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Abstract

Two thermomechanical analytical models are developed for orthotropic double lap joints with a view to identifying key
dimensionless parameters that describe the behavior of the joint under combined thermal–mechanical loads. The solutions,
based on the principle of virtual work, differ in the complexity of the assumed stress field. The first solution is similar to
Volkersen [Volkersen, O., 1938. Die niektraftverteilung in zugbeanspruchten mit konstanten laschenquerschritten. Luft-
fahrtforschung 15, 41–47] with the addition of orthotropic and thermal effects. The second solution, extending the work
of Davies [Davies, G.A.O., 1982. Virtual Work in Structural Analysis, John Wiley & Sons, New York] captures the peel
stress as well as the traction free boundary condition at the adhesive edge. Relevant non-dimensional parameters are iden-
tified in terms of geometric, material, and load quantities. A dimensionless load ratio is identified which dictates the shape
of the stress distribution. This ratio can also be used to quickly determine the dominant loading mechanism. Dimensionless
stress plots are presented for representative lap joints.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of composite materials continues to increase in the aerospace industry, which places an increasing
importance on the ability of designers to properly specify the performance of bonded structural joints. Due to
specific strength, specific stiffness, and efficient load distribution and load transfer, recent high profile aircraft
and spacecraft have featured bonded joints. New epoxies and adhesives have shown great promise to expand
the temperature range over which structural fiber reinforced polymer composites are used. These materials
provide an opportunity to replace specialized, non-structural thermal protection with integrated composite
systems capable of carrying structural load over a range of temperature extremes. Consequently, temperature
resistant composite structures and bonded joints will be used in increasing quantities. In addition to the harsh
operating environments, the processing temperatures for these specialized epoxies and adhesives are also quite
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2007.01.025

* Corresponding author.
E-mail address: dcw@umich.edu (A.M. Waas).

mailto:dcw@umich.edu


Nomenclature

tj material thicknesses of component j (m)
l lap length (m)
x lap coordinate measured from the left edge (m)
y lap coordinate measured from the lower edge (m)
rj11(x) longitudinal stress in component j (Pa)
rj22(x,y) transverse stress in component j (Pa)
sj12(x) shear stress in component j (Pa)
Ejii orthotropic engineering moduli of component j (Pa)
Gb12 shear modulus of the adhesive (Pa)
Ep½0l� Young’s moduli of the end posts (Pa)
mjij Poisson’s ratios of component j
ajii orthotropic thermal expansion coefficient of component j (�C�1)
P mechanical load applied to joint, per unit depth (N m�1)
DT temperature change from reference temperature (�C)
F mechanical load carried by an end post (N)
c0, d0 coefficients of assumed stress distribution (N)
c1, d1 coefficients of assumed stress distribution (N m�1)
wP mechanical load parameter (N m�4)
/P mechanical load parameter (N m�6)
wT thermal load parameter (N m�4)
/T thermal load parameter (N m�6)
x system parameter (m�1)
b system parameter (m�2)
c system parameter (m�4)
�x dimensionless coordinate x

l measured from the left edge of the adhesive
x dimensionless system parameter
b, c dimensionless system parameters
k1, k3 dimensionless system parameters
rj11ðxÞ dimensionless longitudinal stress in component j
rj22ðx;yÞ dimensionless transverse stress in component j
sj12ðxÞ dimensionless shear stress in component j
ra11ðxÞ normalized dimensionless longitudinal stress in component a

wP , /P dimensionless mechanical load parameters

wT , /T dimensionless thermal load parameters

/aR, /cR dimensionless thermal to mechanical load ratios

/total dimensionless total load parameter

/P dimensionless mechanical load fraction
�a; �b; �A; �B; �C; �D dimensionless coefficients
��a; ��b; ��A; ��B; ��C; ��D dimensionless coefficients
r̂j11ðxÞ longitudinal virtual stress in component j
r̂j22ðx;yÞ transverse virtual stress in component j
ŝj12ðxÞ shear virtual stress in component j
[] the or operator, i.e. [13] is 1 or 3 (no sum)
j j = [abc] (no sum) representing central adherend (a), adhesive (b), and outer adherend (c),

respectively
ii i = [123] (no sum)
ij i,j = [123] where i 5 j (no sum)
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high. As a result, the materials carry a significant risk of adverse stress fields caused by differential thermal
expansion, even at room temperature.

It has been claimed that approximately 70% of structural failures are initiated in joints (Her, 1999), there-
fore great attention must be paid to proper design of joints. Engineers have long recognized that adhesively
bonded joints reduce stress concentrations associated with mechanical fasteners through a more even distri-
bution of the transmitted load. As the adhesives available for bonding have improved, the use of bonded joints
has enhanced or replaced the use of traditional mechanical fasteners in high performance aircraft. Confidence
in such joints has grown with accumulated usage, as reflected in the use of bonded joints in the joint strike
fighter and the long range strike aircraft (Zhang et al., 2006; Bednarcyk et al., 2006). Additionally, the use
of adhesively bonded composite joints has expanded into the automotive industry. 1

Despite increased usage, the design of joints is often carried out in an ad-hoc fashion, relying heavily on
physical testing and empirical models. If the role of temperature resistant composites is to expand, their
use must be supported by an improved understanding of bonded joints. Further research is needed to expand
modeling capability for bonded joints, as well as to determine the mechanical response of material systems. It
is also important to transfer research level models into the product development environment.

The main objective of the present paper is to introduce appropriate non-dimensional parameters that gov-
ern joint performance under combined thermal-mechanical loads. These parameters can be used to quickly
identify the effects of material orthotropy and joint geometry on joint performance. Two thermomechanical
models are presented for the symmetric double lap joint, a joint commonly used in the aerospace industry.
The first model, referred to as the shear only model (SO), can be considered a thermomechanical extension
to Volkersen (1938). The joint response is calculated based on the assumption of a very simplified stress field.
The solution provides a basic method for determining the effects of the key parameters on the global shear
response of the joint. A second model, more complicated than the first due to the inclusion of shear and peel
stress in the adhesive, extends the first solution. This extension allows for the calculation of peel stresses while
satisfying the traction free adhesive edge condition. It will therefore be referred to as the shear-peel model
(SP). To establish the utility of these models, both models are compared to a reference finite element (FE)
model. Finally, both models are shown to contain an identical dimensionless ratio of thermal to mechanical
loads, which easily identifies the relative importance of these loading types to a joint design. The extension of
the main findings of this work to a single lap joint is the subject of a separate investigation.
2. A brief summary of double lap joint analytical models

Analytical solutions to the bonded joint have been introduced previously. First among them Volkersen
(1938), followed by Goland and Reissner (1944), both of which presented solutions to the single lap joint.
In addition, their have been many authors (an incomplete list includes: Her (1999), Hart-Smith (1973b), Pep-
piatt (1974), Renton and Vinson (1975), Allman (1977), and Yang et al. (2004)) who have proposed models for
single lap joints. (Additionally, summaries were provided by Benson (1966) and Adams et al. (1997).) Of
greater interest to this work, several authors have addressed double lap joints including Her (1999), Hart-
Smith (1973a), Gilibert and Rig olot (1988), Sen and Jones (1980a,b), Mendels et al. (2000), and Mortensen
and Thomsen (2002b). The latter of these and its descendents are analytical derivations of the governing equa-
tions, though the lack of an available closed form solution causes the evaluation to be numerical. The double
lap solution of Davies (1982) inspired the SP analysis of the current work. Though intended for single lap
joints, the work of Volkersen (1938) could be used for double lap joints with only slight modification.

There are several important issues present in bonded lap joints which have commonly been neglected or
considered irrelevant to the problems that were solved. Three of these issues will be considered in the present
models. First, in an idealized lap joint, the edge of the adhesive is a traction free surface. The average shear
stress builds to an extremum over a small boundary region. Though this is captured in some models, it is not
captured in the frequently cited work of Goland and Reissner (1944), nor its descendents. For example, in the
double lap solution of Hart-Smith (1973a), inappropriate interpretation of the model could lead to a
1 Composites News International, Ashland Pliogrip Adhesive Bonds Roofs To Two BMW Sports Sedans, Jan 20, 2006.
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conclusion that the shear stress is maximized at the edge of the adhesive, instead of being zero. Several authors
have presented double lap joint models which capture the traction free boundary condition, however the
derived solutions are either numerical as in the case of Sen and Jones (1980a,b), or the governing equation
is a differential equation of very high order as in the case of Whitney (1997). Though the models which do
not resolve the traction free edge condition can nevertheless be correctly interpreted by an analyst (as is
required for the SO solution presented in this work), it is advantageous and analytically more pleasing to sat-
isfy this boundary condition when possible. It was noted by Benson (1966) that a minimum 4th order differ-
ential equation (of the field displacement) is required to capture the traction free surfaces. The SP of the
present work has such a differential equation, and the direct advantage over the SO solution is the ability
to calculate peel stress.

A second issue is a general lack of accounting for the anisotropic material behavior of the joint constituents
(adherends and adhesive) in the available analytical solutions of the literature. Exceptions exist, for example
Erdogan and Ratwani (1971) and Delale et al. (1981), though these are neither double lap joint models nor are
all constituents anisotropic in these studies. This lack of anisotropy in a model is particularly a concern when
considering laminated composite materials, since transverse properties are often significantly lower than in-
plane properties for a given laminate Hart-Smith, 1973a. Also, since high temperature curing cycles are fre-
quently needed for temperature resistant materials, prudence dictates that anisotropic material behavior
should be included in thermomechanical analytical models. This need has been recognized and is an active
area of current research. Recent work includes Mortensen and Thomsen (2002a,b), Zhang et al. (2004,
2005, 2006), Yarrington et al. (2005), and Bednarcyk et al. (2006). In contrast to the listed contributions,
the present work provides closed-form, parametric solutions with orthotropic material properties in all con-
stituents. The parametric nature of these solutions reveal previously unrecognized insights into joint
performance.

A third issue is found at the edge of the adhesive, this time at the corner interfaces between the adherends
and the adhesive. In these locations, geometric discontinuities cause unbounded stress concentrations in any
solution based on linear elastic continuum mechanics Kilic et al., 2004. Though non-linear material response
might ensure that the stress remains finite Zhang et al., 2004, the peak stresses at the corners are very depen-
dent on the specific geometry and material behavior. The possible effects are not considered in the analytical
models presented in this work, since this aspect of the joint requires different modeling strategies that employ
ideas rooted in fracture mechanics. However, the geometric discontinuity affects the FE models which are pre-
sented for comparison, and therefore must be considered when evaluating the results. Specifically, it is impor-
tant to recognize that the reference linear elastic FE model in this work is not a correct solution at the corners.
It is flawed at these geometric discontinuities, and the stress concentrations will not converge with increasing
element density. Therefore, direct comparisons between the FE solution and the present analytical work are
only meaningful away from the singular corners. However, in contrast to FE based solutions, the analytical
models provided in this work allow for meaningful comparison between different joint designs. The models
have no mesh dependence, and the predicted stresses remain finite.

Finally, temperature effects were not considered in most of the analytical double lap joint models cur-
rently available. The authors are aware of the work of Hart-Smith (1973a), Chen and Nelson (1979), Vinson
and Zumsteg (1979), and Adams et al. (1992) who included thermal effects in their solutions. Hart-Smith
provided an excellent double lap solution which included thermal loading. However, the work focused more
on material non-linearities and did not capture the traction free boundary condition (Hart-Smith, 1973a).
The bonded joint solutions of Chen and Nelson (1979) include thermal expansion, however the materials
are isotropic and no double lap analysis is included. The contributions of Vinson and Zumsteg (1979)
include a composite thermal-mechanical solution of a double lap joint. However, the solution is difficult
to evaluate in that it requires the solution of 18 simultaneous boundary conditions and can only be reason-
ably solved numerically. Qualitative assessments cannot be made since no plots of the predicted stresses
were provided. Finally, the work of Adams et al. (1992) focused on thermal loading in lap joints, however
the subject matter was single lap joints and the solutions were FE based. In the following sections of this
paper, two thermomechanical analytical models of the double lap joint are presented and appropriate non-
dimensional parameters are identified. These models are shown to be very useful in evaluating the thermo-
mechanical performance of the joint.
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3. Analytically derived stress field in a double lap joint including thermal expansion

3.1. A model which assumes the adhesive carries shear stress only

A schematic of a double lap joint is shown in Fig. 1. In this work, a symmetric geometry is assumed, and
two solutions will be proposed. The first solution will assume that the stress field varies only along the direc-
tion of loading. The adherends are assumed to carry longitudinal normal stress only, and the adhesive is
assumed to carry shear stress only. Due to symmetry, the bending moments present in the joint are assumed
to be negligible. Therefore, bending of adherends is not included. Under these assumptions, the stress field is a
function of x only. Thermal expansion is assumed to be linear with temperature. Plasticity, creep, and other
non-linearities of the constituents are ignored, though it is likely that they could be significant Hart-Smith,
1973a. Under these assumptions and assuming plane strain deformation, the constitutive equations for mate-
rial j are governed by:
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A plane stress assumption could be substituted by setting all out-of-plane Poisson terms to zero
(mj13 = mj31 = 0). The central adherend is referred to as material a; an equilibrium element for the central
adherend is pictured in Fig. 2.1. Fig. 2.2 represents the outer adherend, referred to as material c. In these
two areas, x-equilibrium requires the following:
ora11ðxÞ

ox
¼ � 2

ta
sb12ðxÞ;

orc11ðxÞ

ox
¼ � 1

tc
sb12ðxÞ;

ð2Þ
where x is measured from the left edge of the adhesive. Solving Eqs. (2) for sb12(x) and equating leads to:
tc
orc11ðxÞ

ox
¼ ta

2

ora11ðxÞ

ox
: ð3Þ
The natural boundary conditions at the edge of adherend a are:
ra11ð0Þ ¼ 0;

ra11ðlÞ ¼
2P
ta
;

ð4Þ
which are the longitudinal normal stresses in the central adherend at the edges of the joint. Combining the
above equations leads to the following relationship between stresses in the central and outer adherends:
rc11ðxÞ ¼
P
tc
� ta

2tc
ra11ðxÞ: ð5Þ
Since the shear stress is assumed to be constant through the thickness of the adhesive, the shear stress in the
adhesive is determined by Eqs. (2) and the solution to Eq. (5). As summarized in Appendix A, Eqs. (2)–(5) can
Fig. 1. Schematic of the double lap joint with end posts.
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be combined using the principle of virtual work to solve for the central adherend stress. This leads to a dif-
ferential equation in the following form:
o2ra11ðxÞ

ox2
þ x2ra11ðxÞ þ wT þ wP ¼ 0: ð6Þ
In Eq. (6), it is worth noting that the thermal and mechanical loads enter the differential equation in the form
of system parameters wT and wP. Before stating the values of the system parameters x2,wT, and wP, it is rea-
sonable to non-dimensionalize the solution to Eq. (6), therefore the following substitutions are made:
wT ¼ wT

l2

Ea11

;

wP ¼ wP
l2

Ea11

;

�x ¼ x
l
;

x ¼ lx;

sb12ð�xÞ ¼
sb12ðl�xÞ

Ea11

;

ra11ð�xÞ ¼
ra11ðl�xÞ

Ea11

:

ð7Þ
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In Eq. (7), the non-dimensional axial stress ra11ð�xÞ could easily be confused for the axial strain ea11, however
this is not the case since the stress field is not uniaxial. In analytical models offered previously, the average
shear stress save

b12 has been chosen as the normalizing factor. However, since a thermal load without an exter-
nally applied mechanical load results in a zero average shear stress, the modulus of the central adherend Ea11 is
used for the normalization. Unfortunately, this choice loses the ‘‘stress concentration factor’’ associated with
the average shear normalization, however it is necessary to avoid a singular result for thermal loads. Upon
substitution, Eq. (6) becomes:
2 Th
shear s
energy
differe
adhesi
o2ra11

o�x2
þ x2ra11 þ wT þ wP ¼ 0; ð8Þ
which is a non-dimensional form of the governing equation. The parameters x2, wT , and wP are given by:
x2 ¼ 2Gb12l2

tb

ðmc13mc31 � 1Þ
Ec11tc

þ 2ðma13ma31 � 1Þ
Ea11ta

� �
;

wT ¼
4Gb12l2ðac33mc31 � aa33ma31 þ ac11 � aa11Þ

Ea11tatb

� �
DT ; ð9Þ

wP ¼�
4Gb12l2ðmc13mc31 � 1Þ

Ea11Ec11tatbtc

� �
P :
It is worth noting that Eq. (9) contains non-dimensional parameters for both thermal and mechanical loading.
Also, thermal expansion of the adhesive is not a factor in this model, since the adhesive is assumed to carry no
longitudinal normal stress. 2

The solution to Eq. (6) takes the form:
ra11ð�xÞ ¼ �a sinðx�xÞ þ �b cosðx�xÞ � wT þ wP

x2
; ð10Þ
and possesses the following boundary conditions for longitudinal normal stress:
ra11ð0Þ ¼ 0;

ra11ð1Þ ¼
2P

taEa11

:
ð11Þ
Application of the boundary conditions leads to the following values for the coefficients �a; �b:
�a ¼ � Ec11tbtc

2Gb12l2 sin xðmc13mc31 � 1Þ
þ cos x� 1

x2 sin x

� �
wP �

ðcos x� 1Þ
x2 sin x

wT ;

�b ¼ wT þ wP

x2

ð12Þ
and the solution is completed.
The SO solution presented in this section minimizes solution complexity. As a result, it lacks certain

desirable features. It does not offer a traction free adhesive edge, nor does it quantify the peel stress.
Despite these shortcomings, the model is useful. It provides an orthotropic solution which includes
consideration of thermal expansion. Also, important non-dimensional parameters have been identified
in Eq. (9). These parameters dictate the joint stress distribution, and can be used as a first order anal-
ysis tool in the design of bonded double lap joints. Further, the SO solution provides the foundation
e assumption of zero longitudinal normal stress in the adhesive greatly simplifies the calculations, and is reasonable for calculating
tress (and peel stress in the SP solution) as long as the strain energy due to this stress component is a small relative to the total strain
. The model breaks down when this is not the case, such as a joint with very similar adherend thermal expansion and a large
ntial thermal expansion relative to the adhesive. In such cases, the longitudinal thermal stress of the adhesive will be greater than the
ve shear stress and peel stress and a different type of analysis is appropriate.
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for a formulation posed in the next section, the solution of which provides a zero traction at the
adhesive edge.

3.2. A model which assumes the adhesive carries shear and peel stress

The second solution presented in this work is the SP extension to the above analysis. In this case, the adhe-
sive is no longer confined to carry only shear stress. Instead, it is now assumed to carry shear and peel stresses,
as shown in Fig. 2.3. The adherends are assumed to be stiff, and carry only normal stresses as before. For con-
venience, a fictitious structural element referred to as an ‘‘end post’’ is located at the edge of the adhesive, and
is assumed to be capable of transferring any shear stress at the edge towards the adherends. In making this
assumption, the traction boundary condition is satisfied a priori. This modeling approach has been used
for double lap joints as described by Davies (1982), of which the current model can be considered an exten-
sion. The end post element, which is included in Fig. 1, will be carried through the calculations and then elim-
inated at the end to restore the correct geometry.

The stress fields in the adherends are as described in the SO solution, with the exception of the peel stress in
the adhesive layer. The x-equilibrium equations provided above still hold, however, y-equilibrium in the adhe-
sive is now included in the analysis.

Force equilibrium in the y direction of the adhesive requires the following relation:
orb22ðx;yÞ

oy
¼ � osb12ðxÞ

ox
; ð13Þ
where rb22(y) is assumed to be a linear function of y, which is the lowest order assumption that satisfies the
equilibrium requirement.
rb22ðyÞ ¼ c0 þ c1y: ð14Þ
The peel stress at the adhesive interface is assumed to be zero, rb22ðtbÞ ¼ 0, therefore:
rb22ðyÞ ¼ c0 1� y
tb

� �
: ð15Þ
Though this assumption could be challenged, it enables y-equilibrium to be considered with a minimum of
solution complexity, and is justified when the average adhesive peel stress is considered in Section (5). Com-
bining Eq. (13) and Eq. (15) leads to:
rb22ðx;yÞ ¼
ta

2
ðy� tbÞ

o
2ra11ðxÞ

ox2
: ð16Þ
Force equilibrium in the y direction on the left end post requires the following relation:
oF ðy;x¼0Þ

oy
¼ �sb12ð0Þ; ð17Þ
where the force carried by the end post is also assumed to be a linear function of y:
F ðy;x¼0Þ ¼ d0 þ d1y: ð18Þ
Combining Eq. (18) with Eqs. (2) leads to:
F ðy;x¼0Þ ¼
ta

2

ora11ðx¼0Þ

ox
yþ d0: ð19Þ
Using similar arguments for the right end post, and applying the equilibrium requirement that the total end
post force vanishes on each side, the end post governing equations are given by Eqs. (20).
F ðy;x¼0Þ ¼
ta

2

ora11ðx¼0Þ

ox
y� tb

2

� �
F ðy;x¼lÞ ¼ �

ta

2

ora11ðx¼lÞ

ox
y� tb

2

� � ð20Þ
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With the equilibrium requirements now complete, application of the principal of virtual forces leads to a dif-
ferential equation of the following form:
o4ra11ðxÞ

ox4
þ b

o2ra11ðxÞ

ox2
þ cra11ðxÞ þ /T þ /P ¼ 0: ð21Þ
As was the case in the SO solution, here in Eq. (21) the thermal and mechanical loads enter the differential
equation in the form of system parameters /T and /P. Without explicit statement of the parameters, non-
dimensionalizing substitutions can be made:
�x ¼ x
l
;

b ¼ l2b;

c ¼ l4c;

ra11ð�xÞ ¼
ra11ðl�xÞ

Ea11

;

sb12ð�xÞ ¼
sb12ðl�xÞ

Ea11

;

/T ¼ /T
l4

Ea11

;

/P ¼ /P
l4

Ea11

:

ð22Þ
As summarized in Appendix A, the solution of Eqs. (2), (16),(20) as well as the non-dimensionalizing substi-
tutions given in Eqs. (22) lead to the following differential equation for the normalized stress in the central
adherend:
o4ra11

o�x4
þ b

o2ra11

o�x2
þ c ra11 þ /T þ /P ¼ 0; ð23Þ
where the dimensionless system parameters are given by:
b ¼ 3Eb22l2

2Gb12t2
bðmb23mb32 � 1Þ ;

c ¼ 3Eb22l4

t3
bðmb23mb32 � 1Þ

ðmc13mc31 � 1Þ
Ec11tc

þ 2ðma13ma31 � 1Þ
Ea11ta

� �
;

/T ¼
6Eb22l4ðac33mc31 � aa33ma31 þ ac11 � aa11Þ

Ea11tat3
bðmb23mb32 � 1Þ

� �
DT ;

/P ¼ �
6Eb22l4ðmc13mc31 � 1Þ

Ea11Ec11tat3
btcðmb23mb32 � 1Þ

� �
P :

ð24Þ
The solution takes the following form:
ra11ð�xÞ ¼ �Aek1�x þ �Be�k1�x þ �Cek3�x þ �De�k3�x � /T

c
� /P

c
: ð25Þ
The bi-quadratic Eq. (25) has two dimensionless system parameters k1 and k3 given by Eq. (26) and presented
in terms of the orthotropic material properties in Appendix C.1.
k2
½13� ¼

�b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
2

: ð26Þ
The appearance of b and c in k2
½13�, which in turn govern the axial stress distribution along the adherend and

therefore the shear stress distribution in the adhesive (through Eqs. (13) and (16)), clearly show the relative
importance of the adhesive and adherend mechanical properties and the joint geometry. Similarly, /T and
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/P are two load parameters that are expressed through a combination of adhesive and adherend thermal and
mechanical properties, loading, and joint geometry.

The coefficients �A, �B, �C, and �D in Eq. (25) are determined by application of the boundary conditions, pre-
sented in full form in Appendix B as Eqs. (B.1) and in reduced form in Eqs. (27). These boundary conditions
represent axial normal stress and shear stress at the ends of the central adherend. The reduced form is achieved
by allowing the end posts to approach zero thickness (taking the limit as tp! 0). This procedure has the direct
effect of forcing the shear stress at the post locations to zero, which results in a traction free surface at the
adhesive edge.
�Dþ �C þ �Bþ �A� /T þ /P

c
¼ 0

e�k3 �Dþ ek3 �C þ e�k1 �Bþ ek1 �A� /T þ /P

c
� 2P

Ea11ta
¼ 0

� k3
�Dþ k3

�C � k1
�Bþ k1

�A ¼ 0

� k3e�k3 �Dþ k3ek3 �C � k1e�k1 �Bþ k1ek1 �A ¼ 0

ð27Þ
The solution of Eqs. (27) for �A, �B, �C, and �D requires lengthy combinations of the system parameters. They are
presented in a compact form in Eqs. (28), where certain repeating values have been represented as a series of
multipliers l. The values of these l parameters are presented in Appendix C.2. With the presentation of Eqs.
(28), the SP solution is now completed.
�A ¼
lAT

/T þ ðlAT
þ l2l3lAP

Þ/P

l1

�B ¼
lBT

/T þ ðlBT
þ l2l3lBP

Þ/P

l1

�C ¼
lCT

/T þ ðlCT
þ l2l3lCP

Þ/P

l1

�D ¼
lDT

/T þ ðlDT
þ l2l3lDP

Þ/P

l1

ð28Þ
The SP solution presented above overcomes some of the effects previously ignored in bonded joint analysis.
Most significantly, it is an orthotropic thermomechanical solution which ensures that the shear stress at the trac-
tion free edge is zero. It does so with the minimal required complexity of a fourth order governing differential
equation.

The analysis is an elastic solution, and as a result neglects the effect of adhesive and adherend plasticity, if
any, on the joint. However, this effect was addressed analytically in Hart-Smith (1973a). The inclusion of plas-
ticity effects are best treated through a numerical solution.

3.3. A dimensionless ratio of thermal and mechanical loading factors

Using the non-dimensional loading parameters defined in Eqs. (9) and (24), a dimensionless load ratio (/aR)
and total load (/total) can be defined.
/aR ¼
/T

/P

¼ �Ec11tcðac33mc31 � aa33ma31 þ ac11 � aa11ÞDT
ðmc13mc31 � 1ÞP

/total ¼ /P þ /T

ð29Þ
The ratio /aR is a measure of the relative importance of allowable thermal and mechanical loads. The impor-
tance of the load ratio /½ac�R must not be underestimated. When j/½ac�Rj � 1, mechanical stress dominates the
stress field in the adherend. Conversely, when j/½ac�Rj � 1, the thermally induced stress field is dominant. Fi-
nally, when j/½ac�Rj � 1, thermal and mechanical loads are both significant to the total stress field. Using /aR as
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a guide, it is easy to show that some common joints, such as aluminum to carbon fiber reinforced polymer
matrix composite, can be dominated by thermal loading when a large DT is present. It is significant that
the dimensionless load ratio is the same whether the SO or the SP is used to derive it, as it is therefore inde-
pendent of the adhesive stress field assumption.

The stress field that leads to the dimensionless number given in Eqs. (29) is based on the stress in the central
adherend ra11ð�xÞ. Using Eq. (5) and similarly collecting terms into dimensionless loads, a conjugate dimension-
less load ratio can be written for the stress field in the outer adherend rc11ð�xÞ:
/cR ¼
Ea11taðac33mc31 � aa33ma31 þ ac11 � aa11ÞDT

2ðma13ma31 � 1ÞP : ð30Þ
Examining Eqs. (29) and (30), it is apparent that the dimensionless load ratio in one adherend depends largely
on the stiffness of the other adherend.

With the dimensionless load ratio in mind, a load-based normalization can be defined by rewriting the axial
stress as:
ra11 ¼
ra11

/total

; ð31Þ
or, more intuitively:
ra11ð�xÞ ¼ r
a11ð/P ;�xÞ

� /total: ð32Þ
This second normalization can be propagated throughout the solution so that the SO and SP solutions are
written as:
ra11ð�xÞ ¼ ��a sinðx�xÞ þ ��b cosðx�xÞ � 1

x2
;

ra11ð�xÞ ¼ ��Aek1�x þ ��Be�k1�x þ ��Cek3�x þ ��De�k3�x � 1

c
:

ð33Þ
Doing so requires that the boundary conditions be rewritten as:
ra11ð0Þ ¼ 0;

ra11ð1Þ �
2P

taEa11/total

¼ 0;
ð34Þ
for the SO solution, and for the SP solution as:
��Dþ ��C þ ��Bþ ��A� 1

c
¼ 0;

e�k3 ��Dþ ek3 ��C þ e�k1 ��Bþ ek1 ��A� 1

c
� 2P

Ea11ta/total

¼ 0;

� k3
��Dþ k3

��C � k1
��Bþ k1

��A ¼ 0;

� k3e�k3 ��Dþ k3ek3 ��C � k1e�k1 ��Bþ k1ek1 ��A ¼ 0:

ð35Þ
Using the load ratio /aR, we can split the coefficients into linear equations of the mechanical fraction of the
load. Defining the mechanical load fraction as:
/P ¼
/P

/total

¼ ð1þ /aRÞ�1
; ð36Þ
the coefficients ��a and ��b from Eqs. (10) for a load normalized solution can be written as:
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��a ¼ � Ec11tbtc

2Gb12l2 sin xðmc13mc31 � 1Þ
/P �

cos x� 1

x2 sin x
;

��b ¼ 1

x2
:

ð37Þ
Similarly, the ��A, ��B, ��C, and ��D coefficients can be written as:
��A ¼
l3lAP

l1l2

/P þ
lAT

l1

;

��B ¼
l3lBP

l1l2

/P þ
lBT

l1

;

��C ¼
l3lCP

l1l2

/P þ
lCT

l1

;

��D ¼
l3lDP

l1l2

/P þ
lDT

l1

;

ð38Þ
where the l parameters are given in Appendix C.2. In this form, it becomes apparent that the coefficients ��a, ��b, ��A, ��B,
��C, ��D (and by extension �a, �b, �A, �B, �C, �D) govern the stress distribution via the thermal and mechanical load ratio,
/aR, enhancing its relevance to the study of thermomechanical loading of lap joints.

The forms presented in Eqs. (37) and (38) will allow for an iterative version of the SO or SP solution to be
applied using numerical methods, when the mechanical load is dependent on the thermal load. For example,
this would allow for solution of displacement constrained thermomechanical problems.

4. A finite element model for the symmetric double lap joint

To establish confidence in the SO and SP models proposed in Section (3), it is useful to compare the solution
with a linear elastic FE model. Therefore, a 2D FE model has been generated for the ASTM International D 3528-
96 (2002) double lap joint. An overview of the mesh is shown in Fig. 3, and the assumed geometries are given in
Fig. 3. The FE mesh.

1
tric and loading assumptions for model comparison ASTM double lap joint geometric features (mm)

nent Thickness Length

adherend 1.6 76.2
ive 0.2 or 1.0 12.7
l adherend 3.2 76.2



Table 2
Assumed loading

Load type Value

P (N mm�1) 10
DT (�C) 10

Table 3
Assumed material properties in FE, SO, and SP solutions Assumed material properties in FE, SO, and SP solutions (moduli in GPa,
expansion coeffs. in l� �C�1)

Material Aluminum Titanium AS4/3501-6 (0�) FM300

E11 70 110 148 1.98
E22 70 110 10.6 1.98
E33 70 110 10.6 1.98
G12 26.3 41.4 5.61 0.71
G13 26.3 41.4 5.61 0.71
G23 26.3 41.4 3.17 0.71
m12 0.33 0.33 0.30 0.40
m13 0.33 0.33 0.30 0.40
m23 0.33 0.33 0.59 0.40
a11 23 9 �0.8 20
a22 23 9 29 20
a33 23 9 29 20
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Table 1. The solver used is Abaqus, and the mesh consists entirely of linear plain strain elements (CPE4). Half of
the joint is modeled due to symmetry. The stress concentrations at the material interfaces are not resolved in the
vicinity of the corner despite a fine mesh, since the singular stress field cannot be resolved with the FE technique
used here. Loading is specified as listed in Table 2, where the mechanical load is applied far away from the lap joint
and the thermal load is applied to all nodes. Displacement symmetry constraints are enforced along the mid-plane
of the central adherend. Non-linear geometric stiffness is assumed.

Aluminum (Al) is used as the central adherend in all models; the outer adherends are Al, titanium (Ti), and
AS4/3501-6 (AS4) Herakovich, 1998. For simplicity, the adhesive properties are assumed to be isotropic, and
are estimated base on Cytec FM300 adhesive. The assumed material properties are summarized in Table 3.

Reported stresses for all models are taken from the mid plane of the adhesive. For the peel stress in the SP
model, the mid-plane is the average peel stress. All peel stress comparisons are made to within 0.05 mm of the
adhesive edge (25% of the adhesive thickness for the 0.20 mm adhesive models). The choice of appropriate
comparison limit is complicated by the large gradients at and around the joint edge. The 0.05 mm location
was chosen to be sufficiently far away from the edge so as to avoid comparison in those areas of the FE model
that are dominated by the singular stress field. In those areas, the mesh dependent result has singular tensile
and compressive stresses at the opposing interfaces with the adherends. In contrast, the SP predicted stress is
not mesh dependent, is monotonically increasing in the comparison zone, and is well defined. Therefore, as
long as the comparison limit is consistently chosen and near the edge where a strong peel stress is predicted,
the magnitude of the SP predicted stress will correlate with the strength of the singularity.

5. Comparison of FE and analytical model results for ASTM lap specimens

Figs. 4–8 show the stress response predicted by the SO, SP, and FE models due thermal and mechanical
loads applied to several joints. Examining the Al–Al results shown in Figs. 4.1 and 4.2, it is found that all three
of the models predict that the shear and peel stress due to thermal loading is small. 3
3 It should be noted that this is the special case of very similar adherends subjected to primarily thermal loads. If the expansion
coefficient of the adhesive was very different from that of the adherends, it would be appropriate to conduct a different type of analysis with
primary focus on the adhesive expansion.
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Fig. 4. FE, SP, and SO models of Al–Al double lap joint with 0.2 mm FM300 adhesive. /aR ¼ 0
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Model predictions for an Al–Al joint with applied mechanical load are shown in Figs. 4.3 and 4.4.
The first of these two figures shows the normalized shear stress sb12 in the joint. The correlation between
the FE, SO, and SP models is generally good, though the SO and SP models over predict the shear
stress near the edges, in comparison to the FE solution. Total shear (the area under the �x-sb12 curves)
is preserved, because the SO and SP solutions under predict the stress in the middle of the joint relative
to the FE model. The traction free boundary condition is captured by the FE and SP solutions only, as
expected.

The plots in Fig. 4.4 show the peel stress due to mechanical load, as predicted by FE and SP solutions. It is
apparent that differences exist in predicted peel stresses. However, near the edges of the joint, a direct corre-
lation is found. This correlation between the two solutions at the near edge location is important, since peel
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Fig. 5. FE, SP, and SO models of Al–Ti double lap joint with 0.2 mm FM300 adhesive. /aR ¼ �3:68

5788 P.A. Gustafson et al. / International Journal of Solids and Structures 44 (2007) 5774–5795
stress is often a cause of failure in lap joints. Similarly, Figs. 4.5 and 4.6 show the predicted stress state due to a
mixed loading condition, where both thermal and mechanical loads are applied. In the case of the Al–Al joint,
it is clear that mechanical loading dominates the stress state. This result is fully expected, since the loading
ratio, /aR, is zero.

The FE, SO, and SP model predictions for Al–Ti lap joints are shown in Figs. 5 and 6. There are several
observations which add confidence in the use of the derived dimensionless parameters. First, Figs. 5.1 and 6.1
show strong correlation between the FE model and the SO and SP models when thermal loading is applied to
joints with differing adhesive thicknesses. The predicted shear stress is zero in the middle of the joint, which is
required when there is no mechanical load. Also, the SO and SP solutions for mechanical load in Figs. 5.3 and
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Fig. 6. FE, SP, and SO models of Al–Ti double lap joint with 1.0 mm FM300 adhesive. /aR ¼ �3:68
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5.2 and Figs. 6.3 and 6.2 have similar correlation to the Al–Al joint. They show that the shear stress concen-
tration at the edges is larger when the adhesive is thin than when it is thick.

Mixed loading for Al–Ti joints is shown in Figs. 5.5, 5.6 and 6.5, 6.6. These figures show that the SO and SP
solutions compare well with the FE solution over the majority of the joint when the loading is thermal and
mechanical. As in the Al–Al comparison, both SO and SP models tend to over predict the shear stress in
the Al–TI joint, and the SP solution reasonably predicts the peel stress near the edges of the joint. Finally,
comparing Figs. 5.1–5.6 and 6.1–6.6, it is shown that both the SO and SP models correlate well with the
FE solution as the thickness of the adhesive is increased.

The stress predictions for the Al–AS4 joints are shown in Figs. 7 and 8, where uniaxial fiber alignment for
the orthotropic AS4 is aligned with the x axis in Fig. 7, and with the z axis in Fig. 8. Though the latter is an
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Fig. 7. FE, SP, and SO models of Al–AS4 (0�) double lap joint with 0.2 mm FM300 adhesive. /aR ¼ �7:33
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unlikely joint arrangement, it is a useful exercise to examine the orthotropic nature of the SO and SP solutions.
It is immediately apparent in Figs. 7.1, 7.2 and 8.1, 8.2 that differences in the orthotropic expansion coefficients
have a significant effect. The sign of the stress changes upon a 90� orientation change, and the magnitude of
the stress is significantly lower as the fibers are aligned perpendicular to the cross section of the joint. This
result makes sense, since the material is much more compliant when loaded in the 90� orientation.

Upon examining all predicted stress results in Figs. 4–8, the effect of the thermomechanical load ratio /aR is
apparent. The Al–Al joint, at j/aRj ¼ 0, is dominated by mechanical load. Both Al–Ti joints, at j/aRj ¼ 3:68,
have significant contributions from both thermal and mechanical load. Comparing Al–AS4 (0�) and (90�)
joints at j/aRj ¼ 7:33 and j/aRj ¼ 0:40, respectively, in Figs. 7 and 8, it is noted that the stress field in



Normalized coordinate x
_

N
or

m
al

iz
ed

 s
tr

es
s 

τ 1
2

_

0 0.25 0.5 0.75 1

-0.0001

-5e-05

0

5e-05

FE
SP
SO

Normalized coordinate x
_

N
or

m
al

iz
ed

 s
tr

es
s 

σ 2
2

_

0.25 0.5 0.75

-3.5e-05

-1.75e-05

0

1.75e-05

3.5e-05
FE
SP

Normalized coordinate x
_

N
or

m
al

iz
ed

 s
tr

es
s 

τ 1
2

_

0 0.25 0.5 0.75 1

-0.0001

-5e-05

0

5e-05

FE
SP
SO

Normalized coordinate x
_

N
or

m
al

iz
ed

 s
tr

es
s 

σ 2
2

_

0.25 0.5 0.75

-3.5e-05

-1.75e-05

0

1.75e-05

3.5e-05
FE
SP

Normalized coordinate x
_

N
or

m
al

iz
ed

 s
tr

es
s 

τ 1
2

_

0 0.25 0.5 0.75 1

-0.0001

-5e-05

0

5e-05

FE
SP
SO

Normalized coordinate x
_

N
or

m
al

iz
ed

 s
tr

es
s 

σ 2
2

_

0.25 0.5 0.75

-3.5e-05

-1.75e-05

0

1.75e-05

3.5e-05
FE
SP

due to due to

due to

due todue to

due to

8.1: 8.2:

8.3: 8.4:

8.5: 8.6:

Fig. 8. FE, SP, and SO models of Al–AS4 (90�) double lap joint with 0.2 mm FM300 adhesive. /aR ¼ 0:40
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Al–AS4 (0�) lap joints is mostly due to thermal loading, whereas the stress field in Al–AS4 (90�) joint derives
mostly from mechanical load. These results show the importance of /aR in decoupling the effects of thermal
and mechanical load, while the effects of b and c are reflected in the axial and shear stress distribution in the
adherend and adhesive, respectively. Further, /aR provides a quick and effective method for determining the
relative importance of thermal and mechanical loads to shear and peel stresses.

6. Concluding remarks

Two analytical models for the stress distribution in an orthotropic double lap joint have been presented
with a view to identifying key non-dimensional parameters that govern joint behavior under thermo-mechan-
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ical loads. The SO model assumes only shear stress exists in the adhesive, and produces a similar result to the
work of Volkersen with the addition of thermal expansion. While not capturing peel stress or a traction free
edge, it is a tractable solution with instructive non-dimensional parameters, and is therefore a useful tool for
basic thermomechanical design of joints. The SP model, which is similar but more complex than the SO solu-
tion, does account for shear and peel stress. The 4th order governing differential equation allows for proper
representation of the traction free adhesive edge. Like the SO solution, the SP solution has instructive non-
dimensional parameters which can be used as tools in joint design. Unlike linear elastic FE solutions, finite
stress concentrations are predicted by the SO and SP models. They can therefore be used for quick iteration
in joint design as well as meaningful joint comparison based solely on constitutive material properties and
joint geometry.

Non-dimensional parameters, written in terms of the joint geometry as well as the orthotropic adherend
and adhesive properties, have been identified and shown to be useful in interpreting stress distribution in
the joint. Two dimensionless load parameters, /T and /P , as well as a critical dimensionless ratio, /aR (and
its conjugate parameter /cR), have been identified. These parameters control the stress distribution within
the joint. It is shown that /aR, which is identically derived using either the SO or SP solutions, can be used
as measure of the relative importance of mechanical and thermal loading in a joint of known (or expected)
loading. The /aR ratio allows for isolation of the thermal and mechanical portions of the solution, which will
facilitate an iterative solution when the combined thermal and mechanical loads are interdependent.
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Appendix A. Extended description of the virtual work calculations

The principal of virtual work calculations are briefly summarized below. Equilibrium relations derived in
Section (3) are given in Table 4, as well as their associated virtual stress quantities.

The adhesive peel stress distribution presented in the SP solution would require the transverse normal stress
in the central adherend ra22 to be included in the virtual work calculations. However, following the recommen-
dation of Davies (1982), this addition is a secondary effect and is therefore not included in order to minimize
Table 4
Stresses and virtual stresses included in the virtual work solutions

Equilibrium stress Virtual stress

(a) Quantities included in the both the SO and SP models

ra11(x) r̂a11ðxÞ
rb12ðxÞ ¼ �

ta
d
dx ra11ðxÞ
	 


2
r̂b12ðxÞ ¼ �

ta
d
dx r̂a11ðxÞ
	 


2

rc11ðxÞ ¼ P
tc
� tara11ðxÞ

2tc
r̂c11ðxÞ ¼ �

tar̂a11ðxÞ
2tc

(b) Quantities included only in the SP model

rb22ðx; yÞ ¼
ta

d2

dx2 ra11ðxÞ
� �

ðy� tbÞ
2

r̂b22ðx; yÞ ¼
ta

d2

dx2 r̂a11ðxÞ
� �

ðy� tbÞ
2

r22p0ðyÞ ¼
ta

d
dx ra11ðxÞ
	 


ðy� tbÞ
2tp

r̂22p0ðyÞ ¼
ta

d
dx r̂a11ðxÞ
	 


ðy� tbÞ
2tp

r22plðyÞ ¼ �
ta

d
dx ra11ðxÞ
	 


ðy� tbÞ
2tp

r̂22plðyÞ ¼ �
ta

d
dx r̂a11ðxÞ
	 


ðy� tbÞ
2tp
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solution complexity. In Table 4, all virtual stress quantities can be written in terms of the central adherend
virtual stress r̂a11. The principal of virtual work is applied using:
dW ¼
X

i

Z
ðr̂i�iÞdV i ¼ 0; ðA:1Þ
where i represents the quantities listed in Table 4 for each solution. Eq. (A.1) applies for an arbitrary virtual
stress r̂a11. The field equations and boundary terms of the SO and SP solutions become apparent when inte-
gration of Eq. (A.1) is performed by parts.

Appendix B. Boundary conditions for the SP solution

The pre-simplified version of the longitudinal normal stress boundary conditions for the left and right
edges, respectively, are:
�Dþ �C þ �Bþ �A� /T

c
� /P

c
¼ 0;

e�k3 �Dþ ek3 �C þ e�k1 �Bþ e�k1 �A� /T

c
� /P

c
� 2P

Ea11ta
¼ 0:

ðB:1Þ
When normalized by the total load /total, the normal stress boundary conditions become:
�Dþ �C þ �Bþ �A� 1

c
¼ 0;

e�k3 �Dþ ek3 �C þ e�k1 �Bþ ek1 �A� 1

c
� 2P

Ea11ta/total

¼ 0:
ðB:2Þ
The pre-simplified version of the shear stress at the edges can be represented in either case by:
3ab33Eb22l4mb32DT
Ea11tatbmb23mb32 � Ea11tatb

þ 3ab22Eb22l4DT
Ea11tatbmb23mb32 � Ea11tatb

þ
ðEp0 l2k2

3tpmb23mb32 � Ep0 l2k2
3tp þ Eb22l3k3Þ�D

Ep0 tpmb23mb32 � Ep0 tp

þ
ðEp0 l2k2

3tpmb23mb32 � Ep0 l2k2
3tp � Eb22l3k3Þ�C

Ep0 tpmb23mb32 � Ep0 tp

þ
ðEp0 l2k2

1tpmb23mb32 � Ep0 l2k2
1tp þ Eb22l3k1Þ�B

Ep0 tpmb23mb32 � Ep0 tp

þ
ðEp0 l2k2

1tpmb23mb32 � Ep0 l2k2
1tp 	 Eb22l3k1Þ�A

Ep0 tpmb23mb32 � Ep0 tp
¼ 0;

3ab33Eb22l4mb32DT
Ea11tatbmb23mb32 � Ea11tatb

þ 3ab22Eb22l4DT
Ea11tatbmb23mb32 � Ea11tatb

þ ðEpl l2k2
3e�k3 tpmb23mb32 � Epl l2k2

3e�k3 tp þ Eb22l3k3e�k3Þ�D
Epl tpmb23mb32 � Epl tp

þ ðEpl l2k2
3ek3 tpmb23mb32 � Epl l2k2

3ek3 tp � Eb22l3k3ek3Þ�C
Epl tpmb23mb32 � Epl tp

þ ðEpl l2k2
1e�k1 tpmb23mb32 � Epl l2k2

1e�k1 tp þ Eb22l3k1e�k1Þ�B
Epl tpmb23mb32 � Epl tp

þ ðEpl l2k2
1ek1 tpmb23mb32 � Epl l2k2

1ek1 tp � Eb22l3k1ek1Þ�A
Epl tpmb23mb32 � Epl tp

¼ 0: ðB:3Þ
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Appendix C. Definition of the solution parameters

C.1. System parameters k½13� in terms of the orthotropic material properties

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

k2
½13� ¼

� 9E2
b22l4

4G2
b12t4

bðmb23mb32�1Þ2
�12Eb22l4ðEa11tamc13mc31þ2Ec11tcma13ma31�2Ec11tc�Ea11taÞ

Ea11Ec11tat3
btcðmb23mb32�1Þ

2

� 3Eb22l2

4Gb12t2
bðmb23mb32�1Þ : ðC:1Þ
C.2. l parameters for the SP solution coefficients

The l values of Eqs. (28) and (38) are given by:
lAT
¼ k3ðek3 � 1Þ

c

lBT
¼ ek1k3ðek3 � 1Þ

c

lCT
¼ � k1ðek1 � 1Þ

c

lDT
¼ � k1ðek1 � 1Þek3

c

lAP
¼ �ðk3e2k3þk1 � k1e2k3þk1 þ 2k1ek3 � ek1k3 � k1ek1Þ

lBP
¼ ek1ð�2k1ek3þk1 þ k3e2k3 þ k1e2k3 � k3 þ k1Þ ðC:2Þ

lCP
¼ k1ðk3ek3þ2k1 � k1ek3þ2k1 þ k3ek3 þ k1ek3 � 2ek1k3Þ

k3

lDP
¼ � k1ek3ð2k3ek3þk1 � e2k1k3 � k3 � k1e2k1 þ k1Þ

k3

l1 ¼ k3ek3þk1 � k1ek3þk1 þ k3ek3 þ k1ek3 � ek1k3 � k3 � k1ek1 þ k1

l2 ¼ k3ek3þk1 � k1ek3þk1 � k3ek3 � k1ek3 þ ek1k3 � k3 þ k1ek1 þ k1

l3 ¼
Ec11k3t3

btcðmb23mb32 � 1Þ
3Eb22l4ðmc13mc31 � 1Þ

:
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