
ARTICLE IN PRESS 

JID: SAS [m5G; August 27, 2019;23:37 ] 

International Journal of Solids and Structures xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Vibration isolation of few-layer graphene sheets 

Lu Lu 

a , b , C.Q. Ru 

b , Xingming Guo 

a , ∗

a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 

20 0 072, People’s Republic of China 
b Department of Mechanical Engineering, University of Alberta, Edmonton T6G 2G8, Canada 

a r t i c l e i n f o 

Article history: 

Received 17 July 2018 

Revised 28 February 2019 

Accepted 21 August 2019 

Available online xxx 

Keywords: 

Few-layer graphene 

Multi-layer graphene 

Metamaterial 

Negative mass 

Bandgap 

Vibration isolation 

a b s t r a c t 

This work shows that a few-layer graphene with two highly-tensioned outermost layers exhibits nega- 

tive effective mass and behaves like an elastic metamaterial. Actually, our simulations based on simple 

elastic membrane model confirm the existence of a bandgap in terahertz range within which a tensioned 

few-layer graphene exhibits remarkable vibration isolation: forced vibration will be highly restricted to 

a narrow region around the site of the applied excitation while all other parts of the graphene remain 

essentially static. The values of terahertz bandgap frequencies are determined by the van der Waals inter- 

action coefficient between adjacent layers, while the width of the bandgap is determined by the number 

of inner layers. This research may provide new perspectives for designing and analyzing graphene-based 

metamaterials and nano-resonators with potential applications in high-frequency vibration controlling. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Acoustic/elastic metamaterials are artificial materials character-

zed by negative effective mass and/or negative effective modu-

us, which have received great attention in last two decades due

o their unusual dynamic properties in manipulating elastic waves

nd vibration ( Lee and Wright, 2016; Ma and Sheng, 2016 ). Acous-

ic/elastic metamaterials exhibiting negative effective properties

re commonly attributed to frequency bandgap generated by lo-

al resonance of artificially designed structural units, within which

lastic vibration and waves are largely suppressed ( Liu et al., 20 0 0,

005; Milton and Willis, 2007; Yao et al., 2008; Huang et al.,

009 ). Based on this concept, various acoustic/elastic metamate-

ials with negative effective properties have been proposed, with

otential application to such as vibration isolation, wave atten-

ation and energy harvesting ( Wang, 2014; Li and Wang, 2016;

udich and Li, 2017; Jiang and He, 2017; Oh et al., 2017; Chen

t al., 2017; Beli et al., 2018; Chang et al., 2018 ). To mention a

ew, Yang et al. (2008) fabricated a membrane-type metamate-

ial which demonstrates negative dynamic mass within the fre-

uency range 20 0–30 0 Hz, with the basic unit composed of a

ircular elastic membrane with a small weight attached to the

enter. Zhu et al. (2014) designed a chiral-lattice-based elastic

etamaterial beam with multiple embedded resonators to real-

ze broadband vibration suppression. Li et al. (2017) attached a
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quare array of free-standing cantilevers to a primary structural

rame to achieve a metamaterial for simultaneous vibration isola-

ion and energy harvesting. By using a generalized Maxwell model,

ewinska et al. (2017) investigated the attenuation performance

f a locally resonant acoustic metamaterial consisting of multi-

oated coaxial inclusions of rubber and tungsten embedded in

poxy. Clearly, one real challenge in the design of acoustic/elastic

etamaterial is how to achieve the often complicated artificial

icrostructure at small scales for the desirable negative effective

roperties and dynamic behaviors. 

In spite of numerous works on artificially designed elastic

etamaterials, graphene-based elastic metamaterials with negative

ffective mass remain unexplored. Graphene, as a single atom thick

wo-dimensional carbon material, possesses many extraordinary 

echanical and electronic properties ( Lee et al., 2008; Castro Neto

t al., 2009 ), and holds great potential in nanotechnology. In par-

icular, mechanical vibration of few- or multi-layer graphene sheets

as been an active topic of current interest and been extensively

tudied experimentally or theoretically in the past 15 years ( Bunch

t al., 2007; Frank et al., 2007; Castellanos-Gomez et al., 2015;

han et al., 2017 ). For instance, Garcia-Sanchez et al. (2008) de-

ected mechanical vibration and measured resonance frequencies

f a multi-layer graphene-based nanoelectromechanical systems 

sing scanning probe microscopy. With the help of an atomic force

icroscope, Poot and van der Zant (2008) measured the mechan-

cal properties of suspended few-layer graphene membranes and

stimated their fundamental resonance frequencies. More recently,

ecause multi-layer graphene sheets grown by available techniques
 of few-layer graphene sheets, International Journal of Solids and 
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are usually incommensurate with vanishingly low interlayer in-

plane coupling ( Dienwiebel et al., 2004; Xu et al., 2012; Koshino,

2015; Han et al., 2016 ), the present authors ( Lu et al., 2017 ) de-

veloped a simplified 3-beam model to study mechanical vibration

of multi-layer graphene sheets whose two outermost layers are

highly tensioned while all inner layers are tension-free or less-

tensioned. However, all of the aforementioned works are limited

to classical vibrational behavior of few- or multi-layer graphene

sheets and have not revealed any metamaterial-like vibrational be-

havior such as vibration isolation. 

Motivated by an idea that the interlayer degrees of freedom

of a multi-layer graphene sheet could offer a locally-resonant mi-

crostructure, the present work aims to study metamaterial-like vi-

brational behavior of multi-layer graphene sheets. Here, for sim-

plicity, we shall focus on few-layer graphene sheets (of typi-

cally, say 3–6 layers) already fabricated in recent literature ( Hao

et al., 2010; Lui et al., 2012; Kumar et al., 2013 ) whose two

outermost layers are highly tensioned while all inner layers are

tension-free or less-tensioned. The present paper shows that few-

layer graphene sheets with highly tensioned two outermost lay-

ers exhibit remarkable metamaterial-like elastic dynamic behavior

within a certain frequency range. In particular, it will be shown

that the order of magnitude of bandgap frequencies of a FLGS is

determined by the van der Walls interaction coefficient between

adjacent layers, and the width of the bandgap is determined by the

number of inner layers. Here it should be mentioned that in tera-

hertz physics, forced vibration or wave propagation of nanoscale

device or structures can be stimulated by external periodic stim-

ulus at terahertz frequencies which are much higher than their

own natural frequencies, such as plasma oscillation ( Wang et al.,

2014 ), optical pulse ( Jnawali et al., 2013 ), infrared ( Ren et al., 2012 )

and radiation ( Svintsov et al., 2014 ). Therefore, it is of potential in-

terest to investigate terahertz forced vibration of graphene-based

nanoscale devices and structures even when their own natural fre-

quencies are much below terahertz. 

2. Elastic membrane model for few-layer graphene sheets 

The present work studies metamaterial-like vibration of multi-

layer graphene sheet (MLGS) with two highly-tensioned outmost

layers and tension-free or less-tensioned inner layers which of-

fer a possible locally-resonant microstructure. Since MLGSs grown

by available techniques are usually incommensurate with ultralow

interlayer friction (typically, the interlayer friction coefficient for

incommensurate multi-layer graphene is on the order of 0.001)

( Dienwiebel et al., 2004; Xu et al., 2012; Koshino, 2015; Han et al.,

2016 ), tension forces applied directly to two outermost layers of a

MLGS could not be transferred into all inner layers. For this rea-

son, it is practically realistic to assume that all inner layers of a

tensioned MLGS are much less-tensioned or nearly tension-free.

Therefore, in this work, we shall consider a tensioned few-layer

graphene sheet (FLGS) of length L whose two outermost layers are

highly tensioned while all inner layers are tension-free or less-

tensioned, as shown in Fig. 1 . Throughout the paper, it is assumed

that the two outermost (top and bottom) singlelayers are highly

tensioned under the same tension force T (per unit width), and

each of all inner singlelayers is tension-free or subjected to a lower

tension force δT (0 ≤ δ ≤ 1). Because the bending rigidity of a sin-

glelayer or few-layer graphene sheet is usually neglected when it

is highly tensioned by a significant tension force (say, > 0.1 N/m)

( Bunch et al., 2007; Frank et al., 2007; Garcia-Sanchez et al., 2008;

Castellanos-Gomez et al., 2015 ), the bending rigidity of the FLGS

is neglected in the present paper. In other words, each of all sin-

glelayer graphene sheets of the FLGS is treated as an elastic mem-

brane with zero bending rigidity. 
Please cite this article as: L. Lu, C.Q. Ru and X. Guo, Vibration isolation
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To study flexure vibration of a tensioned FLGS, the FLGS is

odeled as a simplified 3-membrane system ( Lu et al., 2017 ), as

hown in Fig. 1 , in which the two outermost (top and bottom) lay-

rs are modeled as two membranes, and all inner layers (which

re all tension-free or equally tensioned by a lower tension force

T , 0 ≤ δ ≤ 1) together are modeled as another single membrane.

he three membranes are coupled through van der Waals inter-

ction between any two adjacent membranes. Here it should be

tated that the 1D elastic membrane models have been widely

sed in various related papers on vibration of graphene sheets,

ee Atalaya et al., 2008; Chen et al. (2009), van der Zande et al.

2010) . Thus, for flexural vibration of the FLGS characterized by

he in-phase condition w 1 = w 3 of the top and bottom layers, the

overning equations of the FLGS can be written as (see Eq. (8) of

u et al. (2017) ) 

 

− T ∂ 
2 w 1 

∂ x 2 
+ ρh 

∂ 2 w 1 

∂ t 2 
= c( w 2 − w 1 ) 

− δmT ∂ 
2 w 2 

∂ x 2 
+ mρh 

∂ 2 w 2 

∂ t 2 
= 2 c( w 1 − w 2 ) 

(1)

here w 1 and w 2 are the transverse deflection of the top (bottom)

ayer and the inner layers, respectively, t is time, ρ = 2200 kg/m 

3 

s the mass density of graphene, m is the number of inner layers,

 = 0.34 nm is the (nominal) thickness of singlelayer graphene, and

 = 99 GPa/nm is the van der Waals interaction coefficient per unit

rea between two adjacent membranes ( Wang et al., 2003, 2005 ). 

The accuracy and efficiency of the simplified 3-membrane

odel (1) for a FLGS are justified by comparing its predictions with

hose given by an accurate multi-membrane model (presented in

ppendix A ). Our comparison (shown in Appendix B ) confirms that

he simplified 3-membrane model (1) exactly predicts vibration

ehavior of a 3- or 4-layer graphene sheet (with m = 1 or 2), while

t gives reasonably accurate results for a 5- or 6- layer graphene

heet (with m = 3 or 4) of moderately larger length (e.g. L / h > 100).

n all numerical examples shown below, the simplified 3-membane

odel (1) will be used to study flexural vibration of a tensioned

LGS (with m = 1 or 2) as an elastic metamaterial. 

.1. Free vibration of a FLGS 

For free vibration of a FLGS with fixed ends and zero bending

igidity, the deflections w 1 and w 2 take the following form 

w 1 (x, t) 
w 2 (x, t) 

}
= sin ωt 

∞ ∑ 

k =1 

{
A k 

B k 

}
sin 

kπx 

L 
(2)

ith constants A k and B k ( k = 1, 2, 3,…). Substituting Eq. (2) into

q. (1) , we have 

 

T 
(

kπ
L 

)2 − ρh ω 

2 + c −c 

−2 c δmT 
(

kπ
L 

)2 − mρh ω 

2 + 2 c 

] {
A k 

B k 

}
= 

{
0 

0 

}
(3)

By setting the determinant of the coefficient matrix of

q. (3) zero, all natural frequencies can be determined from the

ollowing eigen-equation. 

 

4 −
[ 

(δ + 1) T 

ρh 

(
kπ

L 

)2 

+ 

(m + 2) c 

mρh 

] 

ω 

2 + 

δT 2 

ρ2 h 

2 

(
kπ

L 

)4 

+ 

(δm + 2) T c 

m ρ2 h 

2 

(
kπ

L 

)2 

= 0 (4)
 of few-layer graphene sheets, International Journal of Solids and 
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Fig. 1. Schematic of a tensioned few-layer graphene sheet modeled as a simplified 3-membrane system (The top and bottom layers are depicted in solid lines, and the m 

inner layers are depicted in dash lines). 

Fig. 2. Variation of natural frequencies of a tensioned 3-layer graphene sheet ( m = 1) with respect to the mode number k . (a) Tension-free inner layer ( δ = 0). (b) Less- 

tensioned inner layer ( δ = 0.2). 
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Fig. 2 shows the dependence of natural frequency f ( = ω/2 π ) on

he mode number k of a 3-layer graphene sheet ( m = 1) for δ = 0

nd 0.2, respectively. The parameters L = 20 h and T = 5 N/m (cor-

esponds to a tensile strain 1.5%, which is much smaller than the

reaking strain 10–20% of graphene ( Lee et al., 2008; Rasool et al.,

013 )) are selected to demonstrate numerical results. It is seen

rom Fig. 2 that the natural frequencies are divided into a lower

roup and a higher group, and the lower group corresponds to

ssentially in-phase vibration of all layers while the higher group

orresponds to essentially out-of-phase vibration between the out-

rmost layers and the inner layer. In particular, for the case of

ension-free inner layer with δ = 0, a bandgap exists between the

ower group of natural frequencies and the higher group of natural

requencies, within which no natural frequency exists. When δ > 0

e.g. δ = 0.2), however, the lower groups of natural frequencies ap-

roaches to infinity with increasing mode number k , which means

hat no bandgap exists between the lower group and the higher

roup of natural frequencies when δ > 0. Therefore, we shall focus

n the case δ = 0 to define effective mass density and identify the

ssociated bandgap. 

.2. Effective mass density of a FLGS 

For a tensioned FLGS of tension-free inner layers ( δ = 0), by

liminating w 2 from the two coupled Eq. (1) , a single equation for

he deflection of the outermost layer w 1 is obtained in the stan-

ard form of “wave equation” for a tensioned string 
Please cite this article as: L. Lu, C.Q. Ru and X. Guo, Vibration isolation
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− 2 T 

(
1 + 

mρh 

2 c 

∂ 2 

∂ t 2 

)
∂ 2 w 1 

∂ x 2 

+ (m + 2) ρh 

[
1 + 

mρh 

(2 + m ) c 

∂ 2 

∂ t 2 

]
∂ 2 w 1 

∂ t 2 
= 0 (5) 

Consider a periodic harmonic motion w 1 ( x, t ) = f ( x )exp( i ωt ),

here f ( x ) is the mode function, i is the imaginary unit, and ω
enotes the circular frequency. Substituting this form of w 1 into

q. (5) , the governing equation for the deflection w 1 of a FLGS with

= 0 can be written as 

2 T 

(
1 − mρh ω 

2 

2 c 

)
∂ 2 w 1 

∂ x 2 
+ (m + 2) ρh 

[
1 − mρh ω 

2 

(2 + m ) c 

]
∂ 2 w 1 

∂ t 2 
= 0 

(6) 

In Eq. (6) , 2 T is the total tension force (per unit width) ap-

lied to the FLGS, and ( m + 2) ρh is the total mass density (per unit

idth) of the FLGS. Thus, effective mass density of the FLGS with

ension-free inner layers ( δ = 0) is given by 

e f f = 

1 − mρh ω 2 

(2+ m ) c 

1 − mρh ω 2 

2 c 

ρ (7) 

Thus, the effective mass density become negative when the fre-

uency is inside the following bandgap 

 low 

= 

√ 

2 c 

mρh 

< ω < 

√ 

(m + 2) c 

mρh 

= 

√ 

1 + 

m 

2 

ω low 

= ω upp (8)
 of few-layer graphene sheets, International Journal of Solids and 
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Fig. 3. Forced vibration mode of a 4-layer graphene sheet with tension-free inner layers ( δ = 0) driven by its vibrating ends under different excitation frequencies ω. (a) ω 

is below the bandgap ( ω low , ω upp ). (b) ω is within the bandgap ( ω low , ω upp ). (c) ω is above the bandgap ( ω low , ω upp ). 
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It turns out (as shown in Fig. 2 (a)) that the lower edge of

bandgap (8) is the upper limit for all natural frequencies asso-

ciated with essentially in-phase vibration of all layers, and the

upper edge of the bandgap (8) is the lower limit for all nat-

ural frequencies associated with essentially out-of-phase vibra-

tion between the outermost layers and the inner layers. In addi-

tion, it is seen that the width of the bandgap (8) is determined

by the number of inner layers m , and the order of magnitude

of bandgap frequencies of a FLGS is determined by the van der

Walls interaction coefficient c between adjacent layers and falls

in the terahertz range. In particular, the terahertz bandgap is in-

dependent of the geometry size of the FLGS. For example, the

frequency bandgap is (2.59 THz, 3.17 THz) for a 3-layer graphene

sheet ( m = 1), and (1.83 THz, 2.59 THz) for a 4-layer graphene sheet

( m = 2). It should be stated that terahertz vibration and wave

propagation in nanomaterials and devices have been a major re-

search topic of current interest ( Juvé et al., 2010; Liu et al., 2013;

Rahm et al., 2013; Al-Naib et al., 2015 ). It is expected that the

present work can be helpful in design and analysis of terahertz

metamaterials. 
m

Please cite this article as: L. Lu, C.Q. Ru and X. Guo, Vibration isolation
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In what follows, we shall show that a FLGS with δ = 0 does ex-

ibit remarkable metamaterial behaviors within the bandgap (8) ,

nd even a FLGS with δ > 0 can exhibit metamaterial-like behav-

ors in spite of the non-existence of a bandgap when δ > 0. 

. Forced vibration of a few-layer graphene sheet 

Vibration isolation is among the most important phenomena

f elastic/acoustic metamaterials with potential application ( Zhu

t al., 2014; Jiang and He, 2017; Oh et al., 2017 ). In this section,

wo typical cases of forced vibration are considered to demonstrate

emarkable vibration isolation of a tensioned FLGS as an elastic

etamaterial. As stated above, forced vibration of nanoscale de-

ice or structures can be stimulated by external periodic stimulus

t terahertz frequencies which can be much higher than their own

atural frequencies. Therefore, it is of potential interest to inves-

igate terahertz forced vibration of graphene-based nanoscale de-

ices and structures even when their own natural frequencies are

uch below terahertz. 
 of few-layer graphene sheets, International Journal of Solids and 
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Fig. 4. Forced vibration mode of a 4-layer graphene sheet with tensioned inner layers driven by its vibrating ends under excitation frequency ω = 0.99 ω upp . (a) δ = 0.1. (b) 

δ = 0.5. (c) δ = 1. 

Fig. 5. Forced vibration mode of a 4-layer graphene sheet with tension-free inner 

layers ( δ = 0) and different length driven by its vibrating ends for ω = 1.3 ω low . 
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.1. Forced vibration driven by vibrating ends 

First, forced vibration of a tensioned FLGS driven by its pe-

iodically vibrating foundation which causes periodical vibration

f its two ends will be studied. In this case, let us assume that

 1 = w 2 = αsin ωt at x = 0 and x = L , where α is the amplitude of

he vibrating ends. The stimulated steady state forced vibration of

he tensioned FLGS is of the form: 

w 1 (x, t) 
w 2 (x, t) 

}
= α sin ωt 

( 

1 + 

∞ ∑ 

k =1 

{
a k 
b k 

}
sin 

kπx 

L 

) 

(9) 

n which a k and b k ( k = 1, 2, 3,…) are some real constants to be

etermined. Substituting w 1 and w 2 into Eq. (1) , and using the

ourier series expansion 

 = 

∞ ∑ 

k =1 

2 [ 1 − cos (kπ) ] 

kπ
sin 

kπx 

L 
, 0 < x < L (10)

One can obtain that 
 

T 
(

kπ
L 

)2 − ρh ω 

2 + c −c 

−2 c δmT 
(

kπ
L 

)2 − mρh ω 

2 +2 c 

] {
a k 
b k 

}

 of few-layer graphene sheets, International Journal of Solids and 
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Fig. 6. Forced vibration mode of a 4-layer graphene sheet with tension-free inner layers ( δ = 0) driven by a point load under different excitation frequencies ω for Q 0 = 5 N/m. 

(a) ω is below the bandgap ( ω low , ω upp ). (b) ω is within the bandgap ( ω low , ω upp ). (c) ω is above the bandgap ( ω low , ω upp ). 
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= 

{
1 

m 

}
ρh ω 

2 2 [ 1 − cos (kπ) ] 

kπ
(11)

From Eq. (11) , the coefficients a k ( k = 1, 2, 3,…) of the outermost

layers can be determined as 

a k = 

ρh ω 

2 

[ 
δmT 

(
kπ
L 

)2 − mρh ω 

2 + (m + 2) c 
] 

2 [ 1 −cos (kπ) ] 
kπ[ 

T 
(

kπ
L 

)2 − ρh ω 

2 + c 

] [ 
δmT 

(
kπ
L 

)2 − mρh ω 

2 + 2 c 

] 
− 2 c 2 

(12)

Inserting the coefficients a k into Eq. (9) , the forced vibration of

a tensioned FLGS driven by its periodically vibrating ends can be

evaluated, as detailed in Section 4.1 . 

3.2. Forced vibration driven by an external periodic force 

Next, forced vibration of a tensioned FLGS subjected to an ex-

ternal periodic force will be investigated. Consider an external pe-

riodic force q ( x,t ) = q ( x )sin ωt (per unit width) applied on the two

outermost (top and bottom) layers of the FLGS. Thus, the governing
Please cite this article as: L. Lu, C.Q. Ru and X. Guo, Vibration isolation
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q. (1) for the tensioned FLGS can be revised as 
 

− T ∂ 
2 w 1 

∂ x 2 
+ ρh 

∂ 2 w 1 

∂ t 2 
= c( w 2 − w 1 ) + q (x ) sin ωt 

− δmT ∂ 
2 w 2 

∂ x 2 
+ mρh 

∂ 2 w 2 

∂ t 2 
= 2 c( w 1 − w 2 ) 

(13)

The external force q ( x ) can always be expanded as 

 (x ) = 

∞ ∑ 

k =1 

Q k sin 

kπx 

L 
, (0 < x < L ) (14)

here Q k is the Fourier coefficient determined by the given force

istribution q ( x ). For example, for a point load Q 0 applied at the

idpoint x = L /2, we have 

 k = 

2 

L 
Q 0 sin 

kπ

2 

, (k = 1 , 2 , 3 , . . . ) (15)

The stimulated steady state forced vibration of the tensioned

LGS is of the form given by Eq. (2) . Substituting Eqs. (2) and

14) into Eq. (13) yields 

 

T 
(

kπ
L 

)2 − ρh ω 

2 + c −c 

−2 c δmT 
(

kπ
L 

)2 − mρh ω 

2 + 2 c 

] {
A k 

B k 

}
= 

{
Q k 

0 

}

(16)
 of few-layer graphene sheets, International Journal of Solids and 
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Fig. 7. Forced vibration mode of a 4-layer graphene sheet with tensioned inner layers driven by a point load applied at its midpoint under an excitation frequency 

ω = 0.99 ω upp for Q 0 = 2 N/m. (a) δ = 0.1. (b) δ = 0.5. (c) δ = 1. 
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From Eq. (16) , the Fourier coefficient A k of the outermost layers

an be obtained as 

 k = 

[ 
δmT 

(
kπ
L 

)2 − mρh ω 

2 + 2 c 

] 
Q k [ 

T 
(

kπ
L 

)2 − ρh ω 

2 + c 

] [ 
δmT 

(
kπ
L 

)2 − mρh ω 

2 + 2 c 

] 
− 2 c 2 

(17) 

Substituting the coefficients A k into Eq. (2) , the forced vibration

f a tensioned FLGS driven by an external force (such as a point

orce discussed here) can be evaluated, as detailed in Section 4.2 . 

. Results and discussion 

To demonstrate remarkable vibration isolation of a tensioned

LGS as an elastic metamaterial, a tensioned 4-layer graphene

heet ( m = 2) is considered. The bandgap ( ω low 

, ω upp ) of a 4-layer

raphene sheet is defined by the frequency bandgap (1.83 THz,

.59 THz) and ω upp = 1.41 ω low 

. Unless otherwise stated, we have

 = 20 h and T = 10 N/m (corresponds to a tensile strain 2.9%, which

s much smaller than the breaking strain 10–20% of graphene ( Lee

t al., 2008; Rasool et al., 2013 )). 
Please cite this article as: L. Lu, C.Q. Ru and X. Guo, Vibration isolation
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.1. Vibration isolation of a few-layer graphene driven by vibrating 

nds 

In Fig. 3 , forced vibrational modes of a 4-layer graphene sheet

 m = 2) with tension-free inner layers ( δ = 0) driven by its two vi-

rating ends are plotted. For the purpose of comparison, let us

onsider three cases: (a) excitation frequency below the bandgap,

b) excitation frequency within the bandgap, and (c) excitation fre-

uency above the bandgap. It is seen from Fig. 3 (b) that when the

xcitation frequency is within the bandgap, the forced vibrational

ode is highly restricted to the two vibrating ends but vanishingly

mall in all other parts of the graphene sheet, in sharp contrast to

he modes of excitation frequencies below or above the bandgap

see Fig. 3 (a) and (c)) in which the forced vibrational mode always

preads into the entire graphene sheet. 

Forced vibrational mode is shown in Fig. 4 for a 4-layer

raphene sheet with tensioned inner layers ( δ > 0) driven by two

ibrating ends with an excitation frequency close to the upper

dge frequency of the bandgap (e.g. ω = 0.99 ω upp ). It can be seen

rom Fig. 4 (a) that when the inner layers of the graphene sheet

re less-tensioned (e.g. δ = 0.1), although the forced vibrational

ode is not fully restricted to the two ends, its amplitude in the
 of few-layer graphene sheets, International Journal of Solids and 
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Fig. 8. Forced vibration mode of a 4-layer graphene sheet with tension-free inner 

layers ( δ = 0) and with different length driven by a point load for Q 0 = 5 N/m and 

ω = 1.3 ω low . 
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middle part of the graphene sheet is still much smaller than the

amplitude of the two vibrating ends. This indicates that a few-

layer graphene sheet with less-tensioned inner layers still exhibits

similar vibration isolation behavior when the excitation frequency

is close to the upper edge frequency of the bandgap (8) deter-

mined by tension-free inner layers with δ = 0. However, such vi-

bration isolation does disappear when the inner layer are equally-

tensioned as the two outermost layers, as shown in Fig. 4 (c). 

To explore the dependence of the width of the localized mode

on the length of graphene sheet, the forced vibrational modes of a

4-layer graphene sheet with tension-free inner layers driven by its

vibrating ends are depicted in Fig. 5 for various length of the FLGS.

It is seen from Fig. 5 that, for a given external excitation with exci-

tation frequency within the bandgap, the width of localized vibra-

tional mode for each of the two vibrating ends is about 6 h , inde-

pendent of the length of the 4-layer graphene sheet, which indi-

cates that the width of localized mode is essentially independent

of the length of the graphene sheet. 

4.2. Vibration isolation of a few-layer graphene driven by a point 

load 

What shown in Fig. 6 is forced vibration mode of a 4-layer

graphene sheet with tension-free inner layers driven by a point

load applied at its midpoint. Similar as Fig. 3 , we consider three

cases of excitation frequencies, which are below, within and above

the bandgap, respectively. It can be seen from Fig. 6 (b) that for ex-

citation frequency within the bandgap, the forced vibrational mode

is highly localized near the midpoint where the external force

is applied but vanishingly small in all other parts. In sharp con-

trast, for excitation frequency out of the bandgap (see Fig. 6 (a)

and (c)), the forced vibrational mode always spreads into the en-

tire graphene sheet. Also, it can be seen from Fig. 6 (b) that the

maximum deflection of the tensioned graphene sheet gradually

increases when the excitation frequency changes from the lower

edge frequency to the upper edge frequency of the bandgap. 

In Fig. 7 , forced vibrational mode of a 4-layer graphene sheet

with tensioned inner layers ( δ > 0), driven by a point load applied

at its midpoint, is presented for an excitation frequency approaches

to the upper edge frequency of the bandgap (e.g. ω = 0.99 ω upp ). It

is seen from Fig. 7 (a) that when the inner layers of the graphene

sheet are less-tensioned (e.g. δ = 0.1), the deflection shows a sharp
Please cite this article as: L. Lu, C.Q. Ru and X. Guo, Vibration isolation
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eak around the midpoint and quickly decays to two ends, and

his phenomenon of vibration isolation gradually weakens with in-

reasing tension force of the inner layers (see Fig. 7 (b) and (c)),

hich indicates that vibration isolation essentially remains even

or a FLGS of less-tensioned inner layers when the excitation fre-

uency approaches to the upper edge frequency of the bandgap. 

Fig. 8 plots the effect of length on the forced vibrational mode

f a 4-layer graphene sheet with tension-free inner layers driven

y a point load applied at its midpoint. Similar as the case of Fig. 5 ,

he width of the localized mode around the midpoint is about

0 h for a given external force and excitation frequency within

he bandgap, independent of the length of FLGS. Moreover, the

aximum deflection is also nearly independent of the length of

raphene sheet. 

. Conclusions 

In this work, for the first time in literature, we showed that

 tensioned few-layer graphene sheet exhibits negative effective

ass in the terahertz range and behaves as an elastic metamate-

ial. Our main results include: 

(1) A few-layer graphene sheet with two tensioned outermost

layers and tension-free inner layers exhibits negative effec-

tive mass density within a specific bandgap. 

(2) The order of magnitude of bandgap frequencies is deter-

mined by the van der Walls interaction coefficient between

adjacent layers and falls in the terahertz range, and the

width of the bandgap is determined by the number of in-

ner layers. 

(3) Such a few-layer graphene sheet with two tensioned outer-

most layers and tension-free inner layers exhibits remark-

able vibration isolation, that is, when the external excita-

tion frequency is within the bandgap, forced vibration will

be highly restricted to a narrow region around the site of

the applied excitation while all other parts of the graphene

sheet remain essentially static. 

(4) The phenomenon of vibration isolation remains qualitatively

true even for a few-layer graphene sheets with highly ten-

sioned outmost layers and less-tensioned inner layers. 

It is expected that the results presented in this work can pro-

ide new insights into the design of graphene-based metamaterials

nd nano-resonators with potential application to terahertz vibra-

ion manipulating. 
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ppendix A. An accurate multi-membrane model 

An accurate multi-membrane model for multi-layer graphene

heets (MLGSs) is presented to verify the effectiveness and accu-

acy of the simplified 3-membrane model used in the present pa-

er. Different than the simplified 3-membrane model which treats

ll inner layers together as a single membrane, the accurate multi-

embrane model simulates a ( m + 2)-layer graphene sheet as a

oupled ( m + 2)-membrane system. Thus, the governing equations
 of few-layer graphene sheets, International Journal of Solids and 
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or a ( m + 2)-layer graphene membrane can be written as 

 

 

 

 

 

 

 

 

 

 

 

 

 

− T ∂ 
2 w 1 

∂ x 2 
+ ρh 

∂ 2 w 1 

∂ t 2 
= c( w 2 − w 1 ) 

− δT ∂ 
2 w 2 

∂ x 2 
+ ρh 

∂ 2 w 2 

∂ t 2 
= c( w 3 − w 2 ) − c( w 2 − w 1 ) 

· · · · · · · · ·
− δT ∂ 

2 w m +1 

∂ x 2 
+ ρh 

∂ 2 w m +1 

∂ t 2 
= c( w m +2 − w m +1 ) − c( w m +1 − w m 

) 

− T ∂ 
2 w m +2 

∂ x 2 
+ ρh 

∂ 2 w m +2 

∂ t 2 
= −c( w m +2 − w m +1 ) 

(A.1) 

here w 1 , w 2 ,…, w m + 1 , w m + 2 are the transverse deflection of first

ayer, second layer,…, ( m + 1)th layer and ( m + 2)th layer, respec-

ively. Using a substitution method, Eq. (A.1) can be rewritten into

 single equation for the deflection w 1 of the top layer, and thus

he effective mass density can be defined and discussed when

= 0. Here, let us consider a tensioned few-layer graphene sheet

FLGS) with total 3 to 6 layers. 

It can be verified that vibration modes of a FLGS, with to-

al ( m + 2) layers, can be classified into two classes: “bending

odes” characterized by the in-phase condition “w 1 = w m + 2 ” of

he two outermost layers, and “sausage-modes” characterized by

he anti-phase condition “w 1 = −w m + 2 ” of the two outermost lay-

rs. Since the present paper focuses on flexural vibration, we shall

nly consider vibration modes characterized by the in-phase con-

ition “w 1 = w m + 2 ” of the two outermost layers. For a 3- or 4-

ayer graphene sheet ( m = 1 or 2), it can be easily verified that Eq.

A.1) with the in-phase condition w 1 = w 3 of the two outermost

ayers will be exactly reduced to the simplified 3-membrane model

1) . Therefore, in what follows, let us discuss a 5-layer ( m = 3) and

-layer ( m = 4) graphene sheet, respectively. 

ppendix A.1. 5-membrane model 

For a 5-layer graphene sheet, it can be easily verified that the

n-phase condition “w 1 = w 5 ” of the two outermost layers leads to

 2 = w 4 . Thus, Eq. (A.1) is reduced to 3 equations for ( w 1 , w 2 , w 3 )

s follows 
 

 

 

 

 

−T ∂ 
2 w 1 

∂ x 2 
+ ρh 

∂ 2 w 1 

∂ t 2 
= c( w 2 − w 1 ) 

−δT ∂ 
2 w 2 

∂ x 2 
+ ρh 

∂ 2 w 2 

∂ t 2 
= c( w 3 − w 2 ) − c( w 2 − w 1 ) 

−δT ∂ 
2 w 3 

∂ x 2 
+ ρh 

∂ 2 w 3 

∂ t 2 
= 2 c( w 2 − w 3 ) 

(A.2) 

Since the effective mass density can be defined only when

= 0, let us consider the case δ = 0. When δ = 0, eliminating w 2 

nd w 3 , the governing equation for w 1 can be obtained as 

− 2 T 

(
1 + 

2 ρh 

c 

∂ 2 

∂ t 2 
+ 

ρ2 h 

2 

2 c 2 
∂ 4 

∂ t 4 

)
∂ 2 w 1 

∂ x 2 

+ 5 ρh 

(
1 + 

ρh 

c 

∂ 2 

∂ t 2 
+ 

ρ2 h 

2 

5 c 2 
∂ 4 

∂ t 4 

)
∂ 2 w 1 

∂ t 2 
= 0 (A.3) 

Substituting w 1 ( x, t ) = f ( x )exp( i ωt ) into Eq. (A.3) , the effective

ass density for a 5-layer graphene sheet with highly tensioned

utmost layer but tension-free inner layers ( δ = 0) can be written

s 

e f f = 

1 − ρh ω 2 

c 
+ 

ρ2 h 2 ω 4 

5 c 2 

1 − 2 ρh ω 2 

c 
+ 

ρ2 h 2 ω 4 

2 c 2 

ρ (A.4) 

Now let us discuss forced vibration for general case with δ ≥ 0.

irst, for forced vibration driven by periodically vibrating ends, the

eflections take the forms as 
 

w 1 

w 2 

w 3 

} 

= α sin ωt 

( 

1 + 

∞ ∑ 

k =1 

{ 

a k 
b k 
c k 

} 

sin 

kπx 

L 

) 

(A.5) 
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Substituting the deflections w 1 , w 2 and w 3 into Eq. (A.2) and

sing the Fourier series expansion Eq. (7) yield 

 

P −c 0 

−c Q −c 
0 −2 c Q 

] { 

a k 
b k 
c k 

} 

= 

{ 

M 

M 

M 

} 

(A.6) 

here 

P = T 

(
kπ

L 

)2 

− ρh ω 

2 + c, Q = δT 

(
kπ

L 

)2 

− ρh ω 

2 +2 c, 

 = ρh ω 

2 2 [ 1 − cos (kπ) ] 

kπ
(A.7) 

By solving the matrix Eq. (A.6) , a k can be obtained as 

 k = 

( Q 

2 + cQ − c 2 ) M 

P Q 

2 − 2 P c 2 − Q c 2 
(A.8) 

Next, for forced vibration driven by an external force, the de-

ections are taken as 
 

w 1 

w 2 

w 3 

} 

= sin ωt 

∞ ∑ 

k =1 

{ 

A k 

B k 

C k 

} 

sin 

kπx 

L 
(A.9) 

Substituting the expressions of w 1 , w 2 and w 3 into Eq. (A.2) ,

nd considering the same external force as Eq. (14) , one can obtain

hat 
 

P −c 0 

−c Q −c 
0 −2 c Q 

] { 

A k 

B k 

C k 

} 

= 

{ 

Q k 

0 

0 

} 

(A.10) 

The coefficient A k can be determined by solving the matrix

q. (A.10) , as 

 k = 

( Q 

2 − 2 c 2 ) Q k 

P Q 

2 − 2 P c 2 − Q c 2 
(A.11) 

ppendix A.2. 6-membrane model 

Similarly, for a 6-layer graphene sheet, considering the in-phase

ondition w 1 = w 6 of the two outermost layers leads to w 2 = w 5 

nd w 3 = w 4 . Thus, Eq. (A.1) can be exactly reduced to 3 equations

or ( w 1 , w 2 , w 3 ) as 
 

 

 

 

 

− T ∂ 
2 w 1 

∂ x 2 
+ ρh 

∂ 2 w 1 

∂ t 2 
= c( w 2 − w 1 ) 

− δT ∂ 
2 w 2 

∂ x 2 
+ ρh 

∂ 2 w 2 

∂ t 2 
= c( w 3 − w 2 ) − c( w 2 − w 1 ) 

− δT ∂ 
2 w 3 

∂ x 2 
+ ρh 

∂ 2 w 3 

∂ t 2 
= c( w 2 − w 3 ) 

(A.12) 

When δ = 0, the governing equation for w 1 can be obtained

rom Eq. (A.12) as 

− T 

(
1 + 

3 ρh 

c 

∂ 2 

∂ t 2 
+ 

ρ2 h 

2 

c 2 
∂ 4 

∂ t 4 

)
∂ 2 w 1 

∂ x 2 

+ 3 ρh 

(
1 + 

4 ρh 

3 c 

∂ 2 

∂ t 2 
+ 

ρ2 h 

2 

3 c 2 
∂ 4 

∂ t 4 

)
∂ 2 w 1 

∂ t 2 
= 0 (A.13) 

Inserting w 1 = f ( x )exp( i ωt ) into Eq. (A.13) , the effective mass

ensity of a 6-layer graphene sheet with highly tensioned outmost

ayer but tension-free inner layers ( δ = 0) is given by 

e f f = 

1 − 4 ρh ω 2 

3 c 
+ 

ρ2 h 2 ω 4 

3 c 2 

1 − 3 ρh ω 2 

c 
+ 

ρ2 h 2 ω 4 

c 2 

ρ (A.14) 

For general case with δ≥0, substituting Eq. (A.5) into Eq. (A.12) ,

he governing equations for forced vibration driven by vibrating

nds can be achieved as 
 

P −c 0 

−c Q −c 
0 −c R 

] { 

a k 
b k 
c k 

} 

= 

{ 

M 

M 

M 

} 

(A.15) 
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where P, Q and M have been defined in Eq. (A.7) , R is defined as 

R = δT 

(
kπ

L 

)2 

− ρh ω 

2 + c (A.16)

From Eq. (A.15) , the coefficients a k for w 1 can be given by 

a k = 

(c + Q ) MR 

P QR − (P + R ) c 2 
(A.17)

Substituting Eq. (A.9) into Eq. (A.12) , and considering the same

external force as Eq. (14) , the governing equations for forced vibra-

tion driven by an external force can be rewritten as [ 

P −c 0 

−c Q −c 
0 −c R 

] { 

A k 

B k 

C k 

} 

= 

{ 

Q k 

0 

0 

} 

(A.18)

Thus, the coefficient A k can be determined as 

A k = 

(QR − c 2 ) Q k 

P QR − P c 2 − R c 2 
(A.19)
Fig. B.1. Comparisons of the forced vibrational mode driven by two vibrating ends given  

δ = 0 and T = 5 N/m. (a) 5-layer graphene sheet under an excitation frequency ω = 4 π THz

Fig. B.2. Comparisons of the forced vibrational mode driven by a point load given by the  

Q 0 = 5 N/m and T = 10 N/m. (a) 5-layer graphene sheet under an excitation frequency ω = 
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by the simplified 3-membrane model and the accurate multi-membrane model for

. (b) 6-layer graphene sheet under an excitation frequency ω = 3.4 π THz. 

simplified 3-membrane model and the accurate multi-membrane model with δ = 0,

4 π THz. (b) 6-layer graphene sheet under an excitation frequency ω = 3.4 π THz. 

ppendix B. Validation of the simplified 3-membrane model 

Let us verify the effectiveness and accuracy of the simplified

-membrane model used in the present paper which treats all in-

er layers together as a single elastic membrane. For this purpose,

et us consider the case δ = 0, and verify the results given by the

implified 3-membrane model (1) by the accurate multi-membrane

odel (A.1) . 

Table B.1 

Comparison of the lowest bandgap frequencies (THz) and the normalized bandgap

width predicted by the simplified 3-membrane model and the multi-membrane

model when δ = 0. ( f low = ω low / (2 π ), f upp = ω upp / (2 π )). 

f low Diff. f upp Diff. �f / f low 

m = 1 Multi-membrane model 2.59 – 3.17 – 0.22 

3-membrane model 2.59 0 3.17 0 

m = 2 Multi-membrane model 1.83 – 2.59 – 0.42 

3-membrane model 1.83 0 2.59 0 

m = 3 Multi-membrane model 1.40 – 2.15 – 0.54 

3-membrane model 1.50 7.1% 2.36 9.8% 0.57 

m = 4 Multi-membrane model 1.13 – 1.83 – 0.62 

3-membrane model 1.29 14% 2.24 22% 0.74 
 of few-layer graphene sheets, International Journal of Solids and 
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In Table B.1 , the edge frequencies of the lowest bandgap pre-

icted by the simplified 3-membrane model are compared with

hose obtained by the accurate multi-membrane model when

= 0. It is seen from Table B.1 that the simplified 3-membrane

odel exactly predict the bandgap of a 3- or 4-layer graphene

heet ( m = 1 or 2). For graphene sheets more than 4 layers (say,

 = 3 and 4), however, the bandgap given by the simplified 3-

embrane model is a little higher (about 10–20%) than that given

y the accurate multi-membrane model, and the difference be-

ween the bandgaps given by the two models increases with in-

reasing number of layers. Also, it is found that the normalized

andgap width increases as the number of inner layer increases

or both multi-membrane model and simplified membrane model,

s expected. 

To further examine the accuracy of the simplified 3-membrane

odel, detailed comparison between the forced vibrational modes

f a 5- and a 6- layer graphene sheet with δ = 0 given by the two

odels, driven by two vibrating ends or a point load, are made in

igs. B.1 and B.2 for an excitation frequency within the bandgap. 

rom all figures shown here, it is seen that the deflections pre-

icted by the simplified 3-membrane model is a little lower than

hat predicted by the accurate multi-membrane model, and the

iscrepancy between the results given by the two modes gradually

ecreases with increasing length of the graphene sheets. In sum-

ary, the present simplified 3-membrane model exactly predict

he bandgap of a 3- or 4-layer graphene sheet ( m = 1 or 2), while it

ives reasonably accurate results for a 5- or 6-layer graphene sheet

ith a larger length (e.g. L / h > 100). This justifies the effectiveness

nd reasonable accuracy of the simplified 3-membrane model for

LGS. 
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