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the far-field properties of the Green’s functions for both the monopole and dipole sources, which yields
the pseudo-projection approach to the wave problem. Indicator functions that reconstruct the locations
of point-like scatterers are defined by the far-field operator derived from the pseudo-projections and the
near-field observation. Numerical computations were carried out to verify the accuracy of the pseudo-
projection method. The sensitivities of the accuracy of the reconstruction results for the proposed method
to random noise, the grid resolution at the free surface, and the analyzed frequency were also examined.
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1. Introduction

Inverse scattering analysis techniques have been widely studied
due to their inherent appeal as well as their potential applications,
such as in geophysical exploration, site characterization, medical
imaging, and non-destructive testing. Many significant articles
in this field have already been published and the number of re-
search articles is growing rapidly. This being the case, Colton and
Kress (2018) published a review article on the development of the
mathematical theory of inverse scattering analysis since the 1970s.
As they mention, it is well known that sampling methods such
as the linear sampling, factorization, and topological sensitivity
methods, also have had important roles in the history of the
development of inverse scattering analysis.

The application of the linear sampling method (Colton and
Kirsch, 1996) to an elastic wavefield can be seen in Fata and
Guzina (2004) and Baganas et al. (2006). They formulated the
near-field equation and gave the mathematical details its prop-
erties for an elastic half-space. Pourahmadian et al. (2017) pre-
sented a generalized linear sampling method for the recon-
struction of heterogeneous fractures. The factorization method
Kirsch (1998) and Kirsch (2011), which clarifies the range of
the far-field operator by factorization, is also a useful tool for
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elastic wave scattering problems. Hu et al. (2016) applied the
factorization method to the solid-fluid interaction problem.
(Bazan et al, 2017) applied the factorization method together
with maximum product criterion (Bazan et al., 2012) to the shape
reconstruction problem in an elastic wavefield. Applications of the
topological sensitivity methods based on the topological derivative
(Sokolowski and Zochowski, 1999) to an elastic wavefield can
be seen in Ammari et al. (2013), in which they used the elastic
moment tensors (Ammari and Kang, 2007). The MUSIC algorithm
(e.g., Cheney, 2001) is also a sampling method which identifies the
locations of scatterers. The application to the elastic wavefield of
the MUSIC algorithm can be seen in Gintides et al. (2012), who re-
constructed point-like scatterers in 2D full space using one type of
elastic scattering wave (P or S waves). Ammari et al. (2005) applied
the MUSIC algorithm to locating small electro-magnetic buried
inclusions in a half-space. They also applied their method for
small elastic inclusion (Ammari et al., 2008), in which the elastic
moment tensor played a role in constructing the indicator function.

One of the authors of the present article also developed
the pseudo-projection approach for the MUSIC algorithm
(Touhei, 2018) in order to apply it to a 3D elastic half-space.
The method derives the far-field operator from the near-field
observation by applying the pseudo-projection, which extracts
one type of wave (P, SV, or SH waves) from the wavefield in an
elastic half-space. In addition, the range of the far-field operator
is constructed with respect to each probing point in order to
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Fig. 1. Schematic of the scattering problem. An incident wave generated from a point source propagates to point-like scatterers. We observe the scattered waves propagating

back to the free surface.

observe the locations of the point-like scatterers carefully. These
properties of the method are expected to provide accurate imaging
results and differ from those in the articles mentioned above.
The method, however, was formulated for point-like scatterers
characterized only by the fluctuation of the mass density from the
background of the wavefield.

This article develops an inversion method for identifying loca-
tions of point-like scatterers characterized by the fluctuation not
only of the mass densities but also of the Lamé parameters from
the background structure of an elastic half-space. The method itself
is a qualitative one as in a group of the sampling methods and is
an extension of the method presented by Touhei (2018). In the pre-
vious work by one of the authors, however, the pseudo-projection
was only for a Green’s function due to a monopole source. In ad-
dition, the characterization of the far-field operator derived from
the pseudo-projection was not complete. When dealing with point-
like scatterers characterized by the fluctuation of the Lamé param-
eters and mass densities, Green’s functions for both monopole and
dipole sources are necessary. In view of the above, the task of the
present article comprises the following four points:

(i) Clarify the far-field properties of the Green’s functions for
both monopole and dipole sources in terms of polarization
vectors.

(ii) Construct the pseudo-projections for the Green’s functions
for both monopole and dipole sources.

(iii) Verify the factorization of the far-field operator derived from
the pseudo-projections.

(iv) Characterize the range of the far-field operator derived from
the pseudo-projections.

For the purpose of the task of the present article, the outline
of the formulation of the present method is organized as follows:
First, in Section 2.1, the problem considered in this paper is de-
fined. In Section 2.2, a representation of a scattered wavefield by
Green’s functions for the monopole and dipole sources is shown.
After that, the pseudo-projections for Green’s functions for both
the monopole and dipole sources, which are found to be the same
due to the structure of the directivity tensors, are introduced in
Section 2.3. In Section 2.4, the far-field operator is obtained by
applying the pseudo-projections to the near-field operator in the
Born regime.

2. Theoretical formulation
2.1. Definition of the scattering problem and basic equations

Fig. 1 shows the outline of the wave problem dealt with in this
article. The wavefield is a 3D elastic half-space, in which the in-
cident waves from point sources at the free surface propagate to-
ward the point-like scatterers embedded in the half-space. We ob-
serve the scattered waves propagating back to the free surface. The
problem considered in this article is how to develop a method for
identifying the locations of point-like scatterers characterized by
fluctuations of the Lamé parameters as well as the mass densities
from the background structure of the wavefield.

The analysis is carried out in the frequency domain with time
factor exp(—iwt), where w is the circular frequency and t is the
time. A Cartesian coordinate system is employed to express the
wavefield. The components of the spatial point in terms of the
Cartesian coordinates are expressed as

X=(X1,X2,%3) e R? x Ry = R? (1)

where x3 denotes the vertical coordinate where the positive di-
rection is downwards and x3 = 0 denotes the free surface of the
elastic half-space, which is denoted by S. The subscript index for
the vectors and tensors describes the components of the coordi-
nate system and the summation convention is applied to the sub-
script index. We set the source and sensor grids in S to identify
the location of the point-like scatterers, for which the number of
grid points in S is finite. Let the set defining the source and sensor
grids be denoted by

Se={%N,cS (2)

where N is the number of grid points in Sg.
The Lamé parameters and the mass density are expressed as

LX) = Ao+ A(X)
n@® = o + A (X)
P (X) = po+ p(X) (3)

where A, , and p are the Lamé parameters and the mass density
with background values Ag, /4o, and pg and fluctuations A, ji, and
p.

The fluctuations are characterized by the point-like scatterers
which are expressed by

2@ = D" Anb (X =)

YmeE

AE) =Y fim8(X —Im)
YmeE

pX) = Z ,5m5(7z_37m) (4)
YmeE

where A, fim and py, are the amplitudes of the fluctuations, &(-)
is the Dirac delta function, and ¥y, is the position of the point-like
scatterers. Note that the set of point-like scatterers is denoted by
E.

The S and P wave velocities for the background structure are
represented by

M = Ao+ 2o
Lo
@ _ [MHo
c? = [—. (5)
Po
The wavenumbers for the P and S waves are expressed as
ED =/, ED = g/c®, (6)

Note that the superscripts (1) and (2) for ¢ and £ indicate that
the physical quantities are related to the P and S waves, respec-
tively. Later, we use the superscript (3) to indicate the physical
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quantities related to SH waves. Here, the superscript (2) is for de-
scribing SV waves. For example, we sometimes use £() and £G)
for the wavenumbers of SV and SH waves, respectively. Regardless
of the notation, we understand that

£V =¢® (7)

The Green’s function for an elastic half-space is denoted by
G;j(X,¥), where the subscripts i and j describe the components of
the Cartesian coordinate system, X is the field point, and y is the
source point. The Green’s function for an elastic half-space is de-
fined by the following equation:

Lj(3)Gy(Xy) = -8ud(X-3), (X yeRd) (8)

)}in‘})ljij(ax)cjk(iv.y) =0 9)
3—)
where Lj; is the Lamé operator defined by

Lij(8x) = (Ao + 140) By, O, + 8ij (10 Dx, Ox, + Po?) (10)

and P; is an operator that transforms the displacement field to the
traction for the x5 plane, whose components are

M08x3 0 Mo a><1
[Pi@)]=]| 0  1ody Hody, |- (11)
)\Oaxl )\axz ()\O + 2/1'0)8)(3

Note that dy, is the partial differential operator whose subscript
denotes the parameter for the differentiation and §; in Eq. (8) is

the Kronecker delta. As notation for Green’s functions, G;.} (X.¥) and
Gﬁ (x,y) are used later to clarify the direction of the waves of a
Green'’s function, as well as the structure of the factorization of the

far-field operator derived from the pseudo-projections. The defini-
tions for this notation are

G\()?JT) = Gl](x,y), forxeSand yeR3\S
G/(>?37) = G,J(x,y), forxeR3\SandyeS (12)

According to the reciprocity of Green’s functions, the following
relationship can be established:
Gy (X.y) =G (7.%), XeS yeRI\S (13)

The derivatives of Green’s functions are also necessary in the fol-
lowing. We employ the following notation for the derivatives of
Green’s functions G;.}. X, ¥):

G (&) = 0,65 (X.9),
while the notation for the derivatives of Green’s function G;{ 7. %)
is

ﬂk(y X) = aykcj{(y X), (XeS yeRI\S k=1,2,3). (15)

As can be seen in the Appendix, the derivatives of Green’s
functions G\k are evaluated from the dipole sources. The tensors

formed by the derivatives of Green’s functions are also important
in the formulation of the proposed method later, which are

Ta®Y) = (1/2) (G X Y) + Gy (%))

(XeS yeRI\S k=1,2,3) (14)

(16)

TL0.9 = (1/2)(Gy, 0. + Gy (7.9). (17)

From the reciprocity and symmetry of Green’s functions, the
following relationship is established:

TL0. %0 = T (X Y) (18)
z]k(X _)7) lk](x y)

k],(y X') = jkl(y X)

2.2. Representation of the scattered wavefield

In this section, we have to clarify the representation of the scat-
tered wavefield in the presence of fluctuations characterized by the
Lamé parameters and mass densities of the wavefield. We will see
how the derivatives of Green’s functions can be used for the repre-
sentation of the scattered wavefield. Let u; and € be respectively
the displacement field and strain tensor corresponding to the to-
tal field for the wave problem. We decompose the wavefield in the
following form:

u(%) = u® () +u (%)
€j(®) = €)@ + € ()

where a (0) superscript denotes the incident background wavefield
and an (s) denotes the scattered wavefield. We employ the Born
approximation in this article. Then, the decomposition of the stress
tensor can be expressed as

Oij ()?) = )\.081']'6(,?) ()Z') + ZMOE,'(]-O) ()?')
+)\-081]E,$’s() x) + 2/,L0€.(.S) (x)
+)L ()2')8’1 Ekk) (X)) +20 ()2)61(10) ®).

It is known that the scattered wavefield can be expressed by
the following volume integral equation (e.g., Touhei, 2011):

u® (@) = / Gy (%, )M (3,)u® () dy

(20)

(21)

(22)

where 2 is an arbitrary domain which includes the region for the
point-like scatterers E and M is the operator due to the presence
of the fluctuation of the wavefield expressed as
Mj(d) = (& + [1)3;0 + 8 (10,0 + p?)
+8]‘5x O + Ok fl 8j+5jk81/1 a. (23)

As shown in Fig. 2, the domain 2 is surrounded by the bound-
ary I' and S, where I' NS = @. According to the decomposition of
the wavefield, Eq. (22) can be modified into

ul (X) = /QG;(’KY)(ayk(MY)‘SJkEHW)+2M(J’3€jk()7))
+ p(Pw*u;(y))dy
- /Q G; .9 (3y, (RoSjxen ) + 2p0€ )

+ Pow?u;(¥))dy (24)
In the context of the Born approximation, we have used
P @i (%) = poui(X) + p(X)u® (%) (25)

for Eq. (24).
Integration by parts of the first term on the right-hand side of
Eq. (24) yields

/9 Gy (? 57) <8yk (/\ <§>8jken (?) +2u (?)ij (§)>
()

= [ [O)R(57)a(v) - 20( ) (7.5 )eu ()
#p(7)a ) (.7 Jus(v) oy
/G\(x y)nk( )[/\oa,ke,,<y)+2M06jk(§)]dr(§> (26)

where nj is the component of the normal vector defined at the
boundary I' whose direction is outward from the region 2. As a
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Fig. 2. Region Q containing the point-like scatterers. Region €2 is surrounded by the boundaries I' and S, where I' NS = @. Note that applying integration by parts to

Eq. (24) does not yield the boundary terms for I" and S.

result of Eq. (26), it is not difficult to see that the boundary terms
caused by the results of applying integration by parts to the first
and second terms on the right-hand side of Eq. (24) cancelled each
other out. Therefore, introducing Eq. (4) into the results of the in-
tegration by parts of Eq. (24) yields

u (%) = = X ATy (%, )€l ()

YmeE

- ) 20nTy (}’ ym>e},?> (ym)

YmeE

+ Y @Gy (%Y )ul” () (27)
ymEE

At this point, let the background wavefield be due to the Green’s
function at the source point X; € Sg. Then, from Eq. (27), we have
the representation of the kernel of the near-field operator as the
following form:

Nij (%, Xg) = = > ATy (K. ) T, (i, %)
YmeE
— 3 2Ty (%, Y T (i, %)
YmeE
+ Z ﬁmsz;k(me)G,{j(fm,fq) (28)
YmeE
Eq. (28) shows how the derivatives of Green’s functions are used in
the representation of the near-field operator. We need to evaluate
G; and Tz]\k for Eq. (28), from which G;; and Tlﬂ are determined by
the reciprocity of Green’s functions.

2.3. Pseudo-projections derived from the far-field properties of
Green'’s functions

The far-field properties of Green’s functions and their deriva-
tives are derived and summarized in the Appendix, where a
Green’s function and its derivatives are expressed as

exp(i§ X — y1)

co(a) 7 _ -2
anw—g] Di 09 +O(X-y1) (29)

3
GyEy) =)
a=1

3 () |7
Ci @) = 2 %Dﬁf“)(a ¢) +0(17~ 1) (30)
o=

based on Eq. (A.31), where the tensors D?J?("‘) and D;?k(“), which we
call the directivity tensors, are defined by Eqs. (A.35)-(A.38). Note
that an ‘A’ in an equation number, such as Eq. (A.38), indicates an
equation presented in the Appendix. The angles 6 and ¢ define the
direction of the vector X — ¥ as shown in Fig. 3.

The main properties of the directivity tensors are summarized
in the following theorem based on Eqgs. (A.39) and (A.40).

T2

Zs3

Fig. 3. Definitions of the angles 6 and ¢, which determine the direction of X — y.

Theorem 1. The directivity tensors for the derivative of Green’s func-
tion can be decomposed into the following form:

D3 (6, ¢) = - DY (0, 9) V(0. 9)
= —iE@ A @)W 0. 9) V0. 9) V(0. 9)
(31)

where Vl.(“) and Wi(“) denote the polarizations of the elastic waves of
the (ot)-type wave in the full space and at the free surface, respec-
tively, and A is the amplitude. The explicit forms of A®), VI.(O’), and

Wi("‘) are

—2&0 Va1 (5521 + V521

AV @) =
@ [oFs sin 6
202 (E2 + 12
2) _ 52 \>52 s2
A0 = MoFs2 cos? 0
2
A® @) = = 32
) o (32)
(VY (0.9)) = (cospsing  singsind  —cosb)
(V®(0.9)) = (cospcost singcosd sinb)
(V®(6.9)) = (sing  —cosg 0) (33)
i(82 2
W0, 0) = (cospsing  singsing LTV gng
( ! ( (P)) e nest ZVslSsl !
(V\/,.(Z)(Q,w)) = <cos¢cos€ sing cosf % cos@)
s2 VSZ
W20, 9) = (V2. 9) (34)

where

& = E@sind

Vi = /B -~ EV)?

Fu = (262 — D)) — € yara (35)
foroa=1,2.
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At this point, we construct Wi("“) satisfying the following prop-
erties:

W@ (0, WP (0, 9) = 8,sW, (6, )W, (0, 0) (36)

The explicit forms of W** are also given in Eq. (A.45) and are as

follows:
(W(0.9)) = (cosp  sing 65 + )
! 2552 Vs2

2ivgéa
( 521 + 1)321)
W0, 9)) = (W6, 9) (37)

From the structure of the directivity tensors D,?’].C(“) and D;,O,f“)

W 0.9)) = (cosqo sing

shown in Theorem 1 as well as Wi(“*), we reach the definition of
the pseudo-projection as follows:

W@, ) W (6, )

FO0,9) = . (=1,2,3) (38)
’ WO, ) W (0, 9)

which satisfies the identity

F0,0)F L0, 9) =8up Fi (6, 9) (39)

although }‘l.(j“) is not Hermitian. The effects of the pseudo-

projection on a Green’s function as well as its derivatives are sum-
marized by the following corollary derived from Theorem 1.

Corollary 1. Pseudo-projections extract one type of wave from a
Green'’s function as well as its derivatives as follows:
() N (v
FOO.9) GrE.Y)
exp(iEDIX—y1) . () @ o 2
yrr L0, U (0, 9) +0(X - y179)

Fi0,9) T (X.5)

_ exp(i£ |7 y1)

(@) (@) 7 -2
ane—y O 0.9)+ 01717 (40)

kl

where

U 0, 9) = A9 OO, 9) (41)

U0, ) = —(1/2)iE @A@ (0)

< (V6. o)V V(0. 9) + V6.0V (0. 9))
(42)
Proof. The results of this corollary come from the straightforward

calculations in Egs. (29)-(31) and the properties of Wi(a') shown in
Eq. (36). O

The actions of the pseudo-projections on Gﬁ as well as Tu/k are
also important. Due to the reciprocity of Green’s functions, these
actions are expressed as follows:

FiOO. )G (7. %)
_ exp(iE@[x-y))
T 4miX -y
FOO. )T (7. %)
_ exp(iE@[x-y))
T 4miX -y

W6, o)UY (0, 9) +0(|% - y172)

W@ @, p)UL 0, 9) +0(X - 7172).  (43)

Note that the angles (6, ¢) also describe the direction of the
vector X — ¥ even for Gk/j (v, %) and Tkl/j 7, %).

Remark. The role of the pseudo-projection will be clarified based
on Corollary 1 together with the definition of the operator Pi(j“)
later.

We now make some remarks on the properties of the direc-
tivity tensors. The polarization of the elastic waves of the P wave
Vk(” (0, @) also describes the direction of any type of wave (namely,

P, SV, or SH waves). Therefore, vk“’(e, @) in Eq. (31) should be un-
derstood in the sense of the direction of the («)-type wave, which
is caused by differentiation of a Green’s function. In addition, the
traces of tensors Uﬁz) and U,(f ) vanish:

U ©0.9) =U"0.9) =0. (44)

This is due to the orthogonality of the polarization of the elastic
waves between the P and SV waves as well as between the P and
SH waves. Eq. (44) arises from the fact that the volumetric strains
caused by the SV and SH waves vanish.

2.4. Introduction of the far-field properties of the Green’s function for
the near-field operator

Now, we return to Eq. (28) for N;j(Xp, Xg), which describes the
scattered wave at X, due to the point force acting at the free sur-
face X;. The near-field operator is constructed from the stack of
N;j(Xp, Xq). We employ the following representation of the near-
field operator:

N
(Nicfi) () = D Nie@p. %) fie(%q). (%p. X € Sp) (45)

q=1

where f.(-) € C3N which is defined in Sg, with C3N denoting the
3N-dimensional complex vector space. In the following, we some-
times use the notation (fi( -)), where

(fi(®)) = ((fk()?p)k=1,2_3)p=1 N E . (46)

According to Eq. (28), Eq. (45) can also be expressed as
Vi) (®p)

N
= (Z Z *)\m’[;-;((fp’y‘m)j‘lﬁ(ymyfq) - zﬂmua(gp’ym)TkﬁWm,gq)
q=1 ymeE

+,5m0)26;->(’?p’Ym)G,{j(ymviq)>fj()?q)a (fp,fq € sg)- (47)

To introduce the far-field properties of Green’s functions to the
near-field operator shown in Eq. (47), let Z; be a probing point and
define the following operator with respect to this probing point:

PO (%5, 20) = K (€@, %, Z)FS Ops, 9ps) (48)
where
x(é“”,?;,,?s) :471’},1—;5 exp (—ié&(a) Xp—Zs ) (49)

and angles (6ps, @ps) define the direction of the vector X, — Z. In
the following, we also use the notation for angles (0pm, @pm) to
define the direction of the vector X}, — ¥in.

The operator Pl.(j.“)(ip, Zs) is now applied to the near-field oper-
ator N, to obtain a far-field operator. By the use of Corollary 1,
which holds from the properties of pseudo-projections, character-
ization of the range of the far-field operator becomes possible.
Namely, for the case that Z € {yn}, the application of Pi(]P‘) yields a
derived operator with a range coinciding with the directivity ten-
sor for the o-type waves, which enables the construction of the
indicator function. In order to realize the properties of the range,
the operator 731.(].“) needs « (§®), %, Z) to eliminate the effects of
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geometrical decay and the phase of the waves from the probing
point.

To introduce the far-field properties of Green’s function to the
near-field operator and to characterize the derived far-field opera-

tor, we construct the tensors H, (O‘) and H,(,f‘).

P (%, 2T 5 (K, Yin) = Hi) (X, Zs, im) + O(I% — Zi[1Kp — ym| )

P (Xp, 26y (Xp, Yim) = Hi (K, Z6, i) + O(Xp — Zl 1R — ym| 2)
(50)

According to Eqs. (40), (48) and (50), the tensors Hi(ﬁ‘() and Hl.(jf") can

be expressed by

3
‘/Vi(a) (st, ‘Pps) Z B@h) ()?p, fs,Ym)U;ﬁ) (epmy @pm)
p=1

H{® (%, Z5, i) =

HS (%, 26, Yim) = W (Bps, 0ps) i BCP) (R, 25, Y )U L (Opm, pm)
=1
ﬂ (51)
where
BP) (X, Z5, Yim)
_ 1% — 2| exp(EP 1%y — Fnl) W @om. 0pm) W™ Ops. 1)
X =Y exp(i&@1Xp —Z[) W (Ops, 9ps )W, (Bps. @ps).
(52)

The introduction of the far-field properties of Green’s function
to the near-field operator is realized by A;’f(“) which is the product

of P@) and the kernel of the near-field operator such that
P (X, 2) N (R, X) P (%, 2)

= AT (Z) + 0Ky — Z5||Xp — Yl 72) + O(1%g — Zs||%q — Vil 72).

(53)
Substituting Eq. (47) into Eq. (53) gives
(A7 @) f;) (%)
N
=Y 3" (—huHy) ®o, 25, Y HS (R, Z5, Yim)
q=1YmeE
—zﬂmHi3<7)(fp:ZSaYm)H ikl (Xq. Zs, Ym)
+ Dm0 Hi (%, 25, Y HS (R, 25, Yim) ) Fi (%),
(@=1,2,3). (54)
For the case that Z; — ¥, we see that
B (X, Zs. Ym) —> Sap (55)

and as a result we have
H Ry, 25, Yin) —> WS Opm, @pm)U;* Gpm, @pm)
= D3 (Opm, @pm)
H{ (%, 2o, ) —> W pm. 0pm)U S Gpm. @pm)
(1/2) (D,oﬁ((a) (Bpm. @pm) + Df,f](a) (Opm: Ppm) )
(56)

for the case of Z; — yn. We have thus used Egs. (A.39), (A.40),
(41) and (42) to obtain Eq. (56).
We now characterize the range of the operator Aff(“) (Zs).

Theorem 2. Let M@ (Z) be a subspace of C3N such that
M@ (Z) = span, {(DF Bps. p5)). (D@ Bps. 0ps))} (57)

Then, the following characterization of the range of the operator
Af;("‘)(z"s) becomes possible:

3y € E such that Z = ¥ &= M@ (Z) C ran Af;’(“)(z}) (58)
Remark. Note that the elements in M) become

(Diolf(a)(ep& @ps)) = ((DW(“)(QPD (ppS))’ 1.2, 3)P 1

(DTIZ(O{) (Ops. @ps)) = <(D10’:>’(a) (G- pr))ilej) p=1

for fixed k and L

Proof. Assume that 3y« € E such that
Vme = Zs; (60)

then we have the following expression for the derived far-field op-
erator:

(A7) f) (%)

= (A7 @) @) + (AT @)f) ) (61)
where

(A5 C™ (Z0) f;) (%)

= kaoka (Ops, @ps)
x Z —home W (Ogs, 9gs) UL (Ggs, as) f(Xg)
q=1

+ (1/2)(Dlo:l( (st’ @ps) + D,Oﬁ{ a)(eps, §0ps))
N

X Y =2 WS Oy, 94s)U" (Bas, 9gs) f (%)
q=1

,oko( )(Gps, ©ps)

N
X me* w W(a)(gqs, §0qs)U(a)(9qu (qu)fj()?q) (62)
q=1

and
(A7 @)15) %)
N
q=1 JmeE\{Vn+}
— 2fim H (%p, Zs, i) Hi) (%, Z5, Yim)
+ Om H,k (ivaSva)ij (quZSst)) fi(%q) (63)
Eq. (62) can be further modified as
(AF™ (Z) £7) ()

(—Xm H,(,f,i) (Xp, Z. ym)H ! jll (Xq, Z5, Ym)

D;)kol(a) (Ops, ©ps) ZC(U]H (Ogs. @gs) fi(Xg)

+ D?ko @) (Ops. Pps) ZC(Z)]H (Ogs, @qs) f(Xy) (64)

where
C((;X)}kl (Ogs. Pgs)
= (=R Unn Bgs. Pgs) — i Uy
X Wj(a) (Ogs» ¥qs)

(Bas. ©as) + U (Bs. 9gs)))
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C((g);-k(eqs, @Ygs) = f)m*sz,f“) (eqs, (qu)vvj(a) (eqs, ) (65)
Eq. (64) is the factorization of the operator and we see that
M@ (Z) ¢ ran Afjo("‘)m* (Z,) C ran A;’J.O("‘)(Zs). (66)

Conversely, let Z; ¢ E. Using Eq. (54) and following the same
procedure used for deriving Eq. (64), the expression for the far-
field operator is

(47 @ f) @)

-¥

[W,.“’” (Ops. @ps)BP (% Ze, Fu) AP (Opm VP Opm. @pm )V, (Opm. @pm)
YmeE

N
X Y C5 i Ko 26, Tm) £ (%g)
q=1
+ ‘/V,'(a) (eps- V’ps)Bmﬂ) (Xp, ZSqJ?m)A(ﬂ) (me)vk(ﬁ) (me, ©pm)

N
x 3 C i g 2o, Tim) <fq>} (67)
q=1
where
C& )it R 25 i) = —AmSuH o) (R, Zs, Yim)
o (M) 5. 2o ) + H (5. 2o ) )
CieRas Z6.Ym) = P’ Hy) (Rg. 2, Yim) (68)

Eq. (67) is also a factorization of the operator and we see that

oo(ar)
Dijk

(

¢ Spgn { (VV,-(D[) (‘9p5a (ﬂps)B(aﬁ) (Xp, fs,Ym)A(ﬂ) (me)Vj(ﬁ)(me, (Ppm)vk(l

(D5 (Bps, @ps)) = (A Ops )W, (Bps, 9ps )V, (Bps, 0ps))
¢ Spgn { (Vvi(a) (Ops. @ps)B(aﬂ) (Xp, Z, Jm)AP) (me)Vk(ﬂ) (Opm. (Opm))}

and as a result

(D™ Ops, ¢ps)) ¢ ran AT (Z)

(D3 (Bps. ¢p)) ¢ 1an AT (Z). (70)
Therefore, we have
Z =Y € Fnlyner & M@ (Z) € ran A7 (Z) (71)
The result then follows from Egs. (66) and (71). O
Now, we use the following orthogonality relation:
ker (A (Z))" L ran AT (z) (72)

where (AZ?(“)(ZS))H is the Hermitian adjoint of the operator

Aff(“)(i’s). Theorem 2 and Eq. (72) allow construction of the in-

dicator functions that reconstruct the locations of point-like scat-
terers. For expressing the indicator functions, we employ the fol-
lowing convention for the directivity tensor:

( (Ops, (ops)) = (D,‘Ojc(a)(gps’ (pps))

Namely, (D?J.Q()(“)(st,(pps)) denotes the directivity tensor for the
monopole Green's function. Based on the above convention, we
have the following four kinds of indicator functions with respect
to the use of the monopole and dipole Green’s functions:

D@

ijo (73)
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3 3 -1
> (@) 15 H oo(ar) 2
ou(2) = [T | = X[ (@) (05 O o)) | -
a=1| n j=1
(k=0,1,2,3) (74)

where {(W\*)(Z;))}n is the basis for 1<er(Ai°19(“)(Zs))”. The indicator
function in Eq. (74) has the following properties:

lim ¢y (Z) = oo. (75)
Zs—ymekE

So far, we have shown the derivation process of the indica-
tor function for imaging the locations of point-like scatterers. The
pseudo-code for computing the indicator function is shown in
Fig. 4.

As can be seen in Theorem 2, the present method has strong
ties with the factorization method. The present indicator func-
tion, however, is based on the properties of the far-field operator
Afj’("‘)(is) defined by Eq. (53), which is defined for each probing

point Z. As a result, the basis of the kernel of (A;’]?’(“))” has to be
also calculated with respect to each probing point. Although this
procedure is complicated, it is expected to improve the accuracy
of the reconstruction of the locations of many point-like scatterers
by a small number of source and sensor grid points at the free
surface. As is mentioned in the Introduction, this fact marks its
significant difference from other sampling methods. In the follow-
ing numerical examples, the spatial spreads of the indicator func-
tions will be investigated to examine how accurately the locations
of point-like scatterers are reconstructed.

(Ops. <.0ps)) = (Am) (eps)W,'(a) (Bps. Qﬂps)vj(a)(@ps, ‘/’ps)Vk(U (Ops. <Pps))

' Opm, (Ppm))}

3. Numerical examples
3.1. Analysis model

The model analyzed in this section is shown in Fig. 5(a) and
5(b). We can see grid points at the free surface and point-like scat-
terers in the elastic half-space. The grid points at the free sur-
face are the source and receiver sensors, for which the interval
is 2.0 km and the total number of points is 121. The number of
point-like scatterers for the analyzed model is 1618, which is much
larger than that of the surface grid points. The point-like scatterers
are spread horizontally over a 10 km x 10 km area. The source
and sensor grid points at the free surface spread over an area of
20 km x 20 km, which covers the area of the point-like scatterers
horizontally. The point-like scatterers are placed with a grid inter-
val of 0.25 km, and the set of the point-like scatterers forms the
shape of the object. The shape of the object is based on the salt
model described in Abubakar et al. (2011). For the object, the P-
and S-wave velocities are set at 4 km/s and 2.23 km/s, respectively,
and the mass density is set at 2.5 g/cm3, while the P- and S-wave
velocities for the background structure of the wavefield are 2 km/s
and 1 km/s, respectively, and the mass density is 2 g/cm3. Namely,
the Lamé parameters and the mass densities for the background
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Near-field observation Nj;(Zp, Zq), Tp,Zq € Sy

do k=0,. 3
or(Zs) <1, (Z € P)
I P: \‘rU‘rmn\»in:puinr\,
do a=1,3
do ip=1,..., nns

!

! mns: number of probing points.

Select Zs according to ip

Construct the operator P,fﬁ(f,,,z‘;) by Eq. (48).

Construct the far-field operator by Eq. (53):
AT (Z) — PEN (2Nt (i, 7P (7 20)

H
Construct the basis of the kernel of the operator <A:;(a)(2;))

{(\IJS”(ZS))}R — ker (A?;(,,)(ZS))H

Calculate the directivity tensors: (Df;,i")(eps7 f,;ps))

Calculate the indicator function by Eq. (74):

16— 5, (07) (P50 ]
(Z) — Op(Zs) X P9 (Zs)

enddo
enddo

enddo

Fig. 4. Pseudo-code for computing the indicator function. Note that the parameter k is used for identifying the monopole and dipole sources for the directivity tensors used
for the indicator function.

object  +
T T T T T x _ grid point at the surface  x
1 ) ) object - FERE R
S grid point at the surface = x X X X X X x
R X T
10 + X X X X X X X X X X X — — 0 ixzxix ixzx:xixix
8 X X X X X X X X X X X E 1 xixixx xzxjxx
X X X X X X X X X X X A4 x o <
.'ﬁ. 5 X X X X X X X X X B 2 X
~ X X X X X X X X o 3
K 0 + X X X X X X X — 8
X X % X X X X
X X % X X X X X X
5 - X X X X X X X X X X X B
X X X X X X X X X X X
- = X X X X X X X X X X X — .2‘ 0
10 > < Qﬁﬁ\\
17]/ 1 0
15 | | | | | Y
-5 -10 -5 0 5 10 15

T [km]
(a) Planar view (b) Bird’s eye view

Fig. 5. Analysis model showing the source and receiver sensor grids at the free surface and the object expressed by the set of point-like scatterers in the elastic
half-space.

and fluctuations of the wavefield are expressed by

Ao =4 GPa
Mo =2 GPa

po =2 g/em’
L =112 GPa
fi =10.5 GPa
p =05 g/ecm?.

(76)

(77)

Therefore, amplitudes of the fluctuations of the Lamé param-
eters and the mass density in terms of Eq. (4) are obtained by
multiplying Eq. (77) by (0.25 km)3, where 0.25 km is the grid
interval of the point-like scatterers. The results for the fluctua-
tions of the Lamé parameters and mass density of the point-like
scatterers are as follows:

Jm = 0.175 [GPa-km’]

fim = 0.164 [GPa-km’]
Pm =781 x10° [ke]
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Fig. 6. Sensitivity of the indicator functions to the choice of the directivity tensors.

In the following, numerical computations are carried out to
examine the accuracy of the indicator functions with respect
to the choice of the directivity tensors, the analyzed frequency,
random noise, and the surface sensor grid resolutions. Green’s
functions needed for constructing the kernel of the near-field op-
erator shown in Eq. (28) are calculated by the direct wavenumber
integrals shown in Eqgs. (A.7) and (A.8). For the direct wavenumber
integral, the trapezoidal formula is employed after removing the
effects of the singularity of the Rayleigh pole, as is described in the
Appendix. The parameters §; and §, defined in the Appendix are
set at 1.0 km~! and 0.7 km~!, respectively. For the discretization
of the interval [§® —§, €@ 1 §,] for the trapezoidal formula,
the increment of the wavenumber A£ is set as 1 x 1074 km~!.
Otherwise, A£ is set as 1 x 1072 km~1.

3.2. Sensitivity to the choice of the directivity tensors in the indicator
functions

Eq. (74) shows that there are four kinds of indicator functions
arising from the choice of the directivity tensor for the Green’s
function in the indicator function. Here, we examine the sensitiv-
ity of the accuracy of the reconstruction results to the choice of
the directivity tensors. Fig. 6 shows the spatial distribution of the
amplitude of the indicator functions around the point-like scatter-
ers, for which the point-like scatterers are colored dark gray. The
amplitude of the indicator function is expressed by the color map.
Specifically, the map describes a cloud of probing points by color-
ing them according to the amplitude value of the indicator func-
tion. The analyzed frequency is 0.5 Hz and the figure shows the
differences between the four directivity tensors.

Fig. 6 shows that the high-amplitude area of the indicator func-
tions agrees well with the location of the point-like scatterers, re-
gardless of the choice of directivity tensors. A closer look at the
spatial distribution of ¢3, which uses the directivity tensor of the

dipole source around the x5 axis, however, shows the amplitudes
of the indicator function are very small when compared to other
cases. Apart from this, the agreement of the high-amplitude area
and the location of the point-like scatterers suggests the present
method is generally valid.

3.3. Sensitivity to the analyzed frequency

It is also necessary to examine the effects of changing the an-
alyzed frequency on the accuracy of the reconstruction results.
Figs. 7 and 8 show the reconstruction results with respect to the
analyzed frequencies, which are 0.5 Hz to 2.0 Hz in increments of
0.5 Hz. In these figures, the indicator functions ¢¢ and ¢, are used
to illustrate the investigations. As can be seen in Figs. 7 and 8, the
high-amplitude areas of the indicator functions agree well with the
location of the point-like scatterers regardless of the frequency and
directivity tensor considered. A closer look at the amplitudes of the
indicator functions, however, shows that the amplitudes as well as
the high-amplitude areas tend to decrease and become narrower
as the frequencies increase. It can be said that the differences in
the amplitudes of the indicator functions become smaller as the
frequencies increase.

3.4. Sensitivity to random noise

In this section, we apply random noise to the near-field opera-
tor and examine the accuracy of the indicator functions when re-
constructing the location of the point-like scatterers. The applica-
tion of the random noise to the kernel of the near-field operator is
carried out according to the following equation:

/\N/ij(’?p’fq) = Nij (Xp. Xg) + A (Xp, Xg) (79)

where Ay is the random noise and Aj; is the kernel of the near-
field operator defined by Eq. (28). We also define the level of noise



196 T. Touhei and T. Maruyama/ International Journal of Solids and Structures 169 (2019) 187-204

Indicator function ¢, Indicator function ¢,

0.0e+00 GLostd, . 5.0e+06 000:00 28e+06  _ 50e+06
o [km k
mllnly 5 %y g nilknls s o fton]
5 % —— 0 5 T 0
0 0
\ 5 [km] ) 5 73 [km)]
z3[km]g - TTT— 3 [km] e - —
= 05 e 0, (k)
5 T — 7 ez, |km B 0 7.5 Ty [KIN
2 [kr%] 5 5y [km] zy[km] S
Indicator function ¢, Indicator function ¢,
0.0e+00 5.0e+05 1.0e+06 0.0e+00 5.0e+05 1.0e+06
I \u Ll ol J Ll 1 1 I Ju 11 | Ll 1 \“
2, [km] 5" m2 [km o, [km] 5 m20 [km)]
0 5, 0% > 0 5
5 7 ST ———0
o o—
[ ] g [km)] Y ot 523 [km)]
x5 [km] 5\7 ‘ ~ x5 [km] 5 T
el 5 vl 5
o / 5 x [km] 5 g 5 Oa;l [km)]
Ty [km] 5 Zo [km] 5 T
(c) 1.5 Hz (d) 2.0 Hz

Fig. 7. Spatial distributions of the indicator functions for a monopole directivity tensor (k = 0).
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Fig. 8. Spatial distributions of the indicator functions for the dipole directivity tensor (k = 1).
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Fig. 9. Effects of introducing random noise on the accuracy of the reconstruction of the location of the point-like scatterers (k = 1).
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Fig. 9 shows the effects of introducing random noise on the ac-
curacy of the reconstruction of the area of the point-like scatter-
ers. The analyzed frequency is 0.5 Hz and the indicator function
used for the analysis is ¢¢. From Fig. 9, the spatial distribution of
the high-amplitude area of the indicator function agrees well with
the area of the point-like scatterers when the noise level is 5%.
In this sense, this noise level does not affect the accuracy of the
reconstruction of the point-like scatterers. When the noise level
increases to 10% or 15%, the high-amplitude area of the indica-
tor function agrees well with the area of the point-like scatter-

ers; however, the amplitudes also increase outside of the point-like
scatterers, especially over a deep area below the point-like scatter-
ers. When the noise level increases to 20%, high-amplitude areas of
the indicator function are scattered outside the area of the point-
like scatterers and it is then difficult to identify the area. In other
words, when the noise level exceeds 20%, the accuracy is insuffi-
cient. At this point, we have to remark that the described perfor-
mance of the indicator function with respect to the random noise
applies to the present numerical examples. Even though the de-
scribed performances are associated with specific numerical exam-
ples, similar performances can be expected in comparable configu-
rations.

3.5. Sensitivity to the sensor grid resolution
For the reconstruction of the locations of the point-like scatter-

ers, it is desirable to have as few surface grid points as possible
in order to keep the cost low. Fig. 10 shows the analyzed model

objéct + objéct + objéct +
15 - grid point at the surface  x  7] 15 r grid point at the surface  x  7] 15 grid point at the surface ~ x 7]
10 F X x x x X x x x X - 10 x x x x x x x x - 10 F X xoxoxxxx -
X X X X x x x X X x x X X x x x x X X X X x X X
E 5 L X x x x x x - 'E 5 - Y 4 E 5 L _
— X X X X X X . Y . —, x % x x
~ 0 X x x x x x - ~ 0 . . - ~ 0 X x X x -
X X X x X X
X X x X x x X X x x x x x x x
X X X x X X
10 - X x x x x x - 10 x x x x x x x x - 10 F X xoxoxxxx -
_15 1 1 1 1 1 _15 1 1 1 1 1 15 1 1 1 1 1
-5 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -5 -10 -5 0 5 10 15
x1 [km] x1 [km] x1 [km]

(a) 9%x9 grid

(b) 8x8 grid

(c) 7TxT7 grid

Fig. 10. Analysis model for investigating the effect of the sensor grid resolution at the free surface.
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Fig. 11. Sensitivity of the accuracy of the inversion to the sensor grid resolution at the free surface (k =1).

for case studies examining the effects of the number of surface
grid points, for which 81, 64, and 49 points were used. Fig. 11
shows the results of the identification of the area of the point-
like scatterers according to surface grid resolution for an analyzed
frequency of 0.5 Hz. It is found from Fig. 11 that the grid res-
olutions for cases (a) and (b) provide acceptable levels of accu-
racy. On the other hand, the grid resolution for case (c) results
in a low accuracy; that is, it is not possible to reconstruct the
area of the point-like scatterers with the grid resolution of case

(o).

3.6. Computational cost

It is also necessary to consider the computational cost of the
proposed method. Message Passing Interface parallel processing
was introduced into the numerical computations by dividing the
calculation points for Green’s functions, as well as the number
of probing points, among multiple CPU cores. An Intel Xeon E5-
2690, 2.6-GHz CPU was used for the numerical computation. As
mentioned earlier, the numbers of point-like scatterers and sur-
face grid points were 1618 and 121, respectively. The number
of probing points around the point-like scatterers was 26,896.
The elapsed time needed for the computation for the analysis
model, shown in Fig. 5, in order to obtain the near-field oper-
ator and the spatial distribution of the four kinds of indicator
functions for all probing points was 92 min when 24 cores were
used.

4. Conclusions

This article dealt with the reconstruction of the locations of
point-like scatterers characterized by the Lamé constants as well
as the mass densities in an elastic half-space. The near-field op-
erator was represented by the monopole and dipole Green’s func-
tions. The far-field properties of the monopole and dipole Green’s
functions were derived from the steepest descent path method,
which leads to the pseudo-projections. The pseudo-projections for
the monopole and dipole Green’s functions to extract one type of
wave were found to be common from the structure of the directiv-
ity tensors. By means of the pseudo-projections, the near-field op-
erator was transformed into a far-field operator that reflected the
properties of one type of wave (P, SV, and/or SH waves). The indi-
cator functions were defined from the kernel of the adjoint of the
derived far-field operator with respect to each probing point. For
the numerical model, the number of scatterers was much larger
than the resolutions of the source and receiver sensor grids at the
surface. The effects of introducing random noise and changing the

surface grid resolution on the accuracy of the results were also ex-
amined. We found that the numerical results supported the valid-
ity of our method.

Appendix A. Far-field properties of the derivatives of Green’s
function for an elastic half-space

Al. Fourier-Hankel transform for Green’s functions for monopole and
dipole point sources

The purpose of this appendix is to clarify the far-field proper-
ties of derivatives of Green’s function. Throughout this appendix,
the wavenumbers for the P, SV, and SH waves are denoted by
&1, &, and &3, respectively, for simplicity (note that &, = &3). The
derivatives of a Green’s function can be obtained from the re-
sponses due to the dipole point sources, which can be expressed
as

fije ®Y) =0y, fijo ®. ), (k=1,2,3) (A1)
where fj;, denotes the monopole point source defined by
fijo (X ¥) = 8ij0(x1 —y1)3 (X2 — ¥2)S (X3 — ¥3) (A2)

From Eq. (A.1), the Green’s function as well as its derivatives are
defined by

Lij (3G (X, ¥) = — fi 1 (X, ¥)

lim By (3Gjes(%.5) = 0 (A3)
where L;(dx) is the Lamé operator and P;(dx) is the operator for
the traction defined by Eqgs. (10) and (11), respectively. As can be
seen in Eq. (A.3), the Green’s function due to the monopole source
function is sometimes expressed by Gjo. The following Fourier-
Hankel transform and its inverse (Touhei, 2003) can be used to
solve the above Eq. (A.3):

2 o) N
Tmy (. x3) =/(; Qz‘k((l’)/o r(h(m)llc(Ssrv(p)) u;(X)drde

W0 = 5 5 Q@) [ Eu . i€ 20048

(A4)

where u; in this appendix is a wavefunction for an elastic half-
space, ﬁ(m)i is the Fourier-Hankel transform for u;, and the su-
perscript * denotes the complex conjugate. Here, £ is the radial
wavenumber, m is the azimuthal order number, and r and ¢ are
defined by
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r=y(x —y1)?+ (2 —y2)2,
X2 —Y2

= tan~!
¢ X1—=W1

and the components for [Qy(¢)] and [hynyu(&, 1, )] are given as

0 cosgp —sing
[Qi(p)]=|0 sing  cosg
1 0 0

1 0 0
[h(m)kl(é:s r, §0)] = |:0 £19; (im)(fr)lj|fm($f) exp(img).
(im)(¢r)~! —&719,

o

Note that J;; in Eq. (A.6) is the Bessel function of the first kind of mth order.

The application of the Fourier-Hankel transform defined by Eq. (A.4) to Eq. (A.3) leads to the following equation:

2 0 a
G = 5 3 Q@) [ & €1 0) EuplE.¥) Frpya®) . (when k=0.1.2)

m=-2

1 o0 a
Gy3(X.y) = % > Qik(fﬂ)/o Ehim(. 1. ¢0) 0y,8n (€. Y3) fimmjo(§) d&§

m=-1

where f is the Fourier-Hankel transform for f defined by

fao®.9) = 88 (x1 —y1)8(x2 — y2)
fu1ZY) = 0y fuo XY, (1=1,2)

and g; is a Green’s function in the wavenumber domain which is decomposed into

g5 y2)1 = ZEEID [ 6] 4 LW [ ] R [ )

where

Y =\/§2—$12
v=/E2-&7 (j=2.3)

The arrays for the functions are as follows:

[g}”(é)]=]r§$szﬁvvz) ,gzz(i;}w) 8}
[£2®)] = e [—sﬁgivv% v2<2§2y+v2vz> 8}
[g§3><s)]=/l[g 0 8]

0 0 1

where F(&) is the Rayleigh function defined by

F(§) = (262 - 82)" —4&2pv

The explicit forms of the Fourier-Hankel transforms for the dipole point source functions are as follows:

199

(A.6)

(A7)

(A.10)

(A11)

(A12)

(A13)
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0 0 1
0 0 O (m=0)
0 0 O
R 0 0 0
[ﬂm)n];o(é)] =1(1/2) {il —i 0} (m=41) (A14)
—-i F1 0
0 0 O
0 0 O (m==+2)
0 0 O
0 0 O
-£/2 0 0 (m=0)
0 &2 0
. 0 0 =££/2
[Fimnin®)] = {0 0o 0 } (m=+1) (A15)
0 0 0

0 0 0
£/4  FiE/A 0} (m==+2)
L FiE/4 —§/4 0

0 0 0
0 -£/2 0 m=0
[-£2 0 0
. 0 0 —if/2
[f(mw,z(é)] = 8 8 8 ] m==+1 (A.16)

0 0 0
FiE/4 -£/4 0 m=42
| -5/4 +i£/4 0

As is mentioned in the main text of this article, the kernel of the near-field operator defined by Eq. (28) is computed numerically from

the direct wavenumber integrals for Eqgs. (A.7) and (A.8). For the computation, the trapezoidal formula is used throughout after removing
the effects of the singularity of the Rayleigh pole. The removal of the effects of the singularity of the Rayleigh pole is carried out using

/o " E i (6.7, 0) Enp(E.¥3) Fompyi(§) dE

- [ (s himin (€. 9) Ep(E . 5) Fomypisc &) = X (51, ) )ds PV, /M M dg 4 wing (A17)
0 o : TPLE & —&r g8, & —&r
where &j is the Rayleigh pole, Ay is defined by
A = Jim (&~ 6008 huyn . 7.0) gp(&.¥3) Fimpra6) (A18)

X is the function defined by

_J1 when &-68 <& <&+
x(81.8r) = {0 otherwise (A19)

for a small §; >0 and P.V. denotes the Cauchy principal value. The trapezoidal formula is applied to the 1st term of the right-hand side of
Eq. (A.17). Note that a smaller wavenumber increment for the trapezoidal formula is necessary for an interval that contains £(2) than that
for other intervals due to a weak singularity of v=! in the integrand. The interval containing £(2) is denoted by [§@® —§,,£®@) 4 §,] for a
small &, > 0. In the main text, the values for §; and §, and the increment of the wavenumber for the trapezoidal formula are specified for
the numerical integration.

A2. Application of the steepest descent path method to the wavenumber integral representation of Green’s functions

Application of the steepest descent path method to the direct wavenumber integral representation of Green’s functions is the key for
the derivation of the far-field properties of Green’s functions. First, we modify Eqs. (A.7) and (A.8) as follows:

2 - A
ng(f,ﬂ = % Z Qﬂ((ﬂ)/_ & hmiyin(§. 7. 9) &np(§.Y3) fimpj(§) d§, (when k=0,1,2)

m=-2
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1 o R
Gy3(X.y) = % > Qik(fﬂ)/ & iy (.7, ©) 05,8 (. ¥3) fimynjo(§) d& (A.20)
m=—1 i
where
1 0 0
[hma (€ :r.0)] = [o £710, im(ér)‘}H,%”(%‘r) exp(img) (A21)
0 iméEn~t &0

In the above expression, the following properties of the Bessel functions are used:

Jn(&D) = S[HY ) + B )]
H® (=&r) = —H® (1), (m : even)
HO (~&r) = H?(£1), (m: odd) (A22)

where H'")(.) is the Hankel function of order m.
Now, according to the decomposition of a Green’s function shown in Eq. (A.10), we can also decompose the derivatives of a Green’s
function with respect to the contributions from P, SV, and SH waves such that

3
G 9) = DGy (% 9). (A23)

a=1

For example, G;,(:)()?,Y) can be expressed as

Gy (X9
2 . _

=g 200 [ Ehmnl€r.0) T EDE) i) (A24)
The asymptotic behavior of the horizontal wavefunction becomes
Py §.7.9) = \/geféfemei” CmiD/ g 1 0(r312) (A.25)
where
[Cu]l = |:(1) (1) 8:| (A.26)

0 0 -i

Then, each component of the waves (P, SV, and SH waves) for the derivatives of the Green’s function is expressed as

G &)

1 /2 —— ” &) f
= a\ r S Ka(@reme eV [ JEEOE nys k) g (€) fumnn©) d
— )
+0(r3/2) o
where
(Ka(@)] = [Qj(@)] 4]
0 icosp ising
=|0 ising —icosg .
1 0 0
M whena =1andk=0,1,2
exp(i&r — vys3)
E@E rys,ky=3" 3 when o =2,3 andk=0,1,2 (A.29)

—exp(iér—yy;) whena=1andk=3

—exp(iér—vys;) whena =2,3 andk =3

The path of the wavenumber integral in the complex wavenumber plane for the application of the steepest descent path method is
shown in Fig. A.1, in which the saddle point on the real axis is denoted in blue.

In the following discussion, we employ the notation & and &, for the saddle points of the P and S waves, respectively. The relationship
between the saddle point and the P and S wavenumber is

&1 = &1 sind



202 T. Touhei and T. Maruyama/ International Journal of Solids and Structures 169 (2019) 187-204

Tm (&) Im (&)

N b e R — E,[\_,gz Re(¢)
-& =& O €a -& & 0 Yo

(a) Path of integral (case 1) (b) Path of integral (case 2)

Fig. A.1. Steepest descent paths. The path for case 1 describes the P and S waves when &, <&;. The path for case 2 describes the S wave when &; <&,. The branch line
integral for the S-P wave is required for case 2. Note that the blue segments of the integral path follow the steepest descent path and the red segment denotes the integral
path around the branch cut. In addition, the broken lines are the branch cut.

SSZ = 52 sinf (A30)

where 6 is determined by the relative locations of X and y, which are explained in Fig. 3 in the main text of this article. The steepest
descent paths are also described by the blue lines in Fig. A.1. Note that there is a case where &g, > £. In this case, an integral path B
around the branch point £ is required, as shown in case 2 in Fig. A.1. In addition, we have to take into account the contribution from
the Rayleigh pole. It is known that a Green’s function is expressed by the contributions from the residual term related to the Rayleigh
pole, the steepest descent path, and the branch line integral. When the region of E is far enough below the free surface, the contribution
from the Rayleigh wave mode to Green’s function G; can be ignored, since the Rayleigh wave mode decays exponentially with depth.

Furthermore, the contribution from the branch line integral shows a geometrical decay of O(RZ) when R = |¥— ¥|. As a result, the Green’s
function can be approximated by the contribution from the steepest descent path that shows the geometrical rate of decay O(|X—y|~!)
becoming

3. pibul®-yl
€ D>
G = 2 gy @9 +0UF-31) (A31)
where Dy, is the directivity tensor defined by
D3 (0.¢) = 2Ki(p) 3 eme ™2 gl (&) fmnse(6) | . (A32)
m E=&, sin

for k=0,1,2 and

0o (er) _ : i —imm /2 (er) o) (m)
D0 9) = 2Ka(p) Y™ e AL n OGO, (A33)
for k = 3. Note that

@ _Jy (whena=1)
= {v (when o =2 or 3) (A34)

In the following, the directivity tensor D;?joo("‘) is simply expressed by Di°j°<°‘). A straightforward calculation for these equations yields the
following:

@ _gg)zt) (6s0) OS2 @ g(zozl) Eser) 505290 sing lg21) (&) cOs @
[DF (0, 9)] =2| g% (k) cospsing g% (5 sin® ¢ gy (§s) sing
—lgﬁ‘é) (w)cosg  —igly Gw)sing g7 (Ew)
s [sin? © —cosgsing O
[D;’Jf’( '(0.9)] =2| —cosgsing  cos? g 0 85 (&) (A35)
L0 0 0
gzz) (&s0) cOS3 @ g%) (s0) cOS? @ sing igz] ) (§s0) cOSZ @
[ijﬂ("‘)(é’, 9)] = 2k | g% (Exw) cos? g sing g% (Exx) cosg sin® g igl? (Es) cOs @ sing
-ig\y (Ew)cos? g —igly) (Ew)cosp sing g (E) cose
, cosg sin®p  —costg sing 0
[0, ¢)] = —2ik3g33(53) | —cos? ¢ sing cos® ¢ 0 (A.36)
0 0 0
(o)

255 () cos? g sing gl (5 cosg sin® ¢ gl (§) cosg sing
[ij;w(e, 9)] = 2k | g% (£s) cos g sin® @ g% (£ ) sin’ ¢ 1g21)($5a)51n @
—ig\)) (Ew)cos@ sing  —igl3) () sin’ ¢ g% (Ex) sing
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sin® @ —sin’p cosp 0
[DZ-CZG))(@, ¢)] = —2iag3(63) | —cosg sinp  costg sing O (A37)
0 0 0

gg;) (£sa) cOS? @ gg;) (8sa) COS @ sing igg) (85a) cOs @
[D56.9)] = 21 () | &) ) cosp sing g5 (Ga)sin®p gl (5 sing

~ig\y (5w cos ~ig\% (6w sing 2\ (sa)
s sin? @ —cosg sing O
[D532 (6, 9)] = —2v(§3)g33(£3) | —cos g sing cos?¢ 0| (A.38)
0 0 0

In Egs. (A.35)-(A.38), o takes a value of 1 or 2. A straightforward application of Eqs. (A.35)-(A.38) leads to the following decomposition
of the directivity tensor:

D (0, 9) = A OW (O, )V 0. ¢) (A39)
D0, 9) = —i&a A (O) W (0, 9) V[ (0, 9) V(0. 9) (A.40)

where Vl.(“) denotes the polarization of elastic waves of the («)-type wave (namely, P, SV, or SH waves) in the full space, Wi(“) is the
polarization of elastic waves of the («)-type wave at the free surface, and A(®) is defined by

285 (q)
AD () = 2522
©) sin® 9
28%) (&)
2) _ 22
ATO) = cos2 60
A®(0) = 28 (£3). (A.41)

The explicit forms of Vi(“) and Wf” are
(Vi (0.9)) = (cosgsing  singsind  —cosb)
(V®(6.9)) = (cospcosd  singcosh  sinb)
(V®(6.9)) = (sing —cosg 0) (A42)
g1y (€isin6)
W6, ) = (cosw sin  singsing i ———= sin@)
) .
gy, (§15in0)
(2) :
igig) (&2 s%n9) cos 9)
g5, (§25inf)
(V\/iG)(Q, (P)) _ (‘4(3)(9’ (P)) (A43)

In the main text of this article, Eqs. (A.39) and (A.40) are summarized in Theorem 1.
The following orthogonality relationship exists among the polarizations of the elastic waves of the («)-type waves in the full space:

V0,0V P (0, 9) = 848 (A44)

On the other hand, it is impossible to establish an orthogonality relationship among the polarizations of the elastic waves of the («)-type

(Wi(z) (CA go)) = <cos¢ cosf singcos6

waves at the free surface due to the interaction of the P-SV waves. Instead of establishing an orthogonality relationship among W, @ we
define Wi(“(*) (0, @) as follows:
(2) (&, sinf

W6, 9)) = (cosq) sing 1%(&)>

g12 (%'2 Sln@)

. (1) .

i sinf
(W6, 9)) = (cosw sing 1%212)(51)>

g12 (2}-1 SIHQ)
(WS, 9)) = (W 0. 9) (A45)
Then, the orthogonality relationship among Wi(“) and Wi(“’) becomes
W O, )W PO, 9) = 8up W (0. )W, (0, ¢) (A.46)

which leads to the definition of the pseudo-projections.
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