ

[ 

0 0 0 

0 0 0 

0 0 1 

] 

here F ( ξ ) is the Rayleigh function defined by 

 (ξ ) = 

(
2 ξ 2 − ξ 2 

2 

)2 − 4 ξ 2 γ ν

he explicit forms of the Fourier–Hankel transforms for the dipole 
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(A.14) 

(A.15) 

(A.16) 

e near-field operator defined by Eq. (28) is computed numerically from 

omputation, the trapezoidal formula is used throughout after removing 

he effects of the singularity of the Rayleigh pole is carried out using 

R 

)
dξ + P . V . 

∫ ξR + δ1 

ξR −δ1 

A R 

ξ − ξR 

dξ + π iA R (A.17) 

(A.18) 

(A.19) 

trapezoidal formula is applied to the 1st term of the right-hand side of 

ezoidal formula is necessary for an interval that contains ξ (2) than that 

d. The interval containing ξ (2) is denoted by [ ξ (2) − δ2 , ξ
(2) + δ2 ] for a 

ement of the wavenumber for the trapezoidal formula are specified for 

er integral representation of Green’s functions 

avenumber integral representation of Green’s functions is the key for 

 we modify Eqs. (A.7) and (A.8) as follows: 

jk (ξ ) dξ , ( when k = 0 , 1 , 2) 
[ 
ˆ f̄ (m ) n j, 0 (ξ ) 

] 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

0 0 1 

0 0 0 

0 0 0 

] 

(m = 0) 

(1 / 2) 

[ 

0 0 0 

±1 −i 0 

−i ∓1 0 

] 

(m = ±1) 

[ 

0 0 0 

0 0 0 

0 0 0 

] 

(m = ±2) 

[ 
ˆ f̄ (m ) n j, 1 (ξ ) 

] 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

0 0 0 

−ξ/ 2 0 0 

0 ξ/ 2 0 

] 

(m = 0) 

[ 

0 0 ±ξ/ 2 

0 0 0 

0 0 0 

] 

(m = ±1) 

[ 

0 0 0 

ξ/ 4 ∓iξ/ 4 0 

∓iξ/ 4 −ξ/ 4 0 

] 

(m = ±2) 

[ 
ˆ f̄ (m ) n j, 2 (ξ ) 

] 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 

0 0 0 

0 −ξ/ 2 0 

−ξ/ 2 0 0 

] 

m = 0 

[ 

0 0 −iξ/ 2 

0 0 0 

0 0 0 

] 

m = ±1 

[ 

0 0 0 

∓iξ/ 4 −ξ/ 4 0 

−ξ/ 4 ±iξ/ 4 0 

] 

m = ±2 

As is mentioned in the main text of this article, the kernel of th

the direct wavenumber integrals for Eqs. (A.7) and (A.8) . For the c

the effects of the singularity of the Rayleigh pole. The removal of t∫ ∞ 

0 

ξ h (m ) ln (ξ , r, ϕ) g np (ξ , y 3 ) 
ˆ f̄ (m ) p j,k (ξ ) dξ

= 

∫ ∞ 

0 

(
ξ h (m ) ln (ξ , r, ϕ) g np (ξ , y 3 ) 

ˆ f̄ (m ) p j,k (ξ ) − χ(δ1 , ξR ) 
A R 

ξ − ξ

where ξ R is the Rayleigh pole, A R is defined by 

A R = lim 

ξ→ ξR 

(ξ − ξR ) ξ h (m ) ln (ξ , r, ϕ) g np (ξ , y 3 ) 
ˆ f̄ (m ) p j,k (ξ ) 

χ is the function defined by 

χ(δ1 , ξR ) = 

{
1 when ξR − δ1 ≤ ξ ≤ ξR + δ1 

0 otherwise 

for a small δ1 > 0 and P.V. denotes the Cauchy principal value. The 

Eq. (A.17) . Note that a smaller wavenumber increment for the trap

for other intervals due to a weak singularity of ν−1 in the integran

small δ2 > 0. In the main text, the values for δ1 and δ2 and the incr

the numerical integration. 

A2. Application of the steepest descent path method to the wavenumb

Application of the steepest descent path method to the direct w

the derivation of the far-field properties of Green’s functions. First,

G 

↖ 

i j,k 
( � x , � y ) = 

1 

4 π

2 ∑ 

m = −2 

Q il (ϕ) 

∫ ∞ 

−∞ 

ξ h (m 1) ln (ξ , r, ϕ) g np (ξ , y 3 ) ˆ f (m ) p



T. Touhei and T. Maruyama / International Journal of Solids and Structures 169 (2019) 187–204 201 

 ) n j0 (ξ ) dξ (A.20) 

w[
ϕ) (A.21) 

I tions are used: 

H

H (A.22) 

w

wn in Eq. (A.10) , we can also decompose the derivatives of a Green’s 

f s such that 

G (A.23) 

F

) dξ . (A.24) 

T

h (A.25) 

w

[ (A.26) 

T derivatives of the Green’s function is expressed as 

g (α) 
ln 

(ξ ) ˆ f̄ (m ) n jk (ξ ) dξ

(A.27) 

w

[

(A.28) 

E

 , 2 

 , 1 , 2 

 

(A.29) 

ber plane for the application of the steepest descent path method is 

s oted in blue. 

for the saddle points of the P and S waves, respectively. The relationship 

b

ξ

G 

↖ 

i j, 3 
( � x , � y ) = 

1 

4 π

1 ∑ 

m = −1 

Q ik (ϕ) 

∫ ∞ 

−∞ 

ξ h (m 1) kl (ξ , r, ϕ) ∂ y 3 g ln (ξ , y 3 ) ̂  f (m

here 

h m (1) kl (ξ : r, ϕ) 
]

= 

[ 

1 0 0 

0 ξ−1 ∂ r im (ξ r) −1 

0 im (ξ r) −1 −ξ−1 ∂ r 

] 

H 

(1) 
m 

(ξ r) exp (im

n the above expression, the following properties of the Bessel func

J m 

(ξ r) = 

1 

2 

[
H 

(1) 
m 

(ξ r) + H 

(2) 
m 

(ξ r) 
]

 

(1) 
m 

(−ξ r) = −H 

(2) 
m 

(ξ r) , (m : even ) 

 

(1) 
m 

(−ξ r) = H 

(2) 
m 

(ξ r) , (m : odd ) 

here H 

(τ ) 
m 

(·) is the Hankel function of order m . 

Now, according to the decomposition of a Green’s function sho

unction with respect to the contributions from P, SV, and SH wave

 

↖ 

i j,k 
( � x , � y ) = 

3 ∑ 

α=1 

G 

↖ (α) 
i j,k 

( � x , � y ) . 

or example, G 

↖ (1) 
i j,k 

( � x , � y ) can be expressed as 

G 

↖ (1) 
i j,k 

( � x , � y ) 

= 

1 

4 π

2 ∑ 

m = −2 

Q il (ϕ) 

∫ ∞ 

−∞ 

ξ h (m 1) ln (ξ , r, ϕ) 
e −γ y 3 

γ
g (1) 

np (ξ ) ˆ f (m ) p j,k (ξ

he asymptotic behavior of the horizontal wavefunction becomes 

 m (1) kl (ξ , r, ϕ) = 

√ 

2 

πξ r 
e iξ r e imϕ e −iπ(2 m +1) / 4 ζkl + O (r −3 / 2 ) 

here 

 

ζkl ] = 

[ 

1 0 0 

0 i 0 

0 0 −i 

] 

. 

hen, each component of the waves (P, SV, and SH waves) for the 

G 

↖ (α) 
i j,k 

( � x , � y ) 

= 

1 

4 π

√ 

2 

π r 

∑ 

m 

K il (ϕ) e imϕ e −iπ(2 m +1) / 4 

∫ ∞ 

−∞ 

√ 

ξ E (α) (ξ , r, y 3 , k ) 

+ O (r −3 / 2 ) 

here 

 

K il (ϕ) ] = 

[
Q i j (ϕ) 

] [
ζ jl 

]
= 

[ 

0 i cos ϕ i sin ϕ 

0 i sin ϕ −i cos ϕ 

1 0 0 

] 

 

(α) (ξ , r, y 3 , k ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

exp (iξ r − γ y 3 ) 

γ
when α = 1 and k = 0 , 1

exp (iξ r − νy 3 ) 

ν
when α = 2 , 3 and k = 0

− exp ( iξ r − γ y 3 ) when α = 1 and k = 3 

− exp ( iξ r − νy 3 ) when α = 2 , 3 and k = 3

The path of the wavenumber integral in the complex wavenum

hown in Fig. A.1 , in which the saddle point on the real axis is den

In the following discussion, we employ the notation ξ s 1 and ξ s 2 

etween the saddle point and the P and S wavenumber is 

s 1 = ξ1 sin θ
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Fig. A.1. Steepest descent paths. The path for case 1 describes the P and S waves when ξ s 2 < ξ 1 . The path for case 2 describes the S wave when ξ 1 < ξ s 2 . The branch line 

integral for the S-P wave is required for case 2. Note that the blue segments of the integral path follow the steepest descent path and the red segment denotes the integral 

path around the branch cut. In addition, the broken lines are the branch cut. 

(A.30) 

h are explained in Fig. 3 in the main text of this article. The steepest 

te that there is a case where ξ s 2 > ξ 1 . In this case, an integral path B 

. A.1 . In addition, we have to take into account the contribution from 

d by the contributions from the residual term related to the Rayleigh 

 the region of E is far enough below the free surface, the contribution 

ored, since the Rayleigh wave mode decays exponentially with depth. 

a geometrical decay of O (R 
2 
) when R = | � x − �

 y | . As a result, the Green’s 

st descent path that shows the geometrical rate of decay O (| � x − �
 y | −1 ) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

by D 

∞ (α) 
i j 

. A straightforward calculation for these equations yields the 

ig (α) 
21 

(ξsα) cos ϕ 

ig (α) 
21 

(ξsα) sin ϕ 

g (α) 
11 

(ξsα) 

⎤ ⎦ 

(A.35) 

 sin ϕ ig (α) 
21 

(ξsα) cos 2 ϕ 

sin 

2 ϕ ig (α) 
21 

(ξsα) cos ϕ sin ϕ 

ϕ sin ϕ g (α) 
11 

(ξsα) cos ϕ 

⎤ ⎦ 

0 

0 

0 

] 

(A.36) 

 sin 

2 ϕ ig (α) 
21 

(ξsα) cos ϕ sin ϕ 

in 

3 ϕ ig (α) 
21 

(ξsα) sin 

2 ϕ 

sin 

2 ϕ g (α) 
11 

(ξsα) sin ϕ 

⎤ ⎦ 
ξs 2 = ξ2 sin θ

where θ is determined by the relative locations of � x and 

�
 y , whic

descent paths are also described by the blue lines in Fig. A.1 . No

around the branch point ξ 1 is required, as shown in case 2 in Fig

the Rayleigh pole. It is known that a Green’s function is expresse

pole, the steepest descent path, and the branch line integral. When

from the Rayleigh wave mode to Green’s function G 

↖ 

i j 
can be ign

Furthermore, the contribution from the branch line integral shows 

function can be approximated by the contribution from the steepe

becoming 

G 

↖ 

i j,k 
( � x , � y ) = 

3 ∑ 

α=1 

e iξα | � x −�
 y | 

4 π | � x − �
 y | D 

∞ (α) 
i jk 

(θ, ϕ) + O (| � x − �
 y | −2 ) 

where D ijk is the directivity tensor defined by 

D 

∞ (α) 
i jk 

(θ, ϕ) = 2 K il (ϕ) 
∑ 

m 

e imϕ e −imπ/ 2 
[ 

g (α) 
ln 

(ξ ) ̂  f̄ (m ) n jk (ξ ) 
] 
ξ= ξα sin θ

for k = 0 , 1 , 2 and 

D 

∞ (α) 
i j3 

(θ, ϕ) = 2 K il (ϕ) 
∑ 

m 

e imϕ e −imπ/ 2 
[
−η(α) g (α) 

ln 
(ξ ) f (m ) 

n j3 

]
ξ= ξα sin θ

for k = 3 . Note that 

η(α) = 

{
γ ( when α = 1) 
ν ( when α = 2 or 3) 

In the following, the directivity tensor D 

∞ (α) 
i j0 

is simply expressed 

following: 

[
D 

∞ (α) 
i j 

(θ, ϕ) 
]

= 2 

⎡ ⎣ 

g (α) 
22 

(ξsα) cos 2 ϕ g (α) 
22 

(ξsα) cos ϕ sin ϕ 

g (α) 
22 

(ξsα) cos ϕ sin ϕ g (α) 
22 

(ξsα) sin 

2 ϕ 

−ig (α) 
12 

(ξsα) cos ϕ −ig (α) 
12 

(ξsα) sin ϕ [
D 

∞ (3) 
i j 

(θ, ϕ) 
]

= 2 

[ 

sin 

2 ϕ − cos ϕ sin ϕ 0 

− cos ϕ sin ϕ cos 2 ϕ 0 

0 0 0 

] 

g (3) 
33 

(ξs 3 ) 

[
D 

∞ (α) 
i j1 

(θ, ϕ) 
]

= −2 iξsα

⎡ ⎣ 

g (α) 
22 

(ξsα) cos 3 ϕ g (α) 
22 

(ξsα) cos 2 ϕ

g (α) 
22 

(ξsα) cos 2 ϕ sin ϕ g (α) 
22 

(ξsα) cos ϕ 

−ig (α) 
12 

(ξsα) cos 2 ϕ −ig (α) 
12 

(ξsα) cos [
D 

∞ (3) 
i j1 

(θ, ϕ) 
]

= −2 iξs 3 g 33 (ξs 3 ) 

[ 

cos ϕ sin 

2 ϕ − cos 2 ϕ sin ϕ 

− cos 2 ϕ sin ϕ cos 3 ϕ 

0 0 

[
D 

∞ (α) 
i j2 

(θ, ϕ) 
]

= −2 iξsα

⎡ ⎣ 

g (α) 
22 

(ξsα) cos 2 ϕ sin ϕ g (α) 
22 

(ξsα) cos ϕ

g (α) 
22 

(ξsα) cos ϕ sin 

2 ϕ g (α) 
22 

(ξsα) s

−ig (α) 
12 

(ξsα) cos ϕ sin ϕ −ig (α) 
12 

(ξsα) 
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7) 

s 

 s

α)

8) 

ap on 

9) 

0) 

w yp he 

p ce, and A 

( α) is defined by 

A

A

A (A.41) 

T(((
(A.42) 

(
( )
(

(A.43) 

I zed in Theorem 1 . 

izations of the elastic waves of the ( α)-type waves in the full space: 

V (A.44) 

O lationship among the polarizations of the elastic waves of the ( α)-type 

w . Instead of establishing an orthogonality relationship among W 

(α) 
i 

, we 

d(
(
(

(A.45) 

T es 

W (A.46) 

w

D 

∞ (3)) 
i j2 

(θ, ϕ) 
]

= −2 iξs 3 g 33 (ξs 3 ) 

⎡ ⎣ 

sin 

3 ϕ − sin 

2 ϕ cos ϕ 

− cos ϕ sin 

2 ϕ cos 2 ϕ sin ϕ 

0 0 

D 

∞ (α) 
i j3 

(θ, ϕ) 
]

= −2 η(α) (ξsα) 

⎡ ⎣ 

g (α) 
22 

(ξsα) cos 2 ϕ g (α) 
22 

(ξsα) co

g (α) 
22 

(ξsα) cos ϕ sin ϕ g (α) 
22 

(ξsα)

−ig (α) 
12 

(ξsα) cos ϕ −ig (α) 
12 

(ξs[
D 

∞ (3) 
i j3 

(θ, ϕ) 
]

= −2 ν(ξs 3 ) g 33 (ξs 3 ) 

[ 

sin 

2 ϕ − cos ϕ sin ϕ 

− cos ϕ sin ϕ cos 2 ϕ 

0 0 

n Eqs. (A .35) –(A .38) , α takes a value of 1 or 2. A straightforward 

f the directivity tensor: 

 

∞ (α) 
i j 

(θ, ϕ) = A 

(α) (θ ) W 

(α) 
i 

(θ, ϕ) V 

(α) 
j 

(θ, ϕ) 

 

∞ (α) 
i jk 

(θ, ϕ) = −iξα A 

(α) (θ ) W 

(α) 
i 

(θ, ϕ) V 

(α) 
j 

(θ, ϕ) V 

(1) 
k 

(θ, ϕ) 

here V (α) 
i 

denotes the polarization of elastic waves of the ( α)-t

olarization of elastic waves of the ( α)-type wave at the free surfa

 

(1) (θ ) = 

2 g (1) 
22 

(ξs 1 ) 

sin 

2 θ

 

(2) (θ ) = 

2 g (2) 
22 

(ξs 2 ) 

cos 2 θ

 

(3) (θ ) = 2 g (3) 
33 

(ξs 3 ) . 

he explicit forms of V (α) 
i 

and W 

(α) 
i 

are 

V 

(1) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin θ sin ϕ sin θ − cos θ

)
V 

(2) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ cos θ sin ϕ cos θ sin θ

)
V 

(3) 
i 

(θ, ϕ) 
)

= 

(
sin ϕ − cos ϕ 0 

)
W 

(1) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin θ sin ϕ sin θ i 

g (1) 
12 

(ξ1 sin θ ) 

g (1) 
22 

(ξ1 sin θ ) 
sin θ

)
W 

(2) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ cos θ sin ϕ cos θ i 

g (2) 
12 

(ξ2 sin θ ) 

g (2) 
22 

(ξ2 sin θ ) 
cos θ

W 

(3) 
i 

(θ, ϕ) 
)

= 

(
V 

(3) 
i 

(θ, ϕ) 
)
. 

n the main text of this article, Eqs. (A.39) and (A.40) are summari

The following orthogonality relationship exists among the polar

 

(α) 
i 

(θ, ϕ) V 

(β) 
i 

(θ, ϕ) = δαβ

n the other hand, it is impossible to establish an orthogonality re

aves at the free surface due to the interaction of the P-SV waves

efine W 

(α(� ) 
i 

(θ, ϕ) as follows: 

W 

(1 � ) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin ϕ i 

g (2) 
22 

(ξ2 sin θ ) 

g (2) 
12 

(ξ2 sin θ ) 

)
W 

(2 � ) 
i 

(θ, ϕ) 
)

= 

(
cos ϕ sin ϕ i 

ig (1) 
22 

(ξ1 sin θ ) 

g (1) 
12 

(ξ1 sin θ ) 

)
W 

(3 � ) 
i 

(θ, ϕ) 
)

= 

(
W 

(3) 
i 

(θ, ϕ) 
)

hen, the orthogonality relationship among W 

(α) 
i 

and W 

(α� ) 
i 

becom

 

(α) 
i 

(θ, ϕ) W 

(β� ) 
i 

(θ, ϕ) = δαβ W 

(α) 
i 

(θ, ϕ) W 

(α� ) 
i 

(θ, ϕ) 

hich leads to the definition of the pseudo-projections. 
[

[

I

o

D

D

0 

0 

0 

⎤ ⎦ (A.3

ϕ sin ϕ ig (α) 
21 

(ξsα) cos ϕ 

in 

2 ϕ ig (α) 
21 

(ξsα) sin ϕ 

 sin ϕ g (α) 
11 

(ξsα) 

⎤ ⎦ 

0 

0 

0 

] 

. (A.3

plication of Eqs. (A .35) –(A .38) leads to the following decompositi

(A.3

(A.4

e wave (namely, P, SV, or SH waves) in the full space, W 

(α) 
i 

is t
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