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Aim of the present study is an analysis of the effect of microstructural uncertainties on the scatter in the
macroscopic material properties of highly porous materials consisting of metallic or other constituents.
For the numerical analysis of the uncertainty effects, a probabilistic homogenization scheme is proposed.
In contrast to direct Monte-Carlo approaches, the thermomechanical response of a limited number of pre-
selected cases throughout the range of possible microstructures is analyzed. Their effective properties are
determined by means of an energy based homogenization procedure. In a stochastic evaluation, the
results of the individual computations are weighted with the probability of the occurrence of the under-
lying microstructures. As a result, the probability distributions for the effective properties are obtained.
The basic uncertain microstructural properties considered in the investigation are the microstructural
geometry and orientation, the local relative density and the local pore size distribution. In an application
to an experimental data base from other sources, the approach proves to be accurate and numerically
efficient compared to direct Monte-Carlo approaches. Parameter studies reveal that uncertainties in
the local relative density are the most important factor leading to scatter in the macroscopic material
properties of cellular materials.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Porous media and solid foams with high void volume fraction
and thus low relative density gain increasing importance in mod-
ern lightweight construction. Their main advantage is their low
specific weight attained at a reasonable macroscopic stiffness
and strength. Hence, porous solids are a natural choice for all kinds
of lightweight application. Furthermore, porous media feature
superior energy absorption properties due to their high compress-
ibility and the fact that compression occurs at an approximately
constant effective stress level (Gibson and Ashby, 1997). Other
advantages of cellular materials are their capability for non-struc-
tural functions such as heat exchange, thermal and acoustic
insulation or catalytic functions and thus their capability for mul-
ti-functional application. On the other hand, one of the main disad-
vantages is their – in many cases – highly disordered
microstructure. The uncertainty of the microstructural geometry
and topology leads to distinct uncertainties in the macroscopic
material response.

For reasons of numerical efficiency, the numerical analysis of
structural components made partially or in total from cellular
materials is preferrably performed in terms of averaged ‘‘effective’’
ll rights reserved.
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properties rather than by detailed models of the microstructure.
The effective properties can be determined either experimentally
or numerically by means of a homogenization analysis. Since the
pioneering study by Gent and Thomas (1963) was published,
numerous studies on the theoretical and numerical determination
of the effective properties of solid foams and other porous media
appeared. Most of the available studies are based on idealized peri-
odic models for the cellular microstructure such as the well-known
tetrakaidecahedral Kelvin (Thomson and Kelvin, 1887) foam, the
brick-like cell model employed by Gibson and Ashby (1997) or
the pentagonal dodecahedron model proposed by Christensen
(1987). In a more recent study, Weaire and Phelan (1994) proposed
a periodic eight-cell model, which outperforms the classical Kelvin
foam with respect to Kelvin’s (Thomson and Kelvin, 1887) ener-
getic optimality criterion.

For the analytical and numerical analysis of the effective mate-
rial properties, the idealized periodic foam models have the advan-
tage to require only limited numerical effort since only a single cell
or – as in the case of Weaire and Phelan’s (1994) model – a small
number of cells needs to be analyzed. On the other hand, although
these models in general properly account for most of the essential
microstructural effects and thus yield reliable estimates of the
average effective material properties, they are not able to recapture
any disorder effects and the resulting uncertainty in the macro-
scopic material response. The analysis of these types of effects
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requires the application of stochastic approaches (Huyse and Maes,
2001).

Although stochastic methods are well established in experi-
mental investigations on the effective material response of cellular
materials (e.g. Blazy et al., 2004; McCullough et al., 1999;
Ramamurty and Paul, 2004), they are still not widely established
in theoretical and numerical investigations. Most of the available
numerical studies concerned with disorder effects are based on a
single or repeated analysis of a large-scale representative volume
element with a large number of cells, generated by a Voronoï pro-
cess or similar method for the random division of space. Roberts
and Garboczi (2002) and Shulmeister et al. (1998) as well as van
der Burg et al. (1997) found a strong scatter of the effective mate-
rial properties. In a recent study by the present authors Harden-
acke and Hohe (2009) on uncertainty effects in two-dimensional
honeycombs, a submodel technique has been proposed, where
subsets of a large-scale representative volume element are em-
ployed as ‘‘testing volume elements’’. Applying the homogeniza-
tion procedure to the testing volume elements yields a data base
for the possible range of the effective properties which is evaluated
by stochastic methods to determine their probability distributions.
As an alternative, the use of direct probabilistic models has been
proposed. In this context, Fortes and Ashby (1999) employed a
model based on the structural response of a single cell strut and
the probabilities for its spatial orientation. A more sophisticated
model based on a stochastic enhancement of the of the determin-
istic (Gibson and Ashby, 1997) formulae for the effective foam
properties has been provided by Schraad and Harlow (2006). Other
approaches of this type are e.g. the Taylor averaging scheme pro-
posed by Cuitiño and Zheng (2003).

For the numerical analysis of large-scale representative volume
elements, the results of van der Burg et al. (1997) as well as Kanaun
and Tkachenko (2006) indicate that the necessary size of represen-
tative volume element might be rather large, in order to be statis-
tically representative, requiring cell numbers in the order of 1000
and beyond. Since the numerical analysis of microstructures of this
type requires a rather large effort, approaches based on repeated
numerical experiments on small-scale testing volume elements
with random microstructure are a promising alternative. Ap-
proaches of this type have been used by Gan et al. (2005), Li
et al. (2006), Zhu et al. (2000), and Zhu and Windle (2002) as well
as by one of the present authors (Hohe and Becker, 2005). All of
these studies use Monte-Carlo type simulations, where all micro-
structures analyzed in the numerical experiments are of equal
probability. Despite its simplicity, direct Monte-Carlo approaches
have the disadvantage to require a rather large number of numer-
ical experiments in order to provide statistically reliable results not
only for the mean and the variance of the effective property – as
considered in most of the mentioned studies – but also for
the upper and lower tails of the corresponding probability
distributions.

In order to predict the effective properties and their probability
distributions in a numerically more efficient manner, the present
study employs a modified approach of this type. Therefore, a num-
ber of small to medium scale testing volume elements for the
microstructure is considered. Their microstructure is assumed to
be defined by a number of uncertain variables such as the (local)
relative density, the variance in the pore size distribution or the
orientation of the testing volume element in three-dimensional
space. In contrast to the mentioned direct Monte-Carlo simula-
tions, pre-selected cases of the microstructure in terms of pre-de-
fined sets of the uncertain variables are analyzed, which cover the
entire range of possible microstructural cases. The results of the
individual testing volume element analyses are evaluated by sto-
chastic methods, considering the non-uniform probability of
occurrence of the microstructures analyzed. In this context, the
author’s previous approach (Hohe and Becker, 2005) is extended
to the analysis of three-dimensional microstructures together with
a refined stochastic analysis in terms of the complete probability
distributions for the effective properties instead of the basic sto-
chastic parameters alone. The analysis of pre-selected cases
throughout the relevant ranges of the essential microstructural
parameters instead of the direct Monte-Carlo simulation employed
in the previous study in general requires a lower number of simu-
lations and thus provides a higher numerical efficiency, especially
for evaluation of the upper and lower tails of the probability distri-
butions of the effective properties.

2. Probabilistic homogenization

2.1. General energy based procedure

Within the present study, the macroscopic ‘‘effective’’ proper-
ties are determined numerically by means of a homogenization
analysis. For this purpose, a deterministic, energy based homog-
enization scheme based directly on Hill’s (Bishop and Hill, 1951)
lemma is adopted (Hohe and Becker, 2001). The original deter-
ministic concept is extended in order to cover uncertainty ef-
fects. As most homogenization schemes, the utilized
deterministic homogenization procedure considers a representa-
tive volume element XRVE for the given microstructure and a
similar volume element XRVE⁄ consisting of the ‘‘effective’’ med-
ium with yet unknown properties (Fig. 1). Provided that the
characteristic length l of XRVE is much smaller than the charac-
teristic length L of the entire body,

L� l� dl ð1Þ

the consideration of XRVE and XRVE⁄ is sufficient for determination
of the effective material properties for the quasi-homogeneous
body X⁄, by which the microstructured body X is to be replaced.
The material law and the corresponding properties of the effective
medium have to be determined such that the behaviour of both vol-
ume elements, XRVE and XRVE⁄, is equivalent under any kind of
loading conditions on the mesoscopic level.

For the definition of the mesoscopic equivalence of the mechan-
ical response of the two volume elements, different approaches
have been proposed in the literature. Adopting Hill’s (Bishop and
Hill, 1951) lemma, the mechanical response of XRVE and XRVE⁄ is
assumed to be mesoscopically equivalent, if the average strain en-
ergy density in both volume elements is equal

�w ¼ 1
VRVE

Z
XRVE

wdV ¼ 1
VRVE�

Z
XRVE�

w�dV ¼ �w� ð2Þ

provided that both volume elements are subjected to a mesoscopi-
cally equivalent state of deformation. The deformation of both vol-
ume elements is defined to be equivalent, if the volume average

Fij ¼
1

VRVE

Z
XRVE

FijdV ¼ 1
VRVE�

Z
XRVE�

F�ijdV ¼ F�ij ð3Þ

of the deformation gradient for both volume elements is equal
(Hohe and Becker, 2001, 2005).

The energy based homogenization of the cellular microstructure
using Eqs. (2) and (3) requires the identification of an appropriate
representative volume element, generation of a corresponding fi-
nite element model its deformation according to a prescribed
effective deformation gradient Fij and the computation of the effec-
tive average strain energy density �w. Subsequently, the corre-
sponding effective stress and strain components can be
determined from Fij and �w using their definitions on the effective
level. Within the present study, the effective Green–Lagrange
strain



Fig. 1. Concept of the representative volume element.
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�cij ¼
1
2
ðFkiFkj � dijÞ ð4Þ

and the effective second Piola-Kirchhoff stress tensor

�sij ¼
@ �w
@�cij

����
d�cpl

ij
¼0

ð5Þ

are employed as measures for the effective strain and stress states.
Notice that due to the nonlinear dependence of the Green–Lagrange
strain tensor on the deformation gradient, the present homogeniza-
tion scheme does not define the effective strains and stresses as
their volume averages. Instead, the deformation components Fij

are averaged with respect to the volume element XRVE. Assuming
periodic microstructures set up by an array of similar volume ele-
ments, this definition ensures that the distance between any arbi-
trary spatial point inside the volume element XRVE and a
corresponding point in a neighboring volume element is equal in
the deformed configuration whether the real microstructure or
the effective medium are considered.

Although the energy based homogenization procedure in its ori-
ginal form defined by Eqs. (2) and (3) is restricted to mechanical
problems (Hohe and Becker, 2001, 2005), an extension to heat
transfer problems is straight forward. For this purpose, the volume
elements XRVE and XRVE⁄ are loaded by prescribed mesoscopic
temperature gradients

T ;i ¼
1

VRVE

Z
XRVE

T ;idV ¼ 1
VRVE�

Z
XRVE�

T�;idV ¼ T�;i ð6Þ

for which the volume averages

�_qi ¼
1

VRVE

Z
XRVE

_qidV ¼ 1
VRVE�

Z
XRVE�

_q�i dV ¼ �_q�i ð7Þ

of the heat flux density have to be equal. Details of the application
of the numerical homogenization scheme are given in Section 3.1.

2.2. Probabilistic evaluation

The thermo-mechanical homogenization scheme described in
Section 2.1 is basically a deterministic scheme. For a specific
microstructure, it enables to determine the effective stress compo-
nents �sij corresponding to a prescribed effective strain state �cij or,
alternatively, the determination of an effective heat flux density
�_qi corresponding to an applied effective temperature gradient T ;i.
On the other hand, the microstructure of solid foams and other
highly porous solids is a stochastic feature involving several consti-
tutive parameters with distinct uncertainties rather than being de-
fined deterministically in the rigorous sense. Important geometric
features with uncertainties are the spatial position and the size of
the individual cells. Furthermore, the relative density
�q ¼ ðV tot � VvoidÞ=V tot is subject to distinct local uncertainties as it
has been shown in experimental studies by Ramamurty and Paul
(2004) on ALPORAS foam or in a more recent contribution by Soló-
rzano et al. (2007). Another microstructural constitutive parameter
subject to uncertainties is the orientation of the microstructure
with respect to the loading direction.

If only the arithmetric averages of the effective material proper-
ties are required, the effect of the uncertainties can be accounted
for by choosing a large-scale and thus statistically representative
volume element. On the other hand, the required size of the vol-
ume element in order to be statistically representative might be
larger than a characteristic length of the macroscopic structure
(Kanaun and Tkachenko, 2006), e.g. if a large-cell solid foam is used
as a sandwich core material. Hence, the inequality (1) would be
violated and thus no well defined effective properties exist. An
alternative to deal with this problem is the application of a sto-
chastic homogenization approach, where the homogenization is
performed in a number of repeated numerical experiments using
small to medium scale (statistically non representative) testing
volume elements. In this case, the results of the individual numer-
ical experiments have to be evaluated by means of stochastic
methods.

For this purpose, assume that the microstructure of the testing
volume elements is defined by a number of microstructural consti-
tutive variables y such as the relative density �q. The actual values
of the variables y are uncertain. The uncertainties are described by
the probability density distributions f(y) or probability distribu-
tions FðyÞ ¼

R y
0 f ðyÞdy can be determined experimentally by a sto-

chastic characterization of the microstructure using tomographic
or similar methods. If a number of individual cases of microstruc-
tures defined by specific values yi of the variables y are considered,

pðyiÞ ¼
Z yiþyiþ1

2

yi�1þyi
2

f ðyÞdy ð8Þ

is the individual probability for occurrence of the respective micro-
structural case considered in the individual testing volume element
analysis (Fig. 2). The homogenization results ZðyÞ (e.g. the effective
stresses) based on the respective microstructure have the same
probability of occurrence as the microstructure itself. Hence, the
expectation value EðZðyÞÞ and the variance VðZðyÞÞ of the effective
property ZðyÞ are determined by

EðZÞ ¼
Xn

i¼1

ZðyiÞpðyiÞ ð9Þ

VðZÞ ¼
Xn

i¼1

ðZðyiÞ � EðZðyÞÞÞ2pðyiÞ ð10Þ



(a) (b)
Fig. 2. Probability and probability density of constitutive parameters and effective properties.

1012 J. Hohe, V. Hardenacke / International Journal of Solids and Structures 49 (2012) 1009–1021
as a function of the probability density distribution f(y) for the
microstructural constitutive parameter y, where n is the number
of numerical experiments. If required, higher order stochastic mo-
ments can be determined in a similar manner. For the case that
all n microstructures analyzed and thus all homogenization results
ZðyiÞ have the same individual probability p(yi) = 1/n, the direct
Monte-Carlo approach as employed in previous studies is recovered
(Gan et al., 2005; Hohe and Becker, 2005; Li et al., 2006; Zhu et al.,
2000).

With the probabilities p(yi) of the analyzed microstructures, the
probability distribution of the effective property ZðyÞ is obtained by

FðZðyjÞÞ ¼
Xj�1

k¼1

pðykÞ þ
1
2

pðyjÞ ð11Þ

after re-arrangement of the homogenization results ZðyiÞ into
ascending order. The corresponding probability density distribution
f ðZðyjÞÞ is obtained as the (numerical) derivative of FðZðyjÞÞ with re-
spect to its argument.

In order to avoid difficulties with the numerical determination
of the derivative f ðZðyjÞÞ of the probability distribution from a lim-
ited number of homogenization results, the obtained probability
distributions are approximated by a (continuous) logarithmic nor-
mal distribution

flnðZÞ ¼
1

Zrð2pÞ1=2 e�
ðlnZ�lÞ2

2r2 ; F lnðZÞ ¼
Z Z

0
flnðZÞdZ ð12Þ

with the shape and position parameters r and l. These parameters
are determined from the numerical data in such a manner that the
expectation value and the variance

ElnðZÞ ¼
Z 1

�1
ZflnðZÞdZ ¼ elþr2

2 ð13Þ

V lnðZÞ ¼
Z 1

�1
ðZ � ElnðZÞÞ2flnðZÞdZ ¼ e2lþr2 ðer2 � 1Þ ð14Þ

of the computed probability distribution (11) and its approximation
(12) are equal. Thus, the basic statistical equivalence of the numer-
ically determined probability distribution and its approximation is
guaranteed. If necessary, alternative definitions for the approxi-
mated probability distribution may be used. For the problems
investigated in the present study, the choice of the logarithmic nor-
mal distribution is validated in Section 3.3.

2.3. Application to porous solids

In the present study concerned with porous and cellular solids,
brick-shaped testing volume elements are considered. Their micro-
structure is assumed to contain an identical number of void
spheres. The sphere volume is assumed to obey a logarithmic nor-
mal distribution (12) with a prescribed shape parameter rcsz. The
position parameter lcsz is determined such that the prescribed rel-
ative density �q is obtained and thus does not form an independent
constitutive parameter. The spheres are positioned randomly into a
brick-like testing volume element such that a minimum overlap is
achieved. For this purpose, in a preliminary step spheres with a re-
duced diameter are packed closely into the volume element. Sub-
sequently, the diameter is increased such that the required
relative density �q is reached. The microstructures are assumed to
be spatially periodic. Hence, if a void sphere intersects with the
testing volume element boundaries, the cut-off part of the respec-
tive void sphere is added on the opposite side of the testing volume
element.

The procedure provides appropriate models for the microstruc-
ture of porous solids, replicated foams or microcellular materials.
The microstructure is primarily governed by the relative density
�q and the shape parameter rcsz of the cell size distribution. In order
to account for uncertainties in the microstructural geometry and
topology, several testing volume elements are generated for each
pair ð�qi; rcszjÞ of specific values considered for the parameters �q
and rcsz. In addition, the orientation of the generated testing vol-
ume element relative to the considered loading direction is as-
sumed to be uncertain.

Hence, four different stochastic variables govern the uncer-
tainty in the effective properties of the material considered. The
probability for occurrence of the individual homogenization results
is given by

p ¼ pdnspcszportpmod ð15Þ

where pdns, pcsz, port and pmod are the individual probabilities for the
relative density, the cell size distribution, the spatial orientation
and the microstructural geometry respectively. For the basic param-
eters �q and rcsz, logarithmic normal distributions are assumed,
whereas uniform distributions are assumed for all microstructures
generated for each pair ð�qi; rcszjÞ as well as for their spatial orien-
tation. Different types of statistical distributions may be used, if re-
quired for any other type of cellular solid.

The main advantage of the proposed scheme compared to a di-
rect Monte-Carlo analysis as employed in previous studies (see
Gan et al., 2005; Hohe and Becker, 2005; Li et al., 2006; Zhu et
al., 2000) is the possible reduction of numerical effort. Since the
considered particular values yi of the microstructural constitutive
parameters y for the individual testing volume elements are pre-
selected, areas of particular importance within the total possible
ranges of y can easily be provided with a higher density of data
points than less important ranges (Fig. 2(b)). Therefore, the spacing
of the data points in the accumulated probability distributions F(y)
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and thus FðZðyÞÞ is not necessarily uniform with p(yi) = 1/n, as it
would be in a direct Monte-Carlo approach, where the values yi

in the individual numerical experiments would be determined ran-
domly. In a direct Monte-Carlo simulation, the uniform individual
probabilities pðZðyiÞÞ would lead to a uniform spacing of the data
points in FðZðyÞÞ-direction (see Fig. 2(b)). Hence, the only possibil-
ity to increase the number of data points – and thus the reliability
of the probability distribution of the results – in any particular
range of the ZðyÞ � FðZðyÞÞ-diagram is an increase in the total num-
ber of simulations. In contrast, the present approach allows a se-
lected increase of the number of data points in particular ranges
of the probability distribution such as e.g. the lower tail of the
probability distribution in Fig. 2(b). This feature is especially
important in analyses of the effective strength or other limit anal-
yses, where the upper or lower bounds of the effective properties
rather than their mean values need to be determined. In this case,
the scheme proposed in the present study allows the increase in
the density of the data points in these regions without the neces-
sity for an increase in the data density in other regions of the prob-
ability distribution. Thus, the proposed scheme is in general
numerically more efficient than a direct Monte-Carlo simulation,
since it requires a fewer number of individual homogenization
analyses for achieving a particular data density and thus a particu-
lar accuracy of the probability distributions of the effective proper-
ties. Alternatively, the accuracy of the results in a particular region
of the probability distribution of the effective properties can be in-
creased without increase in the required numerical effort by spec-
ifying a higher density of homogenization data in the respective
range.
3. Numerical implementation

3.1. Finite element computation

As testing volume elements for the analysis of uncertainty ef-
fects in the thermo-mechanical response of porous solids, unit
cubes are considered, containing 20 void spheres each. The relative
size of the void spheres is described by a logarithmic normal distri-
bution of the type (12) which is defined by the shape parameter
rcsz. A vanishing shape parameter rcsz ? 0 results in a microstruc-
ture with uniform cell size whereas increasing rcsz result in micro-
structures with increasing non-uniformity in the cell size. For
analysis of the effective material response, the finite element
method is employed. Therefore, the non-void areas of the testing
volume elements are meshed with standard displacement based
four-node tetrahedral elements. A corresponding temperature
based element formulation is employed in the thermal analyses.

In order to cover the entire relevant range for highly porous and
foamed materials, relative densities of
�qi ¼ 0:05; 0:08; 0:11; 0:13; 0:15; 0:17; 0:19; 0:22 and 0.25 are
considered. Five individual shape parameters rcszj = 0.1, 0.2, 0.3,
0.4 and 0.5 are analyzed in order to cover the entire range of pos-
sible local variations in the cell size distribution. For each pair
ð�qi; rcszjÞ, five different testing volume elements are generated in
order to account for disorder effects caused by the random posi-
tioning of the pores. Effects of the spatial orientation of the micro-
structure are included by an analysis of the model in the
orientation as generated as well as in two alternative orientations
where the microstructure is rotated by 90� with respect to two dif-
ferent axes xi of the global Cartesian system.

Examples for the finite element meshes of the random micro-
structures at different relative densities and different cell size dis-
tributions are presented in Fig. 3. The number of nodes in the
model varies from 4906 to 14718 whereas the number of elements
ranges from 11664 to 51038. The extreme case of a relative density
�q ¼ 0:25 constitutes a porous solid with nearly non-intersecting
pores. In the lower limit �q ¼ 0:05 of the considered density range,
microstructures with a rather low relative density are obtained.
Due to the limited connection by cell struts between opposite sur-
faces, low effective stiffnesses will be obtained. In rare cases, even
non-percolating microstructures may develop, resulting in a zero
stiffness. In the present study, this effect occurs in 12% of the cases
for �q ¼ 0:05, whereas no such event occurs for all other relative
densities. Nevertheless, since all of the homogenization results
based on these cases are located in the lower tails of the probability
distributions for the effective properties (see Section 4) and thus
their individual probability p according to Eq. (15) is almost negli-
gible, no crucial effects develop in the stochastic numerical analy-
sis. Notice that discretized areas in the lower limit �q ¼ 0:05 in
Fig. 3, which seem to be unconnected to the main discretized body
of the microstructure are in general located on the boundaries and
thus have a connection to the remainder of the microstructure
through the boundary conditions.

The finite element models of the testing volume element are
subjected to periodic displacement or temperature boundary con-
ditions. These conditions require that the gradients of the displace-
ment components ui and the temperature T along the testing
volume element surfaces are equal on each pair of corresponding
(opposite) surfaces of the unit cube. The discrete boundary condi-
tions for each pair of corresponding nodes on the external testing
volume element surfaces are obtained by transforming the volume
integrals in the kinematic equivalence conditions (3) or (6) respec-
tively into boundary integrals using Green’s theorem. Substituting
the periodicity requirements into the results and evaluating the
integrals (Hohe and Becker, 2001, 2005) yields

uðjþÞi � uðj�Þi

lj
¼ Fij � dij ð16Þ

TðjþÞ � Tðj�Þ

lj
¼ T ;j ð17Þ

where uðjþÞi and uðj�Þi are the displacement components ui on the
testing volume element surfaces with an outward normal unit vec-
tor pointing towards the positive and negative xj-direction, respec-
tively. The temperatures T(j+) and T(j�) are defined in a similar
manner. Four additional boundary conditions are required to pre-
vent translatoric rigid body motions and temperature shifts of the
testing volume element. Eqs. (16) and (17) allow the direct specifi-
cation of a prescribed macroscopic state of deformation or macro-
scopic temperature gradient without evaluation of the integrals in
the kinematic equivalence conditions (3) and (6).

The material behaviour on the microscopic level is assumed to
be elastic-plastic. The elastic part is governed by Hooke’s law
whereas J2-plasticity with polylinear hardening is assumed for
the plastic part. In the heat transfer analyses, the linear Fourier
heat transfer equation is employed.

3.2. Effective material parameters

For determination of the effective heat transfer properties, the
testing volume elements are subjected to an effective temperature
gradient T ;i within the xi-direction whereas the effective tempera-
ture gradients in the remaining spatial directions remain unre-
strained. From the finite element analysis, the total heat flux
vector _Q i through the cross section Ai of the testing volume ele-
ment is obtained. Subsequently, the effective thermal conductivity

�ki ¼ �
_Q ðiÞ

AðiÞTð;iÞ
ð18Þ



Fig. 3. Examples for the microstructuress of the random testing volume element.
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with respect to the xi-direction can be determined. Embraced indi-
ces indicate that no summation is to be performed.

For determination of the elasto-plastic material response on the
effective level, the testing volume elements are loaded in a uniaxial
manner by a prescribed effective normal strain �cij with j = i within
the xi-direction whereas all other effective strain components are
left unrestrained. The corresponding components Fij of the defor-
mation gradient are computed by Eq. (4). The prescribed effective
normal strain component is increased incrementally into the com-
pressive range. For each increment, the resulting effective stress
components are computed resulting in an incremental effective
stress-strain curve. For determination of the effective elastic prop-
erties, an evaluation increment keval is chosen, which is the last
increment, where the maximum equivalent plastic strain cpl

e on
the microscopic level does not exceed a prescribed small value
cpl

e; limit. From the effective stress and strain components �sij and
�cij, the effective elastic constants

E ¼
�sload

�cload
ð19Þ

and

�m � �1
2

�cp1 þ �cp2

�cload
ð20Þ

are determined, where �sload and �cload are the effective normal stress
and strain components within the actual loading direction whereas
�cp1 and �cp2 are the effective normal strain components perpendicu-
lar to the macroscopic loading direction.

The effective hardening curve is defined directly as the com-
puted uniaxial effective stress-strain curve, where the effective
plastic strain is approximated by

�cpl
e ¼ �cload �

�sload

E
ð21Þ
assuming that the elastic properties do not change significantly
during the plastic deformation at least during its initial stage. A
macroscopic yield stress �sy is defined in the sense of an 0.2% offset
stress as the effective stress at �cpl

e ¼ 0:002.
By determination of the effective thermal conductivity �k, the

effective elastic constants E and �m as well as the effective yield
stress �sy for a variety of relative densities, cell size distributions,
microstructural geometries and orientations, a numerical raw data
base for the subsequent stochastic evaluation according to Section
2.2 is established. The raw data base is presented in Fig. 4. As a
material example for the cell wall material, aluminium with
E0 = 70 GPa,m0 = 0.3, sy0 = 190 MPa and k0 = 238 W/(mK) is as-
sumed. Nevertheless, all computed effective material constants
are normalized with respect to their microscopic counterparts in
order to provide a more general representation. As expected, the
effective Young’s modulus E, the effective yield stress �sy as well
as the effective thermal conductivity �k exhibit a strong dependence
on the relative density �q. No such effect is observed for the effec-
tive Poisson’s ratio �m, since this quantity is a mechanism controlled
property relying on the underlying microscopic mechanism of
deformation rather than on the microscopic material properties.
For the cell size distribution of the porous medium, no distinct ef-
fect is visible in the raw data presentation in Fig. 4. Both effects will
be discussed in detail in the stochastic evaluation of the raw data
presented in Section 4.

3.3. Validation

Prior to the application of the probabilistic homogenization ap-
proach proposed in Section 2 in parametric studies, the raw data
base is validated against experimental results. In Fig. 5, the raw
data determined in Section 3.2 are compared with experimental
data from different literature resources. In Fig. 5(a), the elastic
modulus E of the porous material normalized with the Young’s



(a) (b)

(c) (d)
Fig. 4. Raw data for the normalized effective elastic constants.

(a) (b)

(c) (d)
Fig. 5. Comparison of the raw data base with experimental data.
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modulus E0 of the cell wall material is plotted as a function of the
the relative density �q of the porous solid. Fig. 5(b) shows an en-
larged detail of Fig. 5(a). The numerical raw data obtained in the
numerical homogenization analysis are found in a rather good
agreement with the stochastic experimental measurements pro-
vided by Ramamurty and Paul (2004). In this context, the experi-
mental data were re-calculated to the measured data instead of
the specimen length normalized data presented by Ramamurty
and Paul (2004).

In light of the oncoming stochastic evaluation of the raw data
base in Section 4, it should be noticed that the stochastic experi-
mental investigation by Ramamurty and Paul (2004) has been per-
formed on closed cell ALPORAS aluminum foam samples with a
nominal relative density of �q � 0:096. Despite the unique nominal
relative density of the plate, where their specimens were cut from,
a distinct uncertainty in the relative density of the individual spec-
imens occurs. The scatter in the relative density might become
even more distinct, if subsets of the tested specimens would be
analyzed.

In comparison to the stochastic approach of Ramamurty and
Paul (2004), McCullough et al. (1999) do not provide a rigorous sto-
chastic analysis of their experimental results. On the other hand,
their study on density effects in the effective material response
of highly porous materials covers a rather wide range of relative
densities and therefore provides a good reference for the present
numerical raw data. In average, the experimental data of McCul-
lough et al. (1999) are in good agreement with the raw data ob-
tained by the present numerical homogenization analysis. Hence,
the accuracy and reliability of the numerical scheme is evident.

For the normalized yield stress �sy=sy0, more exhaustive experi-
mental investigations are available in the literature. In addition to
the previously considered publications by Ramamurty and Paul
(2004) and McCullough et al. (1999), experimental studies by Blazy
et al. (2004) as well as by Ruan et al. (2002, 2007) are considered as
reference cases for the accuracy of the present numerical raw data
base. A comparison of the experimental results with the numerical
raw data of the present study is presented in Fig. 5(c) as well as in
the enlarged detail in Fig. 5(d). In general, the experimental results
are found in a good agreement with the numerical data. Neverthe-
less, it has to be mentioned that the numerical results obtained in
the present study are rigorous 0.2% offset stress values whereas the
yield stress in most experimental approaches is defined either as
the peak stress preceding the stress plateau in compression or di-
rectly as the plateau stress. Especially if taken at larger (macro-
scopic) compressive effective strain levels, the plateau stress can
be linked with an already damaged microstructure and therefore
might underestimate the initial yield limit. Hence, the numerical
values and experimental results might not be directly comparable
in the rigorous sense. Nevertheless, the good qualitative agreement
of the experimental results and the numerical raw data again
underlines the apropriateness of the numerical raw data base.

In the probabilistic evaluation scheme proposed in Section 2.2,
the probability distributions for the effective properties are deter-
mined from the raw data base by weighting the individual homog-
enization results with the probability for occurrence of the
underlying microstructure. Subsequently, the numerically deter-
mined discrete probability density distribution for the considered
property is approximated by a logarithmic normal distribution
(12). In Fig. 6, the discrete probability distributions
FðE=E0Þ; Fð�m=m0Þ; Fð�sy=sy0Þ and Fð�k=k0Þ for the effective elastic con-
stants, the effective yield stress and the effective thermal conduc-
tivity are plotted under the assumption of a logarithmic normal
distribution of the relative density �q with an expectation value of
Eð�qÞ ¼ 0:15 and a standard deviation of

ffiffiffiffiffiffiffiffiffiffiffi
Vð�qÞ

p
¼ 0:02. In all four

cases, an almost perfect coincidence of the numerically computed
discrete probability distributions with the continuous
approximation is obtained. For other expectation values and stan-
dard deviations of the relative density �q, similar results are ob-
tained. Hence, the approximation of the discrete numerical
probability distributions by a continuous logarithmic normal dis-
tribution for further evaluation purposes is clearly justified.
4. Parametric studies

4.1. Effects of uncertainties in the relative density

In a first parametric study, the effect of the uncertainty in the
local relative density �q of the cellular material is studied. Experi-
mental results reported by Ramamurty and Paul (2004) reveal that
distinct variations of the relative density around its nominal value
might occur for cellular solids even on laboratory specimens size
level with a larger characteristic length scale as for the microstruc-
tural models considered in the present study. The local variation of
the relative density is characterized by a logarithmic normal distri-
bution defined by the expectation value Eð�qÞ and the correspond-
ing standard deviation rð�qÞ. Five different levels of the standard
deviation ranging from rð�qÞ ¼ 0:004 up to 0.02 are considered.
The lowest level corresponds to a spatially nearly constant relative
density of the material whereas the highest level defines a material
with distinct uncertainties in the local relative density. In Fig. 7, the
probability distributions f ðE=E0Þ; f ð�m=m0Þ; f ð�sy=sy0Þ and f ð�k=k0Þ for
the effective elastic constants, the effective yield stress and the
effective thermal conductivity are presented. Three different levels
of the average relative density of the material are considered, char-
acterized by the respective expectation value Eð�qÞ. The corre-
sponding probability density distributions f are presented in Fig. 8.

In the case of a low standard deviation rð�qÞ ¼ 0:004 and thus an
insignificant scatter of the relative density, the scatter in the effec-
tive properties E; �m; �sy and �k is caused solely by the scatter in the
microstructural geometry and the uncertainty of the cell size dis-
tribution. With increasing standard deviation rð�qÞ, the scatter in
the local relative density of the material increases. Consequently,
the scatter to be expected in the effective properties increases,
resulting in less steep increases of the corresponding probability
functions F in Fig. 7 as well as wider ranges with a non-zero prob-
ability density f of the respective effective material properties
(Fig. 8). Especially for the lowest considered expectation value
Eð�qÞ ¼ 0:1, strongly asymmetric distributions of the probability
density develop. Hence, a characterization of the scatter in the
effective material properties in terms of the basic stochastic
parameters E and r alone without the explicit analysis of the cor-
responding probability distribution might be insufficient.

An interesting effect to be observed in Figs. 7 and 8 is the fact
that the amount of uncertainty in the relative density �q does not
only affect the standard deviation of the effective properties but
in some cases their median (and expectation) values as well. For
an average relative density of �q ¼ 0:15, the accumulated probabil-
ity of F = 0.5 for the effective Young’s modulus E=E0, the effective
yield stress �sy=sy0 and the effective thermal conductivity �k=k0 is
reached at almost identical values of the respective effective prop-
erties, irrespectively of the scatter rð�qÞ in the relative density. For
Eð�qÞ ¼ 0:2 an increasing standard deviation rð�qÞ and thus an
increasing scatter in the local relative density of the material re-
sults in increasing median values of the respective effective mate-
rial constant. For the less dense material with Eð�qÞ ¼ 0:1, the
opposite effect is observed as the median effective properties de-
crease with increasing uncertainty in the local relative density �q.

The dependence of the mean values E and standard deviations r
of the effective material constants on the uncertainty in the local
relative density in terms of the standard deviation rð�qÞ is evalu-
ated in more detail in Fig. 9. Black lines are related to the



(a) (b)

(c) (d)
Fig. 6. Stochastic evaluation of the numerical data base.

(a) (b)

(d)(c)
Fig. 7. Effect of the uncertainty in the relative density, probability distributions.
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(c) (d)
Fig. 8. Effect of the uncertainty in the relative density, probability density distributions.

(a) (b)

(c) (d)
Fig. 9. Effect of the uncertainty in the relative density.
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expectation value whereas the standard deviations are represented
with gray lines. In case of the normalized effective Young’s modu-
lus E=E0, the normalized effective yield stress �sy=sy0 and the nor-
malized effective thermal conductivity �k=k0, the above mentioned
effect of an increase in the mean effective properties for increasing
scatter in the local relative density �q is observed in the initial range
of the standard deviation rð�qÞ only (see Figs. 9(a), (c) and (d)). For a
scatter in the relative density beyond rð�qÞ ¼ 0:02, the reverse ef-
fect is observed, although the significance in both ranges is limited.
The strongest effect of the density scatter on an effective material
constant is observed for the normalized effective Poisson’s ratio
�m=m0 at the smallest mean relative density (Eð�qÞ ¼ 0:1, see
Fig. 9(b)). The mean normalized effective Poisson’s ratio decreases
from approximately 0.66 at rð�qÞ ¼ 0:004 to 0.48 at rð�qÞ ¼ 0:05.
For the uncertainties in the effective properties characterized by
their standard deviations r, in all cases monotonously increasing
uncertainties are obtained with increasing uncertainty rð�qÞ of
the local relative density (see Fig. 9).

A comparison of the statistical means EðE=E0Þ and Eð�sy=sy0Þ of
the effective Young’s modulus and the effective yield stress with
the experimental data by Ramamurty and Paul (2004) on an ALPO-
RAS aluminum foam with a mean relative density of slightly less
than �q ¼ 0:1 yields a rather good agreement. The numerical results
for �q ¼ 0:1 at the respective standard deviation rð�qÞ underpredict
the experimental observations only slightly.

4.2. Effect of the sample size

In experimental investigations, the scatter in the effctive stiff-
ness and transport properties in general strongly depends on the
specimen size. Larger scatter is determined when using smaller
specimens. The reason is the self-averaging effect of the material.
In a similar manner, the effective properties determined by the
numerical scheme proposed in the present study depend on the
size of the testing volume elements employed. A simple method
to quantify the expected effect based on the available raw data
base in Fig. 4 consists in a re-combination of two or more raw data
points based on testing volume elements with the same nominal
microstructural properties. For these ensembles, the effective
material constants are determined as the averages of the results
from the individual testing volume element analyses. Subse-
quently, the stochastic evaluation is performed based on the
ensemble averages instead of the individual results. By means of
this procedure, the scatter in the effective constants to be expected
when using testing volume elements with more than 20 cells can
be estimated.

Based on this idea, a stochastic evaluation of the effective mate-
rial properties is performed using samples consisting of a single
testing volume element as well as ensembles of up to 16 testing
volume elements and thus samples containing 20 up to 320 cells.
In Fig. 10, the results for the standard deviation of the normalized
elastic constants E=E0 and �m=m0, the normalized yield stress �sy=sy0

and the normalized thermal conductivity �k=k0 are presented in
dependence on the number nc of cells in the ensembles. For all four
effective material constants investigated, increasing sample sizes
result in decreasing uncertainties characterized by a decreasing
standard deviation r of the effective properties.

For comparison, the standard deviations of the normalized
effective Young’s modulus as well as the normalized yield stress
derived from the experimental data presented by Ramamurty
and Paul (2004) are added. In this context, the number of pores
in the tested specimens is estimated from the average pore size.
Again, the result for the elastic modulus does not incorporate the
correction procedure for the specimen length suggested in Rama-
murty and Paul’s original contribution (Ramamurty and Paul,
2004). The scatter predicted by the present numerical scheme for
the effective Young’s modulus is found in a good agreement with
the experimental results on an aluminum foam with a scatter in
the relative density of approximately rð�qÞ ¼ 0:005. For the scatter
to be expected in the effective yield stress, a comparison of the
experimental and numerical data is difficult since Ramamurty
and Paul (2004) define the yield stress as the peak stress preceding
the stress plateau in uniaxial compression whereas a definition in
terms of the 0.2% offset stress is used in the present investigation.
Since the plateau stress and quantities related to it are expected
not to be affected by the scatter in the elastic properties, a less dis-
tinct scatter has to be expected for the yield stress determined in
terms of the plateau stress compared to the yield stress defined
as the stress at a 0.2% offset limit close to the elastic range. Since
this quantity is expected to be affected by the elastic properties
and thus the scatter therein, both yield stress values might not
be directly comparable, especially in terms of their uncertainty.

4.3. Effect of the cell size distribution

In all previous parametric studies, a similar cell size distribution
has been assumed. The size distribution is of the logarithmic nor-
mal type (12) with an uncertain shape parameter rcsz. The expec-
tation value and the standard deviation of the uncertain shape
parameter were assumed to be E(rcsz) = 0.3 and r(rcsz) = 0.1
respectively, both normalized with the volume of the testing vol-
ume elements.

In a final investigation, the effect of the uncertainty in the local
cell size distribution on the expectation value and the standard
deviation of the effective material properties E; �m; �sy and �k is stud-
ied. The results are presented in Fig. 11, where three different
expectation values E(rcsz) of the shape parameter for the cell size
distribution are considered. The lowest considered expectation va-
lue of E(rcsz) = 0.2 is related to a slightly disordered microstructure
whereas the intermediate value of E(rcsz) = 0.3 and the highest va-
lue of E(rcsz) = 0.4 characterize moderatly and distinctively disor-
dered microstructures respectively. In all three cases, the
standard deviation r(rcsz) is varied over the intervall [0.01,0.2]
covering the range from certain to highly uncertain shape param-
eters rcsz of the local cell size distribution (see Fig. 3). The expec-
tation value of the relative density and the corresponding
standard deviation are kept constant at Eð�qÞ ¼ 0:15 and
rð�qÞ ¼ 0:01 respectively.

With respect to the expectation values
EðE=E0Þ; Eð�m=m0Þ; Eð�sy=sy0Þ and Eð�k=k0Þ of the effective material
properties, no significant effect of an uncertainty in the cell size
distribution is observed. Equivalent results for all four effective
properties are obtained irrespectively of the expectation value
E(rcsz) of the shape parameter of the cell size distribution and its
standard deviation r(rcsz). Due to the limited numerical data base,
some slight differences between the curves for the three different
expectation values E(rcsz) develop at low standard deviations
r(rcsz). In these cases, only narrow scatter bands of the shape
parameter rcsz of the cell size distribution are assumed. Hence,
the results for the effective properties depend solely on the results
based on the testing volume element analyses with a shape param-
eter rcsz of the cell size distribution equal to the respective as-
sumed expectation value E(rcsz). With increasing r(rcsz) and thus
an increasing scatter band width for the parameter rcsz, an increas-
ing number of testing volume element analyses affects the statisti-
cal evaluation with non-negligible individual probablity p. Hence,
smoother probability distributions are obtained for larger r(rcsz)
resulting in more stable results for the expectation values of the
effective properties.

Qualitatively similar results are obtained for the effect of the
standard deviation r(rcsz) of the shape parameter rcsz of the cell
size distribution on the standard deviation of the effective material



(a) (b)

(c) (d)
Fig. 10. Effect of the testing volume element size.

(a) (b)

(c) (d)

Fig. 11. Effect of the cell size distribution.
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properties. Whereas no significant effect is observed for
r(rcsz) > 0.1, numerically unstable results are obtained for lower
r(rcsz) due to the statistically insufficient numerical data base in
this range. The insufficiency is caused by the limitation of the sto-
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chastic evaluation to the testing volume element analyses based on
cell size distributions with a shape parameter rcsz equal to the as-
sumed expectation value E(rcsz).

5. Conclusion

The objective of the present study is the probabilistic numerical
analysis of the effective properties of three-dimensional porous
solids. For this purpose, a stochastic homogenization developed
previously for the analysis of two-dimensional honeycombs is ex-
tended to the three-dimensional case. The procedure is based on
the multiple homogenization of testing volume elements with pre-
scribed values of the uncertain constitutive parameters defining
the microstructure. The results of the testing volume element anal-
yses are weighted with the individual probabilities for occurrence
of the underlying microstructural case. As basic uncertain micro-
structural constitutive properties, the local relative density, the cell
size distribution, the spatial orientation of the testing volume ele-
ment and the microstructural geometry are considered. The scatter
and uncertainty of these properties is quantified in terms of their
probability distributions.

In the present study, logarithmic normal distributions are as-
sumed for the relative density and the shape parameter of the cell
size distribution whereas homogeneous distributions are assumed
for the orientation of the testing volume elements in space as well
as for the topology of the randomly generated microstructures. For
the homogenization itself, a strain energy based approach is uti-
lized, assuming the mesoscopic equivalence of the microstructure
and the quasi-homogeneous effective medium, if equal average
strain energy density states are obtained provided that the testing
volume elements for the microstructure and the effective medium
are deformed in deformation states, which are equal in a volume
average sense.

In a number of parametric studies on an aluminum foam, the lo-
cal relative density proves to be the most important stochastic var-
iable. The microstructural scatter caused by the uncertainty of the
local relative density does not only affect the scatter in the effec-
tive properties but may also affect the median or expectation val-
ues respectively. For the local cell size distribution, significant
effects are observed neither in the scatter of the effective proper-
ties nor in their expectation values. Nevertheless, it has to be con-
sidered that for real porous materials, especially for foams, the cell
size might be correlated with the local relative density. This corre-
lation is caused by the fact that for low density solid foams the cell
wall thickness for small and large cells is in many cases similar.
Hence, zones with small pores feature a larger density of cell walls
and thus a larger local material density than areas with large pores.

The parametric studies reveal that the stochastic homogeniza-
tion scheme proposed in the present study enables a numerically
efficient prediction of the uncertainty in the effective properties
from the known uncertainty in the microstructural properties of
the material. Nevertheless, care has to be taken in order to assure
the use of a sufficiently large numerical data base, since the signif-
icant part of the total numerical data base might shrink signifi-
cantly in the case of narrow scatter band widths of the uncertain
variables. Therefore, a sufficiently fine resolution of the ranges
for the basic uncertain microstructural properties is necessary in
order to obtain convergent results based on a statistically sufficient
numerical data base.
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