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of admissible functional manipulations, the general differential system solving the problem
is developed. The isotopic radially inhomogeneous elastic axisymmetric problem is also
analyzed. The exact elasticity solution is developed for a radially nonhomogeneous hollow
circular cylinder of exponential Young’s modulus and constant Poisson’s ratio and of power
law Young’s modulus and constant Poisson’s ratio. For the isotropic elastic axisymmetric
problem, a general expression of the stress function is derived. After the satisfaction of
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Homogeneous differential equation the biharmonic equation and making compatible the stress field’s expressions, the stress
Radially nonhomogeneous function and the stress and displacements fields of the axisymmetric problem are also
Hollow cylinder deduced. Applications have been made for a radially nonhomogeneous hollow cylinder

where the stress and displacements fields are determined.
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1. Introduction

The study of the linear axisymmetric problem has already been confronted in Elasticity by many investigators (Love,
1956; Sokolnikoff, 1956; Muskhelishvili, 1963; Timoshenko and Goodier, 1970; Barber, 1974; Ting, 1984; Fabricant, 1990;
Barber, 1992; Birman, 1992; Sideridis, 1993; Singh and Kumar, 1994; Gal and Dvorkin, 1995). In investigations in half space
problems and in the case of surface tractions (Barber, 1974; Fabricant, 1990), in composite materials determining the stress
field (Sideridis, 1993; Gal and Dvorkin, 1995), in shells using high-order theories and analyzing the buckling (Birman, 1992;
Kardomateas, 1993), in pressure vessels pipes and in the optimization of the production (Singh and Kumar, 1994; Stampou-
loglou and Theotokoglou, 2006) the property of axisymmetry arises and the solution of the problems have been simplified
considerably. In several studies (Barber, 1974; Fabricant, 1990; Sideridis, 1993; Singh and Kumar, 1994; Gal and Dvorkin,
1995), the solution of the axisymmetric problem is based on the construction of a stress function for determining the stress
and displacements fields.

Nonhomogenous materials can be described as two-phase particulate composites, where the volume fraction of its con-
stituents differs continuously in the thickness direction (Bakirtas, 1980; Erdogan and Delale, 1983; Erdogan et al., 1991;
Craster and Atkinson, 1994; Aboudi et al., 1995; Zhang and Hasebe, 1999; Horgan and Chan, 1999; Afsar and Sekine,
2002; Paulino et al., 2003; Weng, 2003; Theotokoglou and Stampouloglou, 2004). This implies that the composition profile
can be tailored to give appropriate thermo mechanical properties. Radially varying elastic moduli were used by Lutz and
Zimmerman (1996) to describe the behaviour of the interphase zone of an infinite body around a chemical inclusion.

In this study, the plane axisymmetric problem with axisymmetric geometry and loading is analyzed in a radially nonho-
mogeneous hollow circular cylinder. Considering the radial dependence of the stress, the displacements fields and of the
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stiffness matrix E, and taking into account the equation of compatibility, after a sequel of admissible functional manipula-
tions, the general differential system is produced for the first time for a radially nonhomogeneous hollow circular cylinder. It
is also produced following admissible functional manipulations the differential system in the case of an isotropic radially
nonhomogeneous hollow circular cylinder.

The solution of the derived systems may be obtained either numerically or analytically. In general, these systems do not
accept an analytic solution. Assuming in the isotropic nonhomogeneous case that the functionally graded material has a con-
stant Poisson’s radio and that the Young’s modulus is of an exponential or a power law form, an analytical solution results for
the stress and displacement fields in terms of hypergeometric functions. From the boundary conditions of the problem, the
constants of integration are also obtained.

The solution of the isotropic homogeneous elastic axisymmetric problem may be arised from the differential system of
the isotropic radially nonhomogeneous problem. In addition considering that both stresses and displacements are functions
of the radial coordinate r, a general form of the stress function occurs. Treating the stress field in terms of the stress function
and in terms of the displacements and using the biharmonic equation, a fourth-order homogeneous differential equation re-
sults, whose general solution is the stress function of the axisymmetric problem.

The proposed analysis is applied to the elastostatic problem of the hollow nonhomogeneous cylindrical tube under inter-
nal loading. Considering either an exponentially varying Young’s modulus, or a power law varying Young’s modulus the
stress and displacements fields are determined.

2. The stress and displacements fields of the radially nonhomogeneous elastic axisymmetric problem

In axisymmetric problems with axisymmetric geometry and loading, the geometry of the body and the loading depend
only on the radius r of the polar coordinate system (r, 0), with origin at the centre of axisymmetry. In the case of plane elas-
ticity, the stress and strain fields may be written

Gij = Gij(r)’ 8,-]- = ‘gij(r)v lv] =T, 07 (13)
u=u(r), u=use, i=r0, (1b)
where u is the displacement field and e; is the polar basis.

It is assumed that the axisymmetric elastic problem is radially inhomogeneous, namely the elastic constants are given in
terms of the radial coordinate r, thus

o —Ee, E=E(n), (2)

where E the stiffness matrix.
The equations of equilibrium in the polar coordinate system (Timoshenko and Goodier, 1970; Barber, 1992) are

0079 1 Gl Ory —0, 3)

agrr 1 agr() O — Opp _
ottt % o tra T

and the equation of compatibility of strain is

Tor T Toro0 12 a0

62800 lazgrr 2 0y 16?_:17:2 16281’(} lasr()
o2 r2 992 r or r or '

From relations (1a), we get
10, + 0y —0p=0, 10,,+20,=0. (5)
Setting, r = ef, we have

. . dy . dy
— v = v'r2 / —
y=yr o y-y=yro V=4 V=g (6)

The differential system (5), is written

O+ 0 —0gp=0, 0r+20,=0. (7)
From the second of (7), it is obtained

Ing,y=-2t+T.

Setting, I' = In Cy, we finally have

G
Oro =7 (8)

where C; constant to be determined.
Thus, the shear stress o, is independent of the inhomogeneity. The first of (7), taking into consideration Polyanin and
Zaitsev (p. 81 for g(t) =1, f(t) = =1, fi(t) = oo, F(t) = [fi(t)/g(t)dt = —t), has the solution
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on(t)=Ce ' +et /efo*(m dt =Cet+e™ / apd(e') = % (C + /600 dr), 9)

where C constant to be determined.
Eq. (4) because of (1) is written

2 1
&g +F8:)0_?£/rr:0' (10)
Taking into consideration the stain components in the axisymmetric case
u, U Upr 1/, U
Er =Up=1U, Ep=—) & :,7+7—7<u **>7 11
™ Tr r 00 T T0 o 2 2 0 r ( )

the differential equation (10) becomes

(u’r’ 2u. 2u,) 2 (u’, ur> ul 0
T e e\ ) =Y
roor r r\r r r

Hence, Eq. (4) is an identity in the case of a radially inhomogeneous axisymmetric problem. Relation (2), because of relations
(11) in the case of a body with cylindrical anisotropy in plane conditions subjected to an axial force or a moment with an
angle to the principal material directions, thus obtaining monoclinic properties (Ting, 1984), is written as

E u

O = E1180 + E12€00 + Ev6&r0 = Enqu, + Eqp *+ % ( 0~ 70), (12a)
, u E ,u

0o = E12én + Exnépp + Eze6rp = EvpUt; + Exp —r + ? <U0 - ?ﬂ>7 (12b)
u E u

00 = Ev6&rr + Exs€00 + Es6€r0 = Esll; + EZGTr + ? (UQ - %) (12¢)

Substituting (8) into (12c), it is obtained
1 u C E Exs (u
(u, H) 4 16, 26 ( r)

2 F) "B B Ew

and substituting the above equation into relations (12a) and (12b), it is obtained

E2, y EigEa6\ ur  Eqg (C
O = (E“_EG> r+<£12— 156626> r-‘rE;Z( 1)

Eq6E E2\u, Ex (C (1)
P 1626) E,, _ 226 7r+ 26(1)
00 < 12— Ees r 22 Eeo Eeo
Taking into consideration relation (13), the first of Eq. (5) becomes
E B\ B, EisEzs’ E2
Eyp — 28 |2/ + |r( Eyy — 218 ) + | Eyp — 28 | |rul + r(E —]626>+ Ep—228)|u
( 11 ES > 11 EGS 11 E66 12 E66 22 E66 T
_ Eis+Ex (Cy Eis
= E (7) - (&se) C;. (14)
Due to transformation (6), we get
E%) . E%) . Ev6Ezs\ E% Eig +E Evs\’
Eyy — 22 )ity + | Eny — 222 u+<E 7M>—E u_ce{U,<ﬁ>} 15
( 11 EGG) T 11 EGG T 12 E66 22 — EGG T 1 EGG EGG ( )

Based on (15), the radial component u, of the displacements field (1b) is determined. The angular component, u,, taking into
consideration relations (8) and (12c), is given by

2C; 2E ., 2Ex
———TU ——=U
tEee  Ees ' Ees
or due to transformation (6)
—t

2C1e B 2516 ilr B 2526 u,.

EGG E66 E66
Hence, the displacements field is determined from relations (15) and (16), and the stress field from relations (8) and (13). The
constant C; as well as the constants arising from the solutions of the differential equations (15) and (16) will be determined

from the boundary conditions of the axisymmetric problem (Section 5). Eqs. (15) and (16) constitute the general solution of
the radially nonhomogeneous elastic axisymmetric problem, because besides of the solution for the distributed axisymmet-

T, — Uy =

l:l() — Uy = (16)
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ric pressure, it may provide the solution for the axisymmetric distributed shear stress where the ¢, - stress and the u, -
displacement components are different from zero.

3. The isotropic radially nonhomogeneous elastic axisymmetric problem

In the case of an isotropic radially inhomogeneous axisymmetric material, the stiffness matrix E is given (Barber, 1992) by

Eii(r) =2u(r)+ 2 (r) En(r)=4"(r) Ei(r)=0
E(r) = | Exna(r) = 2°(r) Epp(r) = Eqq(r) Ee(r)=0 , 17)
Eig(r) =0 Ex(r) =0 Ees(r) = 2u(r)

where

E(r)v(r) < .
e { A= ez i plane strain,

2 _ EOve) i
70907 = 1o7;; in generalized plane stress,

(18)

with pu(r) the radially varying shear modulus, v(r) the radially varying Poisson’s ratio.
The differential equations (15) and (16) for the determination of the displacements field u, because of (17), become

Enily + Enty + (Erz —Ex)u, =0, (19a)
—t
ity = up + 28087 (19b)
Ess
Let uy, a partial solution satisfying (19a). Thus, the solution of (19a) is (Polyanin and Zaitsev, 2003, p. 213)
et E]]
ur(t):uro F1+F2/—2df ,F:/ dtill’lEn (20)
llro E]]
where I'y, I'; constants to be determined.
Hence,
dt
u,(t):uro (F] + 1 m) (21)

Setting, t = Inr, we have

d
Ur (1) = Up, <F1 +1I; /ﬁ) (22)

Differential equation (19b) is a Bernoulli equation (Polyanin and Zaitsev, p. 81 for g(t)=fi(t) =1, and fo(t) =
(2C1et/Egg)(n = 0)), with solution

uo(t):AleF+eF/ e-rloll) 4 /f] () dt_/dt_t
&(t) £)
whence
- a2t
() = Aet +2C;et [ €40
J  Ees
Because, 4,et = A4r, is a rigid body rotation, it is taken A; = 0, thus
() = 2Cyet [Ed0 (23)
Ege
Setting, t = Inr, Eq. (23), takes the form
o dr
Uy(r) = 2C1r/r3E — (24)
The stress field (8) and (13), because of relations (17) and (22), becomes
I, dr
O = Tur(, <Enu +Elz—> <F1 +F2/m>7
IE, dr (25)
Ogp = TEnily, (Elzu +Exp *) <F1 +1> /m )

O =—.
=13
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4. The exponential case E = Eye’" and v = constant
Let an isotropic radially inhomogeneous elastic body (Fig. 1), where Poisson’s ratio v is constant, and modulus E is a func-
tion of r such that
E = Ege’, (26)

where Ey and 6 are given constants.
In the plane strain case, where (Barber, 1992)

E(1-v) Eo(1-v)

— — _ or
En=be =G ya— oy " dryi-m
(27)
E) — Ev _ Eov oo
PTa+va-=2v) d+v(a-2v) ’
the differential equations (14) and (19b), become
r2ul 4+ r(or + Tul + <1V_5vr—l>ur:0, (28a)
. 2Cet et
Uy = Uy + 2 :ug+2(1+v)C1W, r=et, (28b)
whereas in the generalized plane stress, where
E Eqe’" Ev Egvedr
Pn=br=y—w=1ow M=rp=ioe (29)
the differential equations (14) and (19b), become
r2u! + r(or + Dl + (vor — 1)y, = 0, (30a)
—t —t
iy =+ 208 2GS roet (30b)

2[1 Eoeéef ’

Thus, the component u, of the displacements field u in the plane strain as much as in the generalized plane stress case, is
calculated from the same differential equation (28b) or (30b).
Furthermore, using Eq. (24), we have

u(,(r):zcﬂ/ dr —Mr/ dr —_MC"W). (31)

T3E55 n Eo r3eor EO r

The component u, of u, is calculated taking into consideration the differential equations (28a) or (30a) for the plane strain or
the generalized plane stress cases.
Thus, we may write

r2u! +r(or 4+ . + (vior — Du, =0, (32)

Fig. 1. The nonhogeneous hollow circular cylinder under internal and external loading.
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where
I:‘0 =Eo/(1+v)(1-2v), vv=v/1—v for plane sFrairL (33)
Ey =Eo/1 -, VE=v for generalized plane stress.
The solution of the differential equation (32) is given by (Appendix)
(1) = 1Z 09 + 12, ¥ 6> 0, (34)
where
O = d(v +1,3;-0r) = D(V' +1,3;—|9|r),
PO — py+1,3;,-0r) = P(v' +1,3;—|9|r)
or
up(r) = re "2, @) 4 re "2, ) = reblrz, @) 4 ez, ), 5 <0, (35)
where

P = (2 — v, 3;01) = B2 — v, 3;-|0|r),
po) _ Y(2—-v,3;0r)=¥Y(2-v",3;—0|r),
and, Z; and Z, constants to be determined, ®(a, b;x), ¥(a,b;x) degenerate hypergeometric functions (Polyanin and Zaitsev,

2003).
The stress field (8), (13), because of relations (17), (33) and (34) or (35), is written

(i)é6>0
On = E;;e<”{z1 {asH - %@3“} + 2] o) }
5 or C (36)
Gop = E(*]e(”{zl {(DW - v*gqﬁﬁ”} +Z, [‘P(*) + v*b‘r‘lfﬁ*)} }, O = r—zl,
where
O = d(v +1,3;-01), D) =d(v' +2,4; o),
PO =Wy +1,3;-0r), W =P(v +2,4;-0r).
(ii) 6<O0
or or\ 2 —v* or 2—w
_E _ 4 (2 ) _ ) _5 -)
o2 (11 o () 2w s (1 e a2 )
s vRor N\ oy (O V(2 = V) VO o V2=V g 37
O'()()—EO{Z]|:<1 1+V*>(p +(3>71+V* (p] +Zz 1 1+V* U'4 ar71+v* lpl s ( )
G
O = p
where
D) = @2 —v,3;0r), D) =3 v, 4;0r),
PO = w2 v, 3;0r), PV =@ v, 4;0m).
Relations (36) and (37) can also be reduced to the form
0 = EQ|Z1A1 (1) + ZA5(1)]
. Ci (38)
O = Eg[Z1B1 (1) +Z2By(1)], 0 = 2
where
Ai(r) = e‘”(tb(“ - %qbg*)) Ay(r) = e (P +orel), >0,
(39)
Bi(r) = eér<d><*) - v*%cbﬁ“), By(r) = e (P +vorel),  5>0

with
o) = d(v +1,3;-01), B =D +2,4-01), >0,
l{’(+) _ lp(vx + -173, 75’.)7 q/%*) — l[/(v" +274, 761‘), 0>0
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or
B or o [Or\2 -V
Al(r)—<1—1+v*>¢ +<§>m¢] s (3<0,
Ay = (1- " Yo _ 2= g0 50,
1+ 1+ (40)
Bi(r) = (1-20 Yo 4 ()22 go 5.0
ne T+ 3) 14y 17 ’
V*or oo vi(2=v) -
_ _ =) _ (=)
B2(r)_<1 1+v*>‘{’ or T vy, <0
with

) = @2 —v,3;0r), P =d(3 -V 4r), <0,
PO w2 v, 3;0r), P =w3-v,40r), <0

4.1. Boundary conditions

From the boundary conditions of the axisymmetric problem, we determine the constants C;, Z; and Z,. Considering the
axisymmetric hollow circular cylinder (Fig. 1), loaded at both boundaries, we have for the shear tractions

2n 2n

T,p*d0= [ TzR*d0
0

or
2np°T, = 2TR* Ty = M. (41)
Thus, from the boundary conditions
o(r=p)=T,, 0n(r=R) =T,
and Eq. (8), it follows:
Ci =M/2m, (42)
From the normal tractions (Fig. 1)
0,(r=p)=N,, on(r=R)=Ng,
the coefficient, Z; and Z, are also calculated. Taking into consideration relations (38), it is obtained

Ng

N,
ZiA1 () + Zahy(p) = 58, Z1A1(R) + Z,A2(R) = E-
0

-5 (43)

From the solution of the system (43) occurs

(1Y NA(R) — Neha(p) (1) Nedi(p) = NAR)
= (E;) A AR —ARAR) 2 (Ea) A (p)As(R) — A (R)A> () (44)

provided that
A1(p)A2(R) — A1 (R)A2(p)#0.

5. The power law case E = Ey(r/p)° and v = constant

Let an isotropic radially inhomogeneous elastic cylinder (Fig. 1), with constant Poisson’s ratio v and modulus E of the form

E:Eo<ﬁ>] p<r<R (45)
p
where Ey and ¢ are given constants.

In the plane strain case, where (Barber, 1992),

Eiy =Exn = EQl-v) _  E(d-v) <%>

1+v)1-2v) (1+v)(1-2v) (46)

B Ev B Eqv \*
Bz = T+vT=2v) T+v)(1-2v) (p) ’
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the differential equations (14) and (19b) finally become

2,11 / v _ _
r u,+r(52+1)u:+ (5—1 — 1)ur 0, t (47a)
=+ 208 24— r—e, (47b)
2 Eo(e'/p)*
On the other hand, in the generalized plane stress case, where
E Eo (r\° Ev Eov [/1\°¢
E11=E22=W=17v2(;>7 Elz:ﬁzli‘,z(;)’ (48)
the differential equations (14) and (19b) become
rAul (4 D+ (8v — D, =0, (49a)
. et et
Uy = Uy + =uy+2(1+v)C;———, r=e. 49b
0 0 2 0+ 2( ) 1E0(ef/p)““ (49b)

In a similar way with the exponential case (Section 4), the component u, of the displacements field u, either in the plane
strain or the generalized plane stress case, is

26 +v) . dr 2C,(1+v)(r 1-¢
w = [ = ame () (50)

For the calculation of the component u, of u, we may write
r2ul +r(E+ Dul + (v — Dy, =0, (51)

where v* is given from relation (33).
The differential equation (51) is an Euler type ODE (Polyanin and Zaitsev, 2003) with solution, given by (Appendix)

Uy =1 (zlr%\/ﬂ_@ +zzr*%\/@>, ) =& —4&v +4>0, (52)

where Z; and Z, constants to be determined.
The stress field (8) and (13), because of relations (17), (33), (45) and (52), becomes

%

Oy :TO-[Z1P1(1’)+ZZPZ(1')]7
E G (53)
O =17+ [Z1Q:1(r) + Z2Q2(1)], 0 =3
with
Pl(r):<v*§+\§>p Ep1H(E2)+ \/—/2 Pz(r):<*§\£f F1HE2)- \/_/2
. (54)
Q(r)= (1 _ v*§+ P 4) p—ér—1+(5/2)+(\/f-/2)’ Q,(r) = (1 _ v*%— gf) p-ip 1D \//2

where

f(e)=4+& —4¢v.

5.1. Boundary conditions

The coefficients C;, Z; and Z, are determined from the boundary conditions of the axisymmetric problem. A hollow axi-
symmetric circular cylinder is considered (Fig. 1), loaded at both boundaries with uniformely distributed loads.

The coefficient C; is determined from the boundary condition concerning the shear tractions, using relations (41) and (42)
(Section 4.1).

From the normal tractions

Gr"(r:p):N[h O-rr(r:R)ZNR./
and relations (53) and (54), it is obtained

1+
E,

1+v*
E,

Z1P1(p) +Z:P2(p) =N,

Z1P1(R) + ZoP5(R) = Ng
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From the solution of system (55), we have
(14w N,P>(R) — NrP2(p)
2= (5 ) ippim 56
7 _ <1+v*> NrP1(p) — N,,Pl( )
"\ E JPi(pP(R) = Pi(RP:(p)’

provided that

A&, Q) = P1(p)P2(R) — P1(R)P2(p)#0, (=-—.

6. The isotropic homogeneous elastic axisymmetric problem

In the case of an isotropic homogeneous elastic axisymmetric problem, 6 = 0, the differential equations (28a) and (31),
become

ru i, —u, =0, (57)

G

o (58)

Uy(r) = —
where, u = Ey/2(1 + v), the shear modulus.

The general solution of Eq. (57) is

u(r) = Cnr—&-& (59)

where C;; and C,; constants to be determined

We may arrive at the same result for the displacements field by considering the Airy-stress function ¢ of the problem,
which is determined as follows.

The stress field in terms of @(r, 0) is given by (Timoshenko and Goodier, 1970; Barber, 1992)

T ror rZorz> 7T ar T o0 0= rz
From relations (60) and (1a), it is obtained
® =F(r) +rg(0) + h(0), (61)

where h(0) and g(0) are unknown functions to be determined. From relations (60) and (61), we have

L), K@) = dno)/do,

O =
T 2

and taking into consideration that g,y = (1), it is furnished that

C
h(0) = C10+Cy, Gy = 721 (62)

where C; and C, constants to be determined.
From relations (61) and (60), we get

l ' 1
O = [F(r) +8(0) +&"(0)] (63)
Because of relations (1a), we have
g2(0)+g"(0) =G5, GER, (64)

where C; constant to be determined.
Finally, it results that

®=F(r)+r1g(0) +C10+C, (65)
and

] / 7 C
On =2 F()+Cl, 0u=F), oun=—. (66)

Taking into consideration relations (11) and the stress-strain relations (Timoshenko and Goodier, 1970; Barber, 1992)

O = UA27)er + 2 8gp,  Opg = A& + 2UA A )egg,  Org = 2UEr, (67)
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where

o {i plane strain,

© |\ 2ip/(2+2u) plane stress
and 4 and y, are the Lamé constants, it is found that

u 1
O = QU+ W + 0 =1 IF (0 +C,
%k ur "
T oo :l*u;-f-(zll-&-ﬂ )?:F (), (68)

u C]
oumn{-2w) -5

From relations (68), relations (57) and (58) may also arise.

In order to determine the stress function @, it is considered the equilibrium of the sector (p <r<R,-m<
—0 < 0 < 0y < m) of an axisymmetric plane problem subjected to the uniform normal internal p(p)(=p,;) and external
p(R)(= p,) loadings (Fig. 2). From the equilibrium in the x and y directions, and because of the normal loadings (C; = 0),
it finally follows for the stress function and the stress and displacements fields, that

®=F(r)+1g(0) +C2, g+g =G,

1 / Z
on(r) = ?(F (N +C), opr)=F(), 0,=0, (69)
ur(r):Cnr+C—i]7 uy=0.

In addition, the stress function @ must satisfy the biharmonic equation (Timoshenko and Goodier, 1970; Barber, 1992)

vie o,
which yields
Vi =FY(r) + %F”’(r) - rl—ZF”(r) + :—3F’(r) + % =0 (70)
or
F iy 4 2y Lpron g _
1)+ ZF () = S Fi(0) + 5F =0, Fi(r) =Fr) +Gr+G. (71)

Since the exact form of g(6) does not influence the stress and displacements fields (relation (69)), the general solution of the
differential equation

g(0)+g"(0)=Cs
is not required, and we may proceed with the partial solution
g(0) = Cs. (72)

Fig. 2. The equilibrium of a sector in an axisymmetric problem.
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Thus, taking into consideration relation (72), the stress function @ is given by

@(r) =F(r) + Csr + G, = F4 (). (73)
It results that the stress function @, given as the general solution of the homogeneous differential equation (71) is
&(r) =Alnr +Br’Inr + I'?, (74)

where A, B and I', constants to be determined.
The stress field due to relation (74) is

A A
O = r—2+B(1 +2Inr)+2I, oy = —r—2+B(3 +2Inr)+2I', o, =0. (75)
From relations (68), (58), (59) and taking into consideration that C; = 0, we have
C . C .
O = —2u%+ 2Cu(U+ 7)), Op= 2#%-1‘ 2C(U+72"), 0, =0. (76)
In order that relations (74) and (76) are compatible with relation (60), it is required that
A=-2uCy, B=0, I'=Cn(A"+pn. (77)
Hence, the stress function (74) is finally written as
&(r) =Alnr 4 I'r?, (78)
and the stress and the displacement fields are given by
A A
O = =2 +2I', oy = 2 +2I', 0,4 =0, (79)
Ir A 1 A
ur:m_z_l,”':ﬂ F(K—])r—?i|, U(]:O7 (80)

where Kk = 3+ A7) /(i + 2) is the Muskhelishvili constant (Muskhelishvili, 1963) and A and I', two unknown coefficients
determined from the boundary conditions of the problem.

7. Application

Two applications have been made. The first one concern the case where Young’s modulus varies exponentially and the
second one the case where Young’s modulus varies according to a power law.

7.1. The exponential case

Let an isotropic radially nonhomogeneous axisymmetric tube in plane strain conditions (p(= 0.50 m) < r < R(= 1.00 m)),
under internal pressure (Fig. 3)

Fig. 3. An isotropic nonhomogeneous axisymmetric cylinder under internal pressure.
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N,=1GPa, Ng=T,=Tg=0,

with constant Poisson’s ratio, v=0.34, and a varying Young’s modulus of the form E = Ese”, E,= 100 GPa
(v- =0.515, E; =233.21 GPa), -3.0 < 6 < 3.0.
Because the tube is subjected only to normal tractions (Fig. 3), relations (40) (6 < 0), become (Wolfam, 1991)

or or (1.485
Ai(r) = <1 - m) ®(1.485,3;0r) +§ <m> ®(2.485,4; 6r),
1.485 .
(1 T 515) (1.485,3;0r) — br(l 515) ¥(2.485,4;or), 1)
0.5156r or 1.485
(1 1515 ) ®(1.485,3;0r) + 3 0515(1 515) ®(2.485,4;0r),
= <1 0. 5155r> ¥(1.485,3;0r) — <1'g?§>0.515¥’(2.485,4; aor),

where, @(a, b;z), ¥(a,b;z) the degenerate hypergeometric functions (Polyanin and Zaitsev, 2003, p. 221), with

) -1 Tk (1.485+)) (s7)
?’(1.48572+1,ar)_W{d§(1.485,3,6r)1n(6r)+kz:IW[w(1.485+k)(//(1+I<)(//(3+k)]k!
in‘ 0 515+1) (or)* >
1485 ) H —1+410) k7
100 k—l k
. k- 1(2.485+1) B B (67)
¥(2.485,3 +1;0r) = 0 515) {qs (2.485,4;67)In(57) +;7H1‘QJ ar /(24854 k) — (1 +k) —y(4+ k)=
211 0515+1) (or)F3
2485 k; o2+ K (82)

In the case that § > 0, from relations (39), we have

el {gb (1.515,3; —or) — L (2515, 4; —6r)},

3
Aq(r) = e [WY(1.515,3; —0r) + or¥(2.515,4; —or), (83)
:eéf{q>15153 —or) — %(2.515,4;—50},

By(r) = e”[¥(1.515,3; —or) + v*or¥(2.515,4; —or)],
where (Polyanin and Zaitsev, 2003).

5 -1 19 111 (1.515+1) ()"
‘P(1.515,2+1.,—()r)=2p(0.485){(15(1.515,3,—5r)1n(—5r)+kz;W[z//(l.sw—&-k)—xp(l+k)—|p(3+k)] o
zl: 0 485 +1) (—o1)* >
1515 ) & (=140 k'
@13 0(2515.4—-In(—or)+ 3 T8I0 1y 51510yt 4k —pia+ k) 0T
S o X g MO K
21, 0485+l)( sr)F3
2515 Z 2. R (84)

Having determined A,(r) and B;(r) (i = 1,2) (Wolfam, 1991), the coefficients Z;,Z, are derived from relations (44) for the
different values of the exponential coefficient §.

In the sequel, the displacements and stress fields are determined from relations (34) and (38), respectively. Plots of the
above stress and displacements fields are given in Fig. 4 for the values of 6(= —3.0,-1.5,-1.0,-0.5,0.50,1.0,1.5,3.0 m 1) as
well as for the homogeneous case (6 = 0) using relations (79) and (80).

7.2. The power law case

Let an isotropic and radially nonhomogeneous axisymmetric cylinder in plane strain conditions
(p(=0.50m) < r < R(=1.00 m)), under internal pressure (Fig. 3)

p:‘lGPa7 NRZTp:TRIO



E.E. Theotokoglou, L.H. Stampouloglou / International Journal of Solids and Structures 45 (2008) 6535-6552

1
0.8
0.6
E
o
0.4
0.2
0
0.5 0.6
0
/
-0.5
i "”/’,_———’P”_____.—_A
s T =
&
s ) N
7 5=30
-1.5
255 0.6 0.7 0.8 0.9
e
——] I
0.01 — =
i L f—r‘————.________g—v—‘___f_——-
2 T | .
// §=-30
-0.03
-0.04
0.5 0.6 0.7 0.8 0.9

r

Fig. 4. The o,, 0,y and u, values (p < r < R) in the exponential case for v = 0.515, —-3.0 < § < 3.0.

with v = 0.34, E = Eo(r/p)°, Eo = 100 GPa (v* = 0.515, E}, = 233.21 GPa), -3.0 < ¢ < 3.0.

From relations (54) we have
Pi(r) = <0.51 5— % + 4) 0.50 - 1+E21+(VI72),

Py(r) = (0.515 - f) 0.50 ¢ 1+E2-(VF2)

Qi(r) = (1 - 0.515§+ 0.5154) 0.50r- 12+ (Vi)

Q,(r) = <1 - 0.515% — 0.5154) 050 ¢r1+e2-(/i2),

f(&) =4+ —4£%0.515.

6547

(85)



6548 E.E. Theotokoglou, I.H. Stampouloglou / International Journal of Solids and Structures 45 (2008) 6535-6552

10
0.8 Y
4
o 0.6
0.4
02— s
5 %
0.5 0.6 0.7 0.8 0.9 1
r
or
|
i .;J 30 //
" ——
aicz_] ///_f_‘__r
3 1 s e E—
o T — |
/ \\‘\-‘_‘
-1.5 —
£-30
R/
0.5 0.6 0.7 0.8 0.9 1
r
oF T
/—r‘—#—_ﬁr——-ﬁ"—)—;—f
-0.005 E—
R SR R I M
-0.01 ————
5 / [
—0.015 Y
// $m-28
-0.02
0.5 0.6 0.7 0.8 0.9 1

r

Fig. 5. The o, 0y and u, values (p < r < R) in the power law case for v = 0.515, —=3.0 < £ < 3.0.

Combining relations (52), (53) and (56) with relations (85), the stress and displacements fields are given by
~ Py(r)P,(1.00) — P;(1.00)P,(r)

" AEC=2) ’
- Q. (r)P>(1.00) — P;(1.00)Q,(r) 7
A(E,{=2)
1+ v\ - E2+/F/21p,(1.00) — Py (1.00)r€/2-(/F/2)
r:( E > AET=2) '

Plots of the above fields are given in Fig. 5 for the values of ¢(= -3.0,-2.0,-1.0,-0.5,0,0.5,1.0,2.0,3.0).

8. Conclusions

(86)

The plane axisymmetric problem with axisymmetric geometry and loading of a radially nonhomogeneous hollow circular
cylinder was studied in linear elasticity. After a series of admissible functional transformations and considering the radial
dependence of the stress, the displacements fields and of the stiffness matrix, the general differential system of the aniso-

tropic and of the isotropic, radially nonhomogeneous elastic axisymmetric problems resulted.

In the case of a nonhomogeneous hollow circular cylinder of constant Poisson’s ratio and of Young’s modulus of exponen-
tial or of power law function of the radial coordinate r, the exact analytic solutions arise for the stress and displacements
fields in terms of hypergeometric functions. The advantage of our study relative to the investigation of Zhang and Hasebe
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(1999), is the closed form analytic solutions, solving ordinary differential equations without the need of matching a multi-
material cylinder with infinite homogenous layers or manipulating numerical solutions.

Our study was based on a more general consideration of the problem where the stiffness matrix of the linear elastic mate-
rial (isotropic or anisotropic) was a function of r and consequently our solution is valid for a uniformly distributed pressure
as well as for a uniformly distributed shear loading. From our analysis the general differential equations (15) and (16) of the
displacements fields were formulated. In the sequel three sub-cases in which Egs. (15) and (16) could be solved analytically,
were examined. In the first case Young’s modulus depending on r varied exponentially, in the second case Young’s modulus
varied according to a power law and in the third case the isotropic homogeneous elastic axisymmetric problem was con-
fronted. In the power law case our solution (Eq. (47a)) coincides with the proposed solution by Horgan and Chan (1999,
Eq. (2.8)). The solution of Horgan and Chan (1999) is straightforward and it can be more easily managed and programmed
than our solution, but our solution is more general and it can be easily extended to the more difficult exponential case (Sec-
tion 4).

The benefit of our analytical solution (Figs. 4 and 5) is the clarification of the behavior of the ¢, - stress component. It is
observed that the variation of the gy, — stress is increasing or decreasing according to the values of the coefficients § or ¢&.
Namely the gy, — stress takes under internal tractions maximum values in the inner ring when the coefficients 6 or ¢ decrease
negatively or takes maximum values in the outer ring when § or ¢ increase positively.

In addition using the radial dependence of the stress, strain and displacements fields in the isotropic homogeneous case
(Section 6), the biharmonic equation of the problem was finally reduced to a fourth order homogeneous differential equation
whose general solution is the stress function of the axisymmetric problem. The o,,-stress in the cylindrical coordinate sys-
tem (r, 0,z), appearing in plane strain conditions, does not influence the proposed solution because it may result from a linear
combination of o, and o stresses.

It is observed that the proposed analytical method coincides in the case of the exponentially varying Young’s modulus
(Fig. 4) with the results of the study of Zhang and Hasebe (1999) in the case of uniformly distributed internal loading. On
the other hand, in the case that the Young’s modulus varied according to a power law, our results (Fig. 5) coincide with
the results proposed by Sladek et al. (2008). In the applications Section 7, the case of distributed pressure was considered.
Hence, because of Eq. (42), C; =0, and 0,y = &, = 0. But with the proposed analysis the solution of equilibrated distributed
shear traction (C;#0) in the inner and the outer ring of the nonhomogeneous axisymmetric tube may also be provided
(()’,(,#0, Sr()7é0).

Appendix A. The solutions of Eqs. (32) and (51)
The differential equation (32)
r2u’ + r(or + D, + (v'or — 1u, =0, (A1)
considering Polyanin and Zaitsev (2003, p. 230), fora=46,n=1,b=1, 2 =0,8=v*5,7 = —1 and the transformation

z=r"=r, w=uz*=ur" (A.2)
where k is a root of the equation

WP +nb-k+y=k-1=0

or
k=41

becomes
ra’ + (0r+2k+ D' + (k+v)ow =0, k==+1, w=ur* (A.3)

The general solution of (A.3) from Polyanin and Zaitsev (2003, p. 225), for a; =1,b, =0,a; = 6,by =2k +1,a0 =0,
by = (k + v*)d, provided that

a; =10, a? = &*+#4apa; =0
and

vD—a

D=a? —4apa, = *, K= ST

1.
— 5 (0] - 9),

is investigated in the following two cases.

(i) In the case, 6 > 0, the parameters K, 4, u, B(K), a and b (Polyanin and Zaitsev, 2003, p. 225), become
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_] - S\ _ a, _ 1 _ b2 _
*E(M_())*Ov i*—m*—gy #*—a—Z*Q
B(K) = byK? + biK + by = by = (k + v*)9,
__BK) . h _ 2 _
=K k+v*, b= (a;b; —a1by)a;* =2k +1.
The general solution of (A.3), is written
= e’“w(r - “) W(—or) = g(a=k+Vv,b=2k+1;z= —or). (A4)
From relation (A.4) occurs
w=w(-or)=ga=v"+1,b=3;z=-6r), 6>0, k=1, (A.5a)
w=w(-ér)=gla=v'-1,b=-1;z=-6r), §>0, k=-1. (A.5Db)
(ii) In the case, é < 0, the parameters K, 4, u, B(K), a and b (Polyanin and Zaitsev, 2003, p. 225), become
_ 1 _ a, o 1 - bz _
*j(w_é)*—& TIK+a 8 H*—E*Q
BK) = baK® + byK + by = 6(v' — 1K), a==20) i1 y
2 1 0 ’ 2021{ +aq
b = (ayb; — arby)a® =2k + 1.
The general solution of (A.3) is written
= e’“w(#) —e"wr)=e " gla=k+1—-v ,b=2k+1;z=0r) (A.6)
or
w= e*"’w(br) —egla=2-v,b=3;z=0r), <0, k=1 (A7a)
w=e"wr)=e" gla=-v,b=-1;z=6r), <0, k=-1. (A.7D)

The function #(a,b;z) in relations (A.4)-(A.7), is derived from the solution of the degenerate hypergeometric equation
(Polyanin and Zaitsev, 2003, p. 220)

o b-ay a0 y-L y-9Y (A8)
The general solution of (A.8) (Polyanin and Zaitsev, 2003, p. 222) is

y= #(a,b;z) = 41®(a,b;z) + A,¥(a,b;z), b#0,-1,-2,-3,... (A.9)
or

y=s(ab;z) =24 dla—b+1,2-b;2) + AP(a—-b+1,2-b;2), b=0-1,-2,-3,... (A.10)
Thus, from relations (A.5), (A.7), (A.9) and (A.10), we may write

o) =40V +1,3;-0r) + AP(v' +1,3;-6r), 6>0, b=3, k=1,

o(r) = * 2[4, d(v +1,3;—0r) + AP (v +1,3;-6r)], 6>0, b=-1, k=— (A11)

o(r) = e A B2 — v, 3;01) + AW (2 —v*,3;01)], 6<0, b=3, k=1,

o(r) = e TP A, P2 — v, 3;0r) + A P(2 — v, 3;01)], 0<0, b=-1, k=-1.
From transformation (A.2), it finally occurs

u(r) =rd;@(v: +1,3; —0r) + rA, (v + 1,3;-6r), >0, b=3, k=1,

Up(r) = ro* A1 ®(V' +1,3; =01) + r* A P (v +1,3;-61), >0, b=-1, k=- (A12)

(r)
U (r) =re " A ®(2 — v*,3;6r) + re AW (2 — v, 3;0r), <0, b=3, k=1,
u(r) =re 32 A, P2 — v, 3;01) +re TP AP (2 — v, 3;01), 6<0, b=-1, k=-1.
The hypergeometric functions ®(a, b; z) and ¥(a, b; z) are specified (Polyanin and Zaitsev, 2003, pp. 220, 221, 753) as follows:

l
abzfl—s—z (F) b#0,-1,-2,-3,... (A13)
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with
(), =a(e+1)(+2)...(a+1-1), (a),=1.

In the case that b >a >0

. _ F(b) ! zt 40— 1 b—o—1
(15(a,b,z)_m/0 et (1 -¢) dt, b>a>0, (A14)
where the gamma function is defined as
rx) = / e 't 1dt. (A.15)
0
We also have (Polyanin and Zaitsev, 2003, p. 221)
. T(=b) A Th=1) 1 ‘
W(a,b,z)_m@(a,b,zwrwz ®(a-b+1,2-b;2). (A.16)
In the limit where b — n(=1,2,3,4,5,...), from relation (A.16) occurs
Y(a,n+1;z) = n'F n){tban+1zlnz 3 va+h)—y(d+h)—y(1+n+l ]l'}
(n-1)! & (@), <z’ )
+ , A17
@ 4 d-n\ I ( )
where, y(t) = (InI'(z)),, the logarithmic derivative of the gamma function, and
n-1
Y1) =—yp, y(n) = —yZl’l, 1 =0.5772 (the Euler gamma). (A18)

=1

The following properties are also valid (Polyanin and Zaitsev, 2003):

&(a,b;z) = e“P(b—a,b;z), ¥(a,b;z)=2"""¥Y(1+a-b2-b;2), (A19)

d , a

&d)(a,b;z):(D(a,b;z):E(D(a+l,b+1;z), (A.20a)

d' (@), ,

az ®(a,b;z) = ), ®(a+n,b+n;2), (A.20b)

d )

&‘P(a,b;z): ¥Y'(a,b;z) = —a¥(a+1,b+ 1;2), (A.21a)

c?" Y(o,b;z) = (=1)" (), ¥ (ot +n,b +1;2). (A.21Db)
The differential equation (51)

Ul r(E+ DU+ (& - Du, =0 (A.22)

is an Euler type ODE (Polyanin and Zaitsev, 2003, p. 226), with parameters
a=¢+1, b=&v—-1, (1-a?—4b=2¢E —48v +4=f(0). (A.23)
It is observed that for the range of the values of v* (0 < v* < 1), f(¢) > 0, the general solution of (A.22) is given by
_ _ 1
w = |2+ 2ol ), p=51/(1-0)” —4b
or

Uy = r3(Z VIO 4 Z,r WIO)  fe) = 2 — 48y 14> 0. (A24)
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